URGENT PLS HELP!! Will give brainiest :)

URGENT PLS HELP!! Will Give Brainiest :)

Answers

Answer 1
you should put the question, there is not question to be answered?

Related Questions

inequality to show the lower and upper bounds of a number

Answers

You can use inequality signs to show lower and upper bounds of a number.

For example:

Lower bound:

x ≥ 5 (means x is greater than or equal to 5)

Upper bound:

x ≤ 10 (means x is less than or equal to 10)

Together they show a range:

5 ≤ x ≤ 10 (means x is between 5 and 10)

Some other examples:

0 < x < 100 (means x is between 0 and 100)

-10 ≤ y ≤ 50 (means y is between -10 and 50)

-5 < z < 12.5 (means z is between -5 and 12.5)

Does this help explain using inequalities to show boundaries or ranges of numbers? Let me know if you have any other questions!

To show the lower and upper bounds of a number, we can use inequalities.

For the lower bound, we can use the inequality:

LB ≤ x

where LB is the lower bound and x is the number we're interested in. This inequality tells us that x is greater than or equal to the lower bound.

For the upper bound, we can use the inequality:

x ≤ UB

where UB is the upper bound and x is the number we're interested in. This inequality tells us that x is less than or equal to the upper bound.

Putting these two inequalities together, we get:

LB ≤ x ≤ UB

This inequality tells us that x is between the lower and upper bounds, inclusive.


The graph shows the distance a horse ran in miles
per minute. A fox ran at a rate of .8 miles per
minute. Find the unit rate in miles per hour of the
horse using the graph. Then compare the horse with
the fox. Which statement about their speeds is true?


a. The horse traveled 8 miles per minute
b. The fox traveled 5 miles per minute
c. The fox was 0.3 miles/minute faster than the horse
d. The horse and the coyote traveled at the same rate

Answers

When the unit rate of the horse and the fox is compared, the statement that is true about them will be that The fox was 0.3 miles/minute faster than the horse. That is option C.

How to calculate the unit rate in miles per hour?

From the graph,

30 miles distance covered by the horse = 60 mins

But 60 mins = 1 hours

Therefore, the rate of distance covered by the horse = 30 miles/hr.

But the rate of distance covered in miles/ min = 5/10 = 0.5 miles/min.

If the fox covers 0.8miles/min then the difference between it and the horse = 0.8-0.5 = 0.3miles/min.

Learn more about distance here:

https://brainly.com/question/26046491

#SPJ1

Bookwork code: H16

The pressure that a box exerts on a shelf is 200 N/m
The force that the box exerts on the shelf is 140 N.
Work out the area of the base of the box.
If your answer is a decimal, give it to 1 d.p.

Answers

Answer:

The pressure exerted by the box on the shelf is given by the formula:

Pressure = Force / Area

where Pressure is measured in Newtons per square meter (N/m^2), Force is measured in Newtons (N), and Area is measured in square meters (m^2).

We are given that the pressure exerted by the box on the shelf is 200 N/m and the force that the box exerts on the shelf is 140 N. Using the formula above, we can solve for the area of the base of the box as follows:

200 N/m = 140 N / Area

Simplifying the equation above, we can multiply both sides by the Area to get:

Area * 200 N/m = 140 N

Dividing both sides by 200 N/m, we get:

Area = 140 N / 200 N/m

Simplifying the right-hand side, we get:

Area = 0.7 m^2

Therefore, the area of the base of the box is 0.7 square meters, or 0.7 m^2 to 1 decimal place.

Answer:

0.7 m²

Step-by-step explanation:

The pressure exerted by the box on the shelf is defined as the force per unit area, so we can use the formula:

[tex]\boxed{\sf Pressure = \dfrac{Force}{Area}}[/tex]

We need to determine the area of the base of the box, so we can rearrange the formula to solve for area:

[tex]\boxed{\sf Area= \dfrac{Force}{Pressure}}[/tex]

Given values:

Pressure = 200 N m⁻²Force = 140 N

Substitute the given values into the formula:

[tex]\implies \sf Area = \dfrac{140\;N}{200\;N\;m^{-2}}[/tex]

[tex]\implies \sf Area = \dfrac{140}{200}\;m^2[/tex]

[tex]\implies \sf Area = 0.7\;m^2[/tex]

Therefore, the area of the base of the box is 0.7 square meters.

evaluate dy for the given values of x and dx. (a) y = e x/10 , x = 0, dx = 0.1.

Answers

The value of dy for y = [tex]e^{(x/10)}[/tex], x = 0, and dx = 0.1 is 0.01.

How evaluate dy for the given values of x?

To evaluate the value of dy for the given values of x and dx, we first need to find the derivative of y with respect to x, which can be computed as follows:

[tex]y = e^{(x/10)}[/tex]

Differentiating both sides with respect to x using the chain rule, we get:

dy/dx = d/dx [[tex]y = e^{(x/10)}\\[/tex]]

=[tex]y = e^{x/10}[/tex] * d/dx [x/10]

= [tex]y = e^{(x/10)}[/tex] * (1/10) * d/dx [x]

=[tex]y = e^{(x/10)}[/tex] * (1/10)

Now, we substitute the values x = 0 and dx = 0.1 in the above expression to get the value of dy:

dy = (1/10) *[tex]e^{(0/10)}[/tex] * dx

= (1/10) * (1) * (0.1)

= 0.01

Therefore, the value of dy for y = [tex]e^{(x/10)}[/tex], x = 0, and dx = 0.1 is 0.01.

Learn more about derivative

brainly.com/question/30365299

#SPJ11

The separation of internal and translational motion. x1=X+m2/m. x ; x2= X- m1/m.x. Reduced mass µ = m_1m_2/m_1 + m_2. 1/µ= 1/m_1 + 1/m_2

Answers

The separation of internal and translational motion involves the reduced mass µ, which simplifies the motion of a two-particle system.

The reduced mass µ is calculated as µ = m₁m₂/(m₁ + m₂), and its inverse relationship is 1/µ = 1/m₁ + 1/m₂. The coordinates x1 and x2 are represented as x1 = X + m₂/mₓ and x2 = X - m₁/mₓ, respectively.

In a two-particle system, separating internal and translational motion allows us to simplify the analysis of the system's behavior. The reduced mass, µ, is a scalar quantity that effectively replaces the two individual masses, m₁ and m₂, in the equations of motion.

The coordinates x1 and x2 help to describe the positions of the particles in the system. By calculating the reduced mass and the coordinates x1 and x2, we can more easily examine the internal and translational motion of the particles and understand their interactions within the system.

This separation allows for more efficient problem-solving in the study of particle dynamics.

To know more about translational motion click on below link:

https://brainly.com/question/12995374#

#SPJ11

Given the following set of functional dependencies F= { UVX->UW, UX->ZV, VU->Y, V->Y, W->VY, W->Y } Which ONE of the following is correct about what is required to form a minimal cover of F? Select one: a. It is necessary and sufficient to remove a dependency W->Y from F to form a minimal cover

Answers

The correct answer is: It is necessary to apply both the decomposition and the augmentation rules to F in order to form a minimal cover.

To form a minimal cover of a set of functional dependencies, we need to apply the decomposition rule, which involves breaking down each dependency in F into its simplest form, and the augmentation rule, which involves adding any missing attributes to the right-hand side of each dependency. In this case, we need to apply both rules to F to obtain a minimal cover.

For example, applying the decomposition rule to UVX->UW yields two dependencies: UV->UW and UX->UW. Applying the augmentation rule to UX->ZV yields UX->ZVY. Continuing in this way, we can obtain a minimal cover for F, which is:

UV->UW
UX->ZVY
VU->Y
V->Y
W->VY
a. It is necessary and sufficient to remove a dependency W->Y from F to form a minimal cover.

Visit here to learn more about functional dependencies brainly.com/question/22276156

#SPJ11

find the slope of the parametric curve x=-2t^3 7, y=3t^2, for , at the point corresponding to t

Answers

The slope of the parametric curve x=-[tex]2t^3[/tex]+7, y=3t² at the point corresponding to t is -1 divided by t.

How to find slope of the parametric curve?

To find the slope of the parametric curve x=-[tex]2t^3[/tex]+7, y=3t², we need to take the derivative of y with respect to x.

To do this, we can use the chain rule:

(dy/dx) = (dy/dt) / (dx/dt)

where (dx/dt) is the derivative of x with respect to t, and (dy/dt) is the derivative of y with respect to t.

Taking the derivatives, we get:

dx/dt = -6t²

dy/dt = 6t

Substituting these values, we get:

(dy/dx) = (dy/dt) / (dx/dt) = (6t) / (-6t²) = -1/t

So, the slope of the curve at the point corresponding to t is -1/t.

Learn more about Parametric curve

brainly.com/question/15585522

#SPJ11

Given RT = a + b log 2(N), calculate the decision complexity advantage for 10 decisions with two alternatives compared to one decision with 20 alternatives. Assume a = 1 s and b = 2 s/bit

Answers

The decision complexity advantage for 10 decisions with two alternatives compared to one decision with 20 alternatives is 3.31. This can be answered by the concept of Log.

To calculate the decision complexity advantage, we need to first plug in the given values for a and b into the formula RT = a + b log2(N), where N is the number of alternatives.

For 10 decisions with two alternatives each, N = 2¹⁰ = 1024. Thus, RT = 1 + 2 log2(1024) = 22 seconds.

For one decision with 20 alternatives, N = 20. Thus, RT = 1 + 2 log2(20) = 6.64 seconds.

The decision complexity advantage is calculated by taking the ratio of the RT values: 22/6.64 = 3.31. This means that making 10 decisions with two alternatives each is 3.31 times faster than making one decision with 20 alternatives.

Therefore, the decision complexity advantage for 10 decisions with two alternatives compared to one decision with 20 alternatives is 3.31.

To learn more about Log here:

brainly.com/question/28596588#

#SPJ11

2y = 3x - 16
y + 2x > -5

Answers

Answer:

Step-by-step explanation:

To solve this system of inequalities, we can first rearrange the first equation to solve for y:

2y = 3x - 16

y = (3/2)x - 8

Now we can substitute this expression for y into the second inequality:

y + 2x > -5

(3/2)x - 8 + 2x > -5

(7/2)x > 3

x > 6/7

So the solution to the system of inequalities is:

y > (-5 - 2x)

x > 6/7

Answer:

no solution

no absolute max or min

Step-by-step explanation:

Question 12(Multiple Choice Worth 2 points)
(Interior and Exterior Angles MC)
For triangle XYZ, mLX = (2g + 16)
O Interior angle = 122°; exterior angle = 58°
and the ex angle to LX measures (4g + 38)". Find the measure of LX and its exterior angle
O Interior angle = 58°; exterior angle = 122°
O Interior angle = 82°; exterior angle = 38⁰
O Interior angle = 38°; exterior angle = 82"

Answers

Answer:

interior angle = 58°; exterior angle = 122°

Step-by-step explanation:

For all polygons, an interior angle and its accompanying exterior angle are always supplementary and thus equal 180°.

Thus, we can first find g by making the sum of the equation given for the interior angle and the equation given for the exterior angle equal to 180 and solve for g:

[tex](2g+16)+(4g+38)=180\\2g+16+4g+38=180\\6g+54=180\\6g=126\\g=21[/tex]

Now, we can first find the measure of interior angle X by plugging in g for 21:

[tex]X=2(21)+16\\X=42+16\\X=58[/tex]

Finally, we can find the measure of the exterior angle by either plugging in g for the equation or simply by subtracting 58 from 180 since the interior and exterior angle are supplementary and equal 180:

Exterior angle = 180 - 58

Exterior angle = 122

Pls help (part 1)
Find the volume!
Give step by step explanation!

Answers

The triangular prism has 3 cylindrical holes with a diameter of 4 cm. The volume of each hole is approximately 60π cubic centimeters, so the total volume of all three holes is about 180π cubic centimeters.

To find the volume of cylindrical holes in the triangular prism, we need to calculate the volume of one cylinder and then multiply it by three (since there are three cylindrical holes).

Volume of one cylinder = πr²h, where r is the radius of the cylinder and h is the height.

Given the diameter of the cylindrical hole is 4 cm, we can find the radius by dividing it by 2

radius (r) = 4 cm ÷ 2 = 2 cm

The height of the cylinder is the same as the length of the prism, which is 15 cm.

Volume of one cylinder = π(2 cm)² × 15 cm

= 60π cm³

Since there are three cylindrical holes, the total volume of the holes is

Total volume of cylindrical holes = 3 × 60π cm³

= 180π cm³

Therefore, the volume of the three cylindrical holes is 180π cubic centimeters.

To know more about volume:

https://brainly.com/question/29520023

#SPJ1

--The given question is incomplete, the complete question is given

" Pls help (part 1)

Find the volume of 3 cylindrical holes.

Give step by step explanation! "--

pls help with any answer help​

Answers

Answer:

1. -10 is a coefficient

2. B

3. C

4. B

5. 29.6

6. n=8

7. ?

8. C

Solve the following quadratic equation, leaving your answer in exact form:

4e^2 - 15e = -4

e =
or e =

Answers

The solution of the quadratic equation  4e² - 15e = -4 in the exact form is e = (15 + √161)/8 or e = (15 - √161)/8

To solve the quadratic equation 4e² - 15e = -4, we can rearrange it into standard form as follows,

4e² - 15e + 4 = 0. We can then use the quadratic formula, which states that for an equation in the form ax² + bx + c = 0, the solutions are given by,

x = (-b ± √(b² - 4ac)) / 2a

Applying this formula to our equation, we have,

e = (-(-15) ± √((-15)² - 4(4)(4))) / 2(4)

Simplifying this expression, we get,

e = (15 ± √(225 - 64)) / 8

e = (15 ± √161) / 8

Therefore, the solutions to the equation 4e² - 15e = -4 are:

e = (15 + √161) / 8 or e = (15 - √161) / 8

These are exact solutions in radical form.

To know more about quadratic equation, visit,

https://brainly.com/question/1214333

#SPJ1

homogeneous system of two linear differential equations with constant coefficients can be dx x(t) dt written as X=AX, where X = X = and A is 2x2 matrix_ y(t) dy dt Write down a fundamental system of differential equations with the created in Problem matrix A b) Rewrite the system of differential equations as one 2ud order linear differential equation using differentiation second time of the Ist equation of the system or by using the characteristic equation obtained in Problem 7_

Answers

(a) The fundamental system of differential equation is X(t) = c1 [tex]e^\((\lambda 1t)[/tex]v1 + c2 [tex]e^\((\lambda 1t)[/tex]v2

(b) The second-order linear differential equation with constant coefficients is d²x/dt² = (ad - bc)dx/dt + ([tex]a^2d + b^2c[/tex])x

How to find Homogeneous system of two linear differential equations with constant coefficients.?

(a) The homogeneous system of two linear differential equations with constant coefficients can be written as:

dx/dt = ax + bydy/dt = cx + dy

where a, b, c, and d are constants.

We can write this system as X' = AX, where X =[tex][x, y]^T[/tex] and A is the 2x2 matrix:

A = [a b][c d]

To find a fundamental system of differential equations, we need to find the eigenvalues and eigenvectors of A.

The characteristic equation of A is:

det(A - λI) = 0=> (a-λ)(d-λ) - bc = 0=> λ² - (a+d)λ + (ad-bc) = 0

The eigenvalues of A are the roots of the characteristic equation:

λ1,2 = (a+d ± [tex]\sqrt^(a+d)^2[/tex] - 4(ad-bc))) / 2

The eigenvectors of A are the solutions to the equation (A - λI)v = 0, where v is a non-zero vector.

If λ1 and λ2 are distinct eigenvalues, then the eigenvectors corresponding to each eigenvalue form a fundamental system of differential equations. Specifically, if v1 and v2 are eigenvectors corresponding to λ1 and λ2, respectively, then the solutions to the differential equation X' = AX are given by:

X(t) = c1 [tex]e^\((\lambda 1t)[/tex] v1 + c2 [tex]e^\((\lambda 1t)[/tex] v2

where c1 and c2 are constants determined by the initial conditions.

If λ1 and λ2 are not distinct (i.e., they are repeated), then we need to find a set of linearly independent eigenvectors to form a fundamental system of differential equations. In this case, we use the method of generalized eigenvectors.

(b) To rewrite the system of differential equations as one 2nd order linear differential equation, we can differentiate the first equation with respect to t to obtain:

d²x/dt² = a(dx/dt) + b(dy/dt)=> d²x/dt² = a(ax + by) + b(cx + dy)=> d²x/dt² = (a² + bc)x + (ab + bd)y

Substituting the second equation into the last expression, we get:

d²x/dt² = (a² + bc)x + (ab + bd)(-cx + d(dx/dt))

Simplifying, we obtain:

d²x/dt² = (ad - bc)dx/dt + (a²d + b²c)x

This is a second-order linear differential equation with constant coefficients.

Learn more about Homogeneous system

brainly.com/question/31045430

#SPJ11

2.a) Find the limit of
lim |x-1|÷x-1
x_1​

Answers

Answer:

Lim
x - 1

Step-by-step explanation:

(x-1)
(|x-1|)

A matrix A has the following LU factorization A = [1 0 1 -2 1 0 -1 2 1] [2 3 4 0 -4 3 0 0 -1], b = [4 17 43] To find the solution to Ax = b using the LU factorization, we would first solve the system LY= [] and then solve the system Ux= [] the second system yields the solution x = []

Answers

The solution to Ax=b using the LU factorization is: x = [27 -23/4 -30]

To find the solution to the system Ax=b using the LU factorization:

We need to first decompose the matrix A into its lower and upper triangular matrices L and U respectively, such that A = LU.

Using the given LU factorization of A, we can write:

L = [1 0 0] [1 0 0] [-1 3 1]

U = [2 3 4] [0 -4 3] [0 0 -1]

Next, we need to solve the system LY=b. We can substitute L and Y with their corresponding matrices and variables respectively:

[1 0 0] [1 0 0] [-1 3 1] [y1 y2 y3] = [4 17 43]

Simplifying this system, we get:

y1 = 4

y2 = 17

-y1 + 3y2 + y3 = 43

Solving for y3, we get:

y3 = 30

Now that we have the values for Y, we can solve the system Ux=Y to get the solution to Ax=b.

We can substitute U and X with their corresponding matrices and variables respectively:

[2 3 4] [0 -4 3] [0 0 -1] [x1 x2 x3] = [y1 y2 y3]

Simplifying this system, we get:

2x1 + 3x2 + 4x3 = 4

-4x2 + 3x3 = 17

-x3 = 30

Solving for x3, we get:

x3 = -30

Substituting x3 into the second equation, we get:

-4x2 + 3(-30) = 17

Solving for x2, we get:

x2 = -23/4

Substituting x2 and x3 into the first equation, we get:

2x1 + 3(-23/4) + 4(-30) = 4

Solving for x1, we get:

x1 = 27

Therefore, the solution to Ax=b using the LU factorization is:

x = [27 -23/4 -30]

To know more about LU factorization:

https://brainly.com/question/30465830

#SPJ11

17. A quadratic equation of the form 3x^2+bx+c=0 has roots of 6 plus or minus square root of 2. Determine the value of c.

Answers

The value of c in the quadratic equation given is 32.

Solving Quadratic Equation

Given a quadratic equation of the form 3x² + bx + c = 0 has roots of 6 plus or minus square root of 2, we know that the quadratic equation can be written as:

3(x - (6 + √2))(x - (6 - √2)) = 0

Expanding this product gives:

3[(x - 6 - √2)(x - 6 + √2)] = 0

Using the difference of squares, we can simplify this expression to:

3[(x - 6)² - (√2)²] = 0

3(x - 6)² - 6 = 0

Multiplying out the squared term, we get:

3x² - 36x + 102 - 6 = 0

Simplifying, we get:

3x² - 36x + 96 = 0

Dividing both sides by 3, we get:

x² - 12x + 32 = 0

Therefore, the value of c is 32.

Learn more about quadratic equation here:

https://brainly.com/question/28038123

#SPJ1

Let X and Y be two continuous variables with a joint PDF given by
f(x,y)={(6xy,&0≤x≤1;0≤y≤√x
0,& otherwise)
Calculate E(X|Y).
Calculate Var(X|Y).
Show that E[E(X|Y] = E(X).

Answers

E(X|Y=y)=2/3 y²Var(X|Y) = (2/5) [tex]Y^3[/tex] - (4/9) [tex]Y^4[/tex]E[E(X|Y)] ≠ E(X)

What is the conditional expectation and variance of X given Y for the joint continuous PDF ?

Calculate E(X|Y):

To calculate E(X|Y), we need to find the conditional PDF of X given Y. Using the given joint PDF, we can find the conditional PDF as

  f(X|Y) = (6XY) / (3Y^2) = 2X / Y for 0 ≤ X ≤ Y.

Then, we can find the conditional expectation as

E(X|Y) = ∫X f(X|Y) dX, which evaluates to

E(X|Y) = 2/3 Y²

   2. Calculate Var(X|Y):

To calculate Var(X|Y), we need to first find the conditional expectation of X given Y, which we calculated in the previous step as

  E(X|Y) = 2/3 Y².

Then, we can find the conditional variance of X given Y as

  Var(X|Y) = E(X²|Y) - [E(X|Y)]²,

 where E(X²|Y) = ∫X² f(X|Y) dX.

After computing the integrals, we get

  Var(X|Y) = (2/5)[tex]Y^3[/tex] - (4/9)[tex]Y^4[/tex]

     3. Show that E[E(X|Y)] = E(X):

We can show that E[E(X|Y)] = E(X) using the "Conditional Probability" , which states that E(X) = E[E(X|Y)].

From the previous calculations, we know that E(X|Y) = 2/3 Y², and the marginal PDF of Y is f(Y) = 3Y² for 0 ≤ Y ≤ 1.

Therefore, we can compute E(E(X|Y)) as E(E(X|Y)) = ∫Y E(X|Y) f(Y) dY, which evaluates to E(E(X|Y)) = 2/5.

Also, we previously computed E(X) as E(X) = 3/2.

Therefore, we have E[E(X|Y)] = 2/5 and E(X) = 3/2, and

we can see that E[E(X|Y)] ≠ E(X).

This indicates that X and Y are dependent variables.

Learn more about Conditional Probability

brainly.com/question/30144287

#SPJ11

From a random sample of 43 business​ days, the mean closing price of a certain stock was $112.15. Assume the population standard deviation is ​$9.95. The​ 90% confidence interval is (Round to two decimal places as​ needed.) The​ 95% confidence interval is ​(Round to two decimal places as​ needed.) Which interval is​ wider?

A. You can be​ 90% confident that the population mean price of the stock is outside the bounds of the​ 90% confidence​ interval, and​ 95% confident for the​ 95% interval.
B. You can be certain that the population mean price of the stock is either between the lower bounds of the​ 90% and​ 95% confidence intervals or the upper bounds of the​ 90% and​ 95% confidence intervals.
C. You can be​ 90% confident that the population mean price of the stock is between the bounds of the​ 90% confidence​ interval, and​ 95% confident for the​ 95% interval.
D. You can be certain that the closing price of the stock was within the​ 90% confidence interval for approximately 39 of the 43 days, and was within the​ 95% confidence interval for approximately 41 of the 43 days

Answers

You can be​ 90% confident that the population mean price of the stock is between the bounds of the​ 90% confidence​ interval, and​ 95% confident for the​ 95% interval.

Given data ,

The problem states that a random sample of 43 business days was taken, and the mean closing price of the stock in that sample was $112.15. The population standard deviation is assumed to be $9.95. Based on this information, a confidence interval can be calculated for the population mean.

Now , A wider interval results from a greater confidence level since it calls for more assurance.

If you compare the offered alternatives, option C accurately indicates that you can have a 90% confidence interval for the population mean price of the stock being inside the boundaries, and a 95% confidence interval. Because a 90% confidence interval demands more assurance than a 95% confidence interval, it is smaller. As a result, the population mean is more likely to fall inside the 90% confidence interval's boundaries.

To learn more about confidence interval click :

https://brainly.com/question/16807970

#SPJ1

write a recursive formula sequence that represents the sequence defined by the following explicit formula a_n= -5(-2)^n+1
a1=
an= (recursive)

Answers

Answer:

[tex]\left \{ {{a_1=1} \atop {a_n=a_{n-1}-5}} \right.[/tex]

Step-by-step explanation:

The recursive formula of an arithmetic sequence is[tex]\left \{ {{a_1=x} \atop {a_n=a_{n-1}+d}} \right.[/tex]. Plugging in each value ([tex]a_1 = 1, d=-5[/tex]) gives us the recursive formula  [tex]\left \{ {{a_1=1} \atop {a_n=a_{n-1}-5}} \right.[/tex].

approximate the value of the series to within an error of at most 10−3. ∑n=1[infinity](−1)n 1(n 2)(n 6)
According to Equation (2):
|SN−S|≤aN+1
what is the smallest value of N that approximates S to within an error of at most 10^(−5)?
N=
S≈

Answers

S ≈ -0.0010 (rounded to four decimal places).

To approximate the value of the series ∑n=1infinityn / (n^2)(n^6) within an error of at most 10^(-3), we can use the alternating series test and the remainder formula.

The series is alternating because the sign alternates between positive and negative. Moreover, the terms of the series are decreasing in absolute value because:

|(-1)^(n+1) / (n^2)(n^6)| < |(-1)^(n) / ((n+1)^2)((n+1)^6)| for all n

Therefore, we can apply the alternating series test and bound the error by the absolute value of the first neglected term:

|R_N| = |-1^(N+1) / (N+1)^2((N+1)^6)|

To find the smallest value of N that approximates S to within an error of at most 10^(-5), we need to solve the inequality:

|R_N| = |-1^(N+1) / (N+1)^2((N+1)^6)| ≤ 10^(-5)

Solving for N, we get:

N ≥ 14

Thus, the smallest value of N that approximates S to within an error of at most 10^(-5) is N=14.

To approximate S, we can sum the first 14 terms of the series:

S ≈ ∑n=114^n / (n^2)(n^6)

Using a calculator or a computer algebra system, we get:

S ≈ -0.00102583...

Therefore, S ≈ -0.0010 (rounded to four decimal places).

To learn more about approximate  visit:

https://brainly.com/question/30707441

#SPJ11

in this problem, p is in dollars and q is the number of units. find the elasticity of the demand function 2p 3q = 90 at the price p = 15

Answers

Your answer: The elasticity of the demand function 2p 3q = 90 at the price p = 15 is -0.5.

To find the elasticity of the demand function, we need to use the following formula:

Elasticity = (dq/dp) * (p/q)

where dq/dp is the derivative of q with respect to p, and (p/q) is the ratio of the two variables at a given point.

First, we need to solve the demand function for q in terms of p:

2p + 3q = 90

3q = 90 - 2p

q = (90 - 2p)/3

Next, we need to find the derivative of q with respect to p:

dq/dp = (-2/3)

Finally, we can plug in the values for p and q to find the elasticity at p = 15:

q = (90 - 2(15))/3 = 20

(p/q) = 15/20 = 0.75

Elasticity = (-2/3) * (15/20) = -0.5

Therefore, the elasticity of the demand function 2p + 3q = 90 at the price p = 15 is -0.5. This means that a 1% increase in price would lead to a 0.5% decrease in quantity demanded.

learn more about " demand function":-https://brainly.com/question/24384825

#SPJ11

Suppose a firm has a variable cost function VC = 20Q withavoidable fixed cost of $50,000. What is the firm's average costfunction?A. AC= 50,000 +20QB. AC = 50,000/Q +20C. AC = 50,000 + 40QD. AC = 20

Answers

Answer:

The formula for average cost (AC) is:

AC = (Total cost / Quantity)

To find the total cost, we need to add the variable cost (VC) and the avoidable fixed cost:

Total cost = VC + Fixed cost

Total cost = 20Q + 50,000

Now we can substitute this into the formula for average cost:

AC = (Total cost / Quantity)

AC = (20Q + 50,000) / Q

Simplifying this expression gives:

AC = 50,000/Q + 20

Therefore, the firm's average cost function is:

AC = 50,000/Q + 20

So, the correct answer is B.

Please answer this question with a decent explanation - thank you.

Answers

Answer: P≈15.5 units.

Step-by-step explanation:

The perimeter of a triangle is equal to the sum of all its sides:

                                          P = a + b + c,

where P is the perimeter and a, b, c are the sides of the triangle.

The segment length formula makes it possible to calculate the distance between two arbitrary points in the plane, provided that the coordinates of these points are known:

                               [tex]\boxed {d=\sqrt{(x_1-x_2)^2+(y_1-y_2)^2} }[/tex]

1) (1,6)   (3,1)  ⇒   x₁=1    x₂=3     y₁=6      y₂=1

[tex]a=\sqrt{(1-3)^2+(6-1)^2} \\\\a=\sqrt{(-2)^2+5^2} \\\\a=\sqrt{4+25} \\\\a=\sqrt{29} \approx5.4\ units\\[/tex]

2) (1,6)   (6,1)  ⇒  x₁=1    x₂=6   y₁=6   y₂=1

[tex]b=\sqrt{(1-6)^2+(6-1)^2} \\\\b=\sqrt{(-5)^2+5^2} \\\\b=\sqrt{25+25} \\\\b=\sqrt{50} \approx7.1\ units\\[/tex]

3) (3,1)   (6,1)   ⇒   x₁=3   x₂=6   y₁=1   y₂=1

[tex]c=\sqrt{(3-6)^2+(1-1)^2} \\\\c=\sqrt{(-3)^2+0^2} \\\\a=\sqrt{9+0} \\\\a=\sqrt{9} =3\ units\\[/tex]

4) P=a+b+c

P≈5.4+7.1+3

P≈15.5 units.

suppose x is a continuous variable with the following probability density: f(x)={c(10−x)2, if 0

Answers

Given that x is a continuous variable with the probability density function f(x) = c(10-x)^2 for 0 < x < 10, we need to find the value of c.

Step 1: Understand that for a probability density function, the total area under the curve must equal 1. Mathematically, this is expressed as:

∫[f(x)] dx = 1, with integration limits from 0 to 10.

Step 2: Substitute f(x) with the given function and integrate:

∫[c(10-x)^2] dx from 0 to 10 = 1

Step 3: Perform the integration:

c ∫[(10-x)^2] dx from 0 to 10 = 1

Step 4: Apply the power rule for integration:

c[(10-x)^3 / -3] from 0 to 10 = 1

Step 5: Substitute the integration limits:

c[(-1000)/-3 - (0)/-3] = 1

Step 6: Solve for c:

(1000/3)c = 1

c = 3/1000

c = 0.003

So the probability density function f(x) = 0.003(10-x)^2 for 0 < x < 10.

Get to know more https://brainly.com/question/30910482

#SPJ11

For the figure above, find the following: (PLEASE just type your numerical answer, do NOT include the units!)

Perimeter = m

Area = m²

Answers

Answer:

perimeter = 22

area = 26

Graph the following equation on the coordinate plane: y=2/3×+1

Answers

The correct graph of equation on the coordinate plane is shown in figure.

We know that;

The equation of line with slope m and y intercept at point b is given as;

y = mx + b

Here, The equation is,

y = 2/3x + 1

Hence, Slope of equation is, 2/3

And, Y - intercept of the equation is, 1

Thus, The correct graph of equation on the coordinate plane is shown in figure.

Learn more about the equation of line visit:

https://brainly.com/question/18831322

#SPJ1

Find the t values for each of the following cases
A) upper tail area of .025 with 12 degrees of freedom
B) Lower tail area of .05 with 50 degrees of freedom
C) Upper tail area of .01 with 30 degrees of freedom
D) where 90% of the area falls between these two t values with 25 degrees of freedom
E) Where 95% of the area falls bewteen there two t valies with 45 degrees of freedom

Answers

According to the information, we can find that the t-value for the lower endpoint is approximately -1.684, and the t-value for the upper endpoint is approximately 1.684.

How to find the t-values for each of the cases?

To find the t-values for each of the given cases, we can use a t-distribution table or a calculator. Here are the answers for each case:

A) Upper tail area of .025 with 12 degrees of freedom:

The t-value for an upper tail area of .025 with 12 degrees of freedom is approximately 2.179.

B) Lower tail area of .05 with 50 degrees of freedom:

The t-value for a lower tail area of .05 with 50 degrees of freedom is approximately -1.677.

C) Upper tail area of .01 with 30 degrees of freedom:

The t-value for an upper tail area of .01 with 30 degrees of freedom is approximately 2.750.

D) Where 90% of the area falls between these two t values with 25 degrees of freedom:

We need to find the t-values that correspond to the middle 90% of the t-distribution with 25 degrees of freedom. This means that we want to find the t-values that divide the area under the curve into two equal parts, each with 45% of the area.

Using a t-distribution table or a calculator, we can find that the t-value for the lower endpoint is approximately -1.708, and the t-value for the upper endpoint is approximately 1.708.

E) Where 95% of the area falls between these two t values with 45 degrees of freedom:

We need to find the t-values that correspond to the middle 95% of the t-distribution with 45 degrees of freedom. This means that we want to find the t-values that divide the area under the curve into two equal parts, each with 2.5% of the area.

Using a t-distribution table or a calculator, we can find that the t-value for the lower endpoint is approximately -1.684, and the t-value for the upper endpoint is approximately 1.684.

Learn more about values in: https://brainly.com/question/10416781

#SPJ1

The growth model Eq. (5.18) was fitted to several U.S. economic time series and the following results were obtained: a. In each case find out the instantaneous rate of growth. b. What is the compound rate of growth in each case? c. For the S&P data, why is there a difference in the two slope coefficients? How would you reconcile the difference?

Answers

a. The instantaneous rate of growth can be found by taking the derivative of the growth model Eq. (5.18) with respect to time.

b. The compound rate of growth can be calculated by using the formula: [(1+instantaneous rate of growth)ⁿ]-1, where n is the number of periods.

c. The difference in the two slope coefficients for the S&P data may be due to changes in the underlying economic conditions or external factors affecting the market. To reconcile the difference, a more detailed analysis should be conducted to identify the specific factors contributing to the change in slope coefficients.

To know more about derivative click on below link:

https://brainly.com/question/25324584#

#SPJ11

Drag the tiles to the boxes to form correct pairs.
What are the unknown measurements of the triangle? Round your answers to the nearest hundredth as needed.

Answers

The values of the missing sides and angles using trigonometric ratios are:

b = 7.06

c = 3.76

C = 28°

How to use trigonometric ratios?

The six trigonometric ratios are sine, cosine, tangent, cosecant, secant, and cotangent.

The symbols used for them are:

sine: sin

cosine: cos

tangent: tan

cosecant: csc

secant: sec

cotangent: cot

The trigonometric ratios are defined as the ratio of the sides in right triangles.

Using trigonometric ratios, we have:

b/8 = sin 62

b = 8 * sin 62

b = 7.06

Similarly:

c/8 = cos 62

c = 8 * cos 62

c = 3.76

Sum of angles in a triangle is 180 degrees. Thus:

C = 180 - (90 + 62)

C = 28°

Read more about Trigonometric Ratios at: https://brainly.com/question/11967894

#SPJ1

Other Questions
If f(x) = (3 + x) / (x 3), what is f(a+2) You have purchased a convertible bond for $1,054.40. It is convertible into 50 shares of the firms common stock. The current stock price is $14.40 per share. a. What is the market conversion value of the bond? (Round your answer to 2 decimal places.) Market conversion value $ b. What is the conversion premium? (Round your answer to 2 decimal places.) Conversion premium $ c. Will you choose to convert the stock now? how to find AX? help for III) and II) too HELP ITS DUE IN 3MIN :(Bisecting Bakery sells cylindrical round cakes. The most popular cake at the bakery is the red velvet cake. It has a radius of 15 centimeters and a height of 12 centimeters.If everything but the circular bottom of the cake was iced, how many square centimeters of icing is needed for one cake? Use 3.14 for and round to the nearest square centimeter. 810 cm2 585 cm2 2,543 cm2 1,837 cm2 For the hypothesis test H0: = 11 against H1: < 11 and variance known, calculate the P-value for the following test statistic:z0 = - 2.33 A series of small machine components being moved by a conveyor belt pass over a 120-mm-radius idler pulley. At the instant shown, the velocity of point A is 300 mm/s to the left and its acceleration is 180 mm/s^2 to the right. Determine (a) the angular velocity and angular acceleration of the idler pulley, (b) the total acceleration of the machine component at B. what are the courses of informal sector Answer the following question in 3-4 complete sentences. A line drawing of a , seated woman's back. Name the work of art above and its artist. Which visual element of art did the artist rely on the most to create this piece ? Explain your answer. given n(l) = 750, n(m) = 230 and n(l m) = 30, find n(l m). Avoiding response bias is one of the key issues paramount to assessment.A. TrueB. False most firms are still hesitant to use social media sites as a way to network with job seekers. group of answer choices true false the reaction between 3-methyl-1-butene and cl2 gas would be expected to be Photography made a big impact on the world fairly quickly. What type of photography did NOT exist by the end of the 19th century? A. landscape photography in exotic locations B. digital photography C. photojournalism D. portrait photography Determine the volume of the "leaning regular hexagonal prism.It has a base perimeter of 36 inches, a slanted height of 11 inches, and is leaning at70. The base is a regular hexagon with a perimeter of 36 inches.70%11" The ______ goal is to design an enterprise-wide database based on a specific data model but independent of physical-level details. Any help please?I need to find the area and perimeter of the sheep pin, fill in the blanks to get the area and perimeter calculate the volume percent of 357 ml of ethylene glycol in enough water to give 1.18103 ml of solution. Which one of the following is computed by dividing next year's annual dividend by the current stock price?A. yield to maturityB. total yieldC. dividend yieldD. capital gains yieldE. growth rate Practice1. Which is the better value? Circle it.$5.00 for 4 mangoes$6.00 for 5 mangoes Which excerpt from the passage Equal Justice Under Law: Thurgood Marshall most effectively illustrates Marshalls view that segregation was unconstitutional?Responseswhile Marshall earned high grades in college, the all-white law school of the University of Maryland refused to admit him. (Maryland had no law school for African Americans.)while Marshall earned high grades in college, the all-white law school of the University of Maryland refused to admit him. (Maryland had no law school for African Americans.)Marshall repeated the argument he had made in South Carolina. Segregation hurt black children. There was no reason for it, other than to keep one race up and the other down."Marshall repeated the argument he had made in South Carolina. Segregation hurt black children. There was no reason for it, other than to keep one race up and the other down.""He wanted to persuade the court that segregation was itself wrong, that the whole idea of separate but equal was fundamentally unjust.""He wanted to persuade the court that segregation was itself wrong, that the whole idea of separate but equal was fundamentally unjust."In 1896, in the case of Plessy v. Ferguson, the Court had ruled that segregation was allowed under the Constitution: the facilities for black Americans, the Court said, simply had to be as good as those for whites'separate but equal.