Last year, 800 students attended highland middle school. This year there are 755 students. Use the equation 800 - d = 755 find d the decrease in the hummer of students from last year to this year

Answers

Answer 1

Answer:

45

Step-by-step explanation:

Answer 2
45 because 800-755=45.

Related Questions

Maximize Q = xy, where x and y are positive numbers such that x + 3y2 = 16. Write the objective function in terms of y. Q= (16- 3y?)y (Type an expression using y as the variable.) The interval of interest of the objective function is (0,00). (Simplify your answer. Type your answer in interval notation.) The maximum value of Q is (Simplify your answer.)

Answers

The maximum value of Q is 16√(2/3).

To maximize Q=xy, where x and y are positive numbers such that x + 3y² = 16, we can solve for x in terms of y and substitute into the objective function.

Thus, x = 16 - 3y² and Q = (16 - 3y²)y. To find the interval of interest of the objective function, we note that y is positive and solve for the maximum value of y that satisfies x + 3y² = 16, which is y = √(16/3). Therefore, the interval of interest is (0, √(16/3)).

To find the maximum value of Q, we can differentiate Q with respect to y and set it equal to zero.

This yields 16-6y²=0, which implies y=√(16/6). Substituting this value of y back into the objective function yields the maximum value of Q, which is Q = (16-3(16/6))(√(16/6)) = 16√(2/3).

To know more about objective function click on below link:

https://brainly.com/question/29185392#

#SPJ11

What is the area of triangle ABC ?

Answers

the triangle has already two 60°, so that means the angle atop is hmm well, 60° :), so we have an equilateral triangle, with a side of 12

[tex]\textit{area of an equilateral triangle}\\\\ A=\cfrac{s^2\sqrt{3}}{4} ~ \begin{cases} s=\stackrel{length~of}{a~side}\\[-0.5em] \hrulefill\\ s=12 \end{cases}\implies A=\cfrac{12^2\sqrt{3}}{4}\implies A=36\sqrt{3}\implies A\approx 62.35[/tex]

Compute the z-transforms of the following signals. Cast your answer in the form of a rational fraction.

(a) n u[n]
(b) (-1)"3 un]
(c) u[n] - u[n -2]

Answers

The solution is:

a) The z-transform is (z/(z-2)).

b) The z-transform is (z/(z-2))+(z/(z-3)).

c) The z-transform is (1-2z⁻¹)/(1-2z⁻¹+2z⁻²).

d) The z-transform is ((z+cos4)/(z-2)).

Here, we have,

a) To compute the z-transform of the signal (1+2ⁿ)u[n], we can use the formula for the z-transform of the geometric series. This gives us:

∑_(n=0)^(∞) (1+2ⁿ)z⁻ⁿ = ∑_(n=0)^(∞) z⁻ⁿ + 2∑_(n=0)^(∞) zⁿ = z/(z-2)

b) To compute the z-transform of the signal 2ⁿu[n]+3ⁿu[n], we can use the formula for the z-transform of the geometric series again. This gives us:

∑_(n=0)^(∞) (2ⁿ+3ⁿ)z⁻ⁿ = ∑_(n=0)^(∞) (2z⁻¹)ⁿ + ∑_(n=0)^(∞) (3z⁻¹)ⁿ = (z/(z-2))+(z/(z-3))

c) To compute the z-transform of the signal {1,-2}+2ⁿu[n], we can first compute the z-transform of 2ⁿu[n] using the formula for the z-transform of the geometric series. This gives us:

∑_(n=0)^(∞) 2ⁿz⁻ⁿ = z/(z-2)

Next, we can compute the z-transform of {1,-2} by subtracting the z-transform of 2ⁿu[n] from the z-transform of 1. This gives us:

(1-2z⁻¹)/(1-2z⁻¹+2z⁻²)

d) To compute the z-transform of the signal 2ⁿ+1cos(3n+4)u[n], we can use the formula for the z-transform of a cosine function. This gives us:

∑_(n=0)^(∞) (2ⁿ+cos4)z⁻ⁿ = (z+cos4)/(z-2)

To know more about z-transform, refer here:

brainly.com/question/31133641

#SPJ11

complete question:

Compute the z-transforms of the following signals. Cast your answer in the form of a rational fraction.a) (1+2^n) u[n]b) 2^nu[n]+3^n u[n]c) {1,-2}+(2)^n u[n]d) 2^n+1 cos(3n+4) u[n]show all work

Kite PQRS at the right is concave. If we have PQ = QR = 20, PS= SR= 15, and QS = 7, then what is the area of kite PQRS?

Answers

The area of Kite PQRS at the right is concave. If we have PQ = QR = 20, PS= SR= 15, and QS = 7 is  220 square units

How to find  the area of kite PQRS

First, we can find the length of the diagonal PR using the Pythagorean theorem:

PR² = PQ² + QR² = 20² + 20² = 800

PR = sqrt(800) ≈ 28.28

Similarly, we can find the length of the diagonal QS:

QS² = QR² + RS² = 20² + 15² = 625

QS = sqrt(625) = 25

Now, we can split the kite into two triangles, PQS and QRS, and use the formula for the area of a triangle:

area of PQS = (1/2) * PQ * QS = (1/2) * 20 * 7 = 70

area of QRS = (1/2) * QR * RS = (1/2) * 20 * 15 = 150

So the total area of the kite is:

area of PQRS = area of PQS + area of QRS = 70 + 150 = 220

Therefore, the area of kite PQRS is 220 square units

Learn more about kite at https://brainly.com/question/26870235

#SPJ1

Area of Circle need help asap

Answers

Answer:

a = 8.26 ftP = 60 ftArea = 247.7 ft²

Step-by-step explanation:

You want the apothem, perimeter, and area of a regular pentagon with side length 12 ft.

Apothem

The apothem is one leg of the right triangle that is half of one of the sectors. The other leg is half the side length. This gives ...

  tan(36°) = (6 ft)/a

  a = (6 ft)/tan(36°) ≈ 8.25829 ft

Perimeter

The perimeter is simply 5 times the side length:

  (12 ft) × 5 = 60 ft

Area

The area is given by the formula ...

  A = 1/2Pa

  A = 1/2(60 ft)(8.25829 ft) ≈ 247.749 ft²

Summary:a = 8.26 ftP = 60 ftArea = 247.7 ft²

__

Additional comment

An n-sided regular polygon with side length s has an area of ...

  A = [s²n]/[4tan(180°/n)]

For s=12 and n=5, this is ...

  A = 12²·5/(4·tan(180°/5)) = 180/tan(36°) ≈ 247.7 . . . . square feet

Suppose that f(x) = x/108 for 3 < x < 15. determine the mean and variance of x.
Round your answers to 3 decimal places. Mean = _____
Variance =____

Answers

Mean of the above function is  8.500 and the variance is 6.875.

To determine the mean and variance of x for the given function f(x) = x/108 for 3 < x < 15, we need to first calculate the mean and then the variance.

The mean, also known as the expected value, is the average value of a random variable. In this case, the random variable is x, and we need to find the expected value of x for the given function.

The integral of f(x) with respect to x from 3 to 15 gives us the expected value or the mean of x:

∫(x/108)dx from 3 to 15

= (1/108)∫xdx from 3 to 15 (using the power rule of integration)

= (1/108) * [(x^2)/2] from 3 to 15

= (1/108) * [(15^2)/2 - (3^2)/2]

= (1/108) * [(225/2) - (9/2)]

= (1/108) * (216/2)

= (1/108) * 108

= 1

So, the mean of x is 1.

Variance is a measure of how much the values of a random variable deviate from the mean. It is calculated as the average of the squared differences between the values and the mean.

The formula for variance is given by Var(x) = E[x^2] - E[x]^2, where E[x] is the expected value or the mean of x.

From the previous calculation, we know that E[x] = 1.

Now, we need to find E[x^2]. For this, we need to square the function f(x) and then find its expected value.

(f(x))^2 = (x/108)^2

= x^2 / 11664

The integral of (f(x))^2 with respect to x from 3 to 15 gives us the expected value of x^2:

∫(x^2/11664)dx from 3 to 15

= (1/11664)∫x^2dx from 3 to 15

= (1/11664) * [(x^3)/3] from 3 to 15

= (1/11664) * [(15^3)/3 - (3^3)/3]

= (1/11664) * [(3375/3) - (27/3)]

= (1/11664) * (3348/3)

= 0.286

Now, substituting the values of E[x^2] and E[x] into the formula for variance, we get:

Var(x) = E[x^2] - E[x]^2

= 0.286 - 1^2

= 0.286 - 1

= -0.714

So, the variance of x is -0.714.

For more questions like Mean click the link below:

https://brainly.com/question/31101410

#SPJ11

T/F - If A is an invertible n x n matrix, then the equation Ax = b is consistent for each b in R^n.

Answers

True, if A is an invertible n x n matrix, then the equation Ax = b is consistent for each b in Rⁿ.

When A is an invertible n x n matrix, it means that A has a unique inverse, denoted as A⁻¹, which is also an n x n matrix. This implies that for any given vector b in Rⁿ, there exists a unique solution x in Rⁿ that satisfies the equation Ax = b.

To understand why this is true, consider the definition of matrix multiplication. In the equation Ax = b, A is multiplied by x to obtain b. Since A is invertible, we can multiply both sides of the equation by A⁻¹ (the inverse of A) on the left, yielding A⁻¹Ax = A⁻¹b.

Now, according to the properties of matrix multiplication, A⁻¹A results in the identity matrix I_n (an n x n matrix with ones on the diagonal and zeros elsewhere), and any vector multiplied by the identity matrix remains unchanged. Therefore, we get I_nx = A⁻¹b, which simplifies to x = A⁻¹b.

This shows that for any given vector b in Rⁿ, there exists a unique solution x = A⁻¹b that satisfies the equation Ax = b when A is an invertible matrix. Hence, the equation Ax = b is consistent for each b in Rⁿ.

Therefore, the correct answer is True.

To learn more about matrix here:

brainly.com/question/28180105#

#SPJ11

Show that each of the following sequences is divergenta. an=2nb. bn= (-1)nc. cn = cos nπ / 3d. dn= (-n)2

Answers

The sequence  aₙ = 2n is divergent.

To show that the sequence aₙ is divergent, we need to show that it does not converge to a finite limit.

Let's assume that the sequence aₙ converges to some finite limit L, i.e., lim(aₙ) = L. Then, for any ε > 0, there exists an integer N such that |aₙ - L| < ε for all n ≥ N.

Let's choose ε = 1. Then, there exists an integer N such that |aₙ - L| < 1 for all n ≥ N. In particular, this means that |2n - L| < 1 for all n ≥ N.

However, this is impossible because as n gets larger, 2n gets arbitrarily large and so it is not possible for |2n - L| to remain less than 1 for all n ≥ N. Therefore, our assumption that aₙ converges to a finite limit L is false, and hence aₙ is divergent.

Learn more about divergent here

brainly.com/question/30726405

#SPJ4

The given question is incomplete, the complete question is:

Show that each of the following sequences is divergent aₙ=2n

an experiment consists of four outcomes with p(e1) = .2, p(e2) = .3, and p(e3) = .4. the probability of outcome e4 is _____.a. .900b. .100c. .024d. .500

Answers

The probability of outcome e4 is 0.1, which means the option (b). 0.100 is the correct answer.

To comprehend this response, keep in mind that the total probability for all outcomes in an experiment must equal 1. We now know the probability for e1, e2, and e3, which total 0.9 (0.2 + 0.3 + 0.4 = 0.9). Because the total of probabilities must equal one, we may remove 0.9 from one to get the chance of e4. As a result, the likelihood of e4 is 0.1 (1 - 0.9 = 0.1).

In other words, there are four possible outcomes in this experiment, with probabilities 0.2, 0.3, 0.4, and an unknown for e4. We may multiply the known probabilities by 0.9, leaving 0.1 for e4. This means that there is a 10% chance of outcome e4 occurring in this experiment.

To learn more about Probability, visit:

https://brainly.com/question/13604758

#SPJ11

when to rule out third variables in multiple regression designs help

Answers

In multiple regression designs, it is important to rule out the presence of third variables that may be influencing the relationship between the independent and dependent variables.

Third variables, also known as confounding variables, are extraneous factors that can impact the results of the study and lead to incorrect conclusions.

To rule out third variables, researchers should first conduct a thorough literature review to identify any potential confounding variables that have been previously reported in similar studies. They should also carefully select their sample and control for any known confounding variables during the study design.

Once the data has been collected, researchers can use statistical methods such as correlation analysis or regression analysis to examine the relationships between the independent and dependent variables while controlling for the potential influence of confounding variables. If the results show that the relationship between the independent and dependent variables remains significant even after controlling for the confounding variables, then the third variables can be ruled out.

However, if the confounding variables still have a significant impact on the relationship between the independent and dependent variables, then additional analyses may be needed to further examine the role of these third variables.

In summary, ruling out third variables in multiple regression designs requires careful study design, data collection, and statistical analysis to ensure the accuracy and validity of the results.

Visit here to learn more about variables  : https://brainly.com/question/29583350
#SPJ11

You found a groovy shirt on clearance. It was originally $25. 0. The first tag read, "1/2 off". The second tag read, "Take an additional 1/2 off". How much is the shirt?

Answers

The final price of the shirt is 1/2 of $12.50, which is $6.25.

To calculate the final price of the shirt, we first need to determine what "1/2 off" means. This means the shirt is now being sold for half of its original price, which is $25.0/2 = $12.50.

Next, we need to determine what "Take an additional 1/2 off" means. This means that we need to take half of the discounted price of $12.50, which is

$12.50/2 = $6.25

and subtract it from the discounted price:

$12.50 - $6.25 = $6.25.

Therefore, the final price of the shirt is $6.25.

Learn more about discount

https://brainly.com/question/23865811

#SPJ4

If ~ (p^q) is true, what must be the truth values of the component statements? Select the correct answer below. a. At least one component statement must be true. b. At least one component statement must be false. c. The component statements must both be true. d. The component statements must both be false.

Answers

If ~ (p^q) is true, then the correct answer is: b. At least one component statement must be If ~ (p^q) is true.

If ~ (p^q) is true, then ~(p^q) must be false. Using De Morgan's law, ~(p^q) is equivalent to (~p v ~q).

Here's a step-by-step explanation:
1. The given statement is ~ (p^q), which means NOT (p AND q).
2. In order for the AND operator to be true, both p and q must be true.
3. Since we know ~ (p^q) is true, it means (p^q) must be false.
4. If (p^q) is false, then at least one of the component statements (p or q) must be false, because if both were true, (p^q) would be true.

To know more about "De Morgan's law" refer here:

https://brainly.com/question/13278160#

#SPJ11

What is the area of the actual flower bed

Answers

The area of the actual flower bed include the following: D. 96 square meters.

How to calculate the area of a triangle?

In Mathematics and Geometry, the area of a triangle can be calculated by using this formula:

Where:

b represents the base area.h represents the height.

Scale:

0.5 cm = 2 m

0.5/2 = New length of flower bed/Actual length of flower bed

Actual length of flower bed = (2 × 3)/0.5 = 12 meters

0.5/2 = New height of flower bed/Actual height of flower bed

Actual height of flower bed = (2 × 4)/0.5 = 16 meters

By substituting the given parameters into the formula, we have;

Area of triangle = 1/2 × base area × height

Area of actual flower bed = 1/2 × 12 × 16

Area of actual flower bed = 96 m².

Read more on area of triangle here: https://brainly.com/question/28470545

#SPJ1

Missing information:

The question is incomplete and the complete question is shown in the attached picture.

if people are born with equal probability on each of the 365 days, what is the probability that three randomly chosen people have different birthdates?

Answers

The probability that three randomly chosen people have different birth date is 0.9918.

To calculate the probability that three randomly chosen people have different birthdates, we can first consider the probability that the second person chosen does not have the same birth day as the first person.

This probability is (364/365), since there are 364 possible birthdates that are different from the first person's birthdate, out of 365 possible birthdates overall.

Similarly, the probability that the third person chosen does not have the same birthdate as either of the first two people is (363/365), since there are now only 363 possible birthdates left that are different from the first two people's birthdates.

To find the overall probability that all three people have different birthdates, we can multiply these individual probabilities together:

(364/365) x (363/365) = 0.9918

So the probability that three randomly chosen people have different birth date is approximately 0.9918, or about 99.2%.

Learn more about probability here,

https://brainly.com/question/31370975

#SPJ11

The probability that three randomly chosen people have different birthdates is approximately 0.9918, or 99.18%.

The counting principle can be used to determine how many different birthdates can be selected from a pool of 365 potential dates. As we assume that people are born with equal probability on each of the 365 days of the year (ignoring leap years).

The first individual can be born on any of the 365 days. The second individual can be born on any of the remaining 364 days. The third individual can be born on any of the remaining 363 days. Therefore, the total number of ways to choose three different birthdates is:

365 x 364 x 363

Let's now determine how many different ways there are to select three birthdates that are not mutually exclusive (i.e., they can be the same). The number of ways to select three birthdates from the 365 potential dates is simply this:

365 x 365 x 365

Consequently, the likelihood that three randomly selected individuals have different birthdates is:

(365 x 364 x 363) / (365 x 365 x 365) ≈ 0.9918

Therefore, the likelihood is roughly 0.9918, or 99.18%.

To know more about Probability visit:

https://brainly.com/question/30034780

write the balanced molecular chemical equation for the reaction in aqueous solution for copper(i) bromide and potassium sulfate. if no reaction occurs, simply write only nr.

Answers

No chemical reaction occurs, so the answer is nr.

To write the balanced molecular chemical equation for the reaction in aqueous solution for copper(I) bromide and potassium sulfate, we first need to identify the products that are formed in the reaction.

The chemical reaction takes place as follows:
Copper(I) bromide (CuBr) reacts with potassium sulfate (K2SO4) in aqueous solution to potentially form copper(I) sulfate (Cu2SO4) and potassium bromide (KBr). However, copper(I) sulfate is unstable and will disproportion into copper(II) sulfate (CuSO4) and copper and no insoluble product is formed which is formed as a ppt.

Therefore, there will be no chemical reaction between copper(I) bromide and potassium sulfate in aqueous solution.

Know more about chemical reaction here:

https://brainly.com/question/11231920

#SPJ11

Find the area of the cookie when the radius is 10 cm.

Use 3.14 for ​. If necessary, round your answer to the nearest hundredth.

Answers

The area of a cookie with radius of 10cm is given as follows:

A = 314 cm².

How to calculate the area of a circle?

The area of a circle of radius r is given by the multiplication of π and the radius squared, as follows:

A = πr².

The cookie has a circular format, hence the equation used was presented above.

The radius is given as follows:

r = 10 cm.

Hence the area is given as follows:

A = 3.14 x 10²

A = 314 cm².

More can be learned about the area of a circle at https://brainly.com/question/15673093

#SPJ1

The area of a cookie with radius of 10cm is given as follows:

A = 314 cm².

How to calculate the area of a circle?

The area of a circle of radius r is given by the multiplication of π and the radius squared, as follows:

A = πr².

The cookie has a circular format, hence the equation used was presented above.

The radius is given as follows:

r = 10 cm.

Hence the area is given as follows:

A = 3.14 x 10²

A = 314 cm².

More can be learned about the area of a circle at https://brainly.com/question/15673093

#SPJ1

What is the area of a triangle, in square inches, with a base of 13 inches and a height of 10 inches

Answers

Answer: 65

Step-by-step explanation:

area of triangle = 1/2 of base * height

so 13*10 = 130

130 * 1/2 = 65

At exactly 3:15, the ladybug flies from the second
hand to the minute hand, which is 9
inches long.
a. How far off the ground is the ladybug now?

Answers

The distance from the ground to the ladybug is 9 inches.

How to calculate how far off the ground is the ladybug now

We can use trigonometry to solve this problem.

Let's assume that the distance between the second hand and the center of the clock is negligible compared to the length of the minute hand.

At 3:15, the minute hand is pointing directly at the 3 and the second hand is pointing directly at the 12. The angle between the minute hand and the second hand is 90 degrees.

We can draw a right triangle with the minute hand as the hypotenuse and the distance from the center of the clock to the ladybug as one of the legs. Let's call this distance "x". The length of the minute hand is 9 inches, so we have:

sin(90) = x/9

Simplifying this equation, we get:

x = 9sin(90)

x = 9

Therefore, the distance from the ground to the ladybug is 9 inches.

Learn more about trigonometry at https://brainly.com/question/24349828

#SPJ1

Find the median weight, in kilograms (kg), of the weights below: 14 kg, 17 kg, 19 kg, 8 kg, 15 kg 8 kg,​

Answers

Answer:

14.5kg

Step-by-step explanation:

to find the median put the numbers in order.

8,8,14,15,17,19

Start crossing out the smallest and largest at the same time until you have only 1 or 2 numbers.

8,14,15,17

14,15

Since there is 2 numbers we take the average of them

14+15=29

29/2 = 14.5.       The answer is 14.5 kg

4. Suppose that by doubling the number of required units of nutritional element B from 60 to 120 for 2 weeks, the producer can realize $15 more from the sale of the stock than without the increase. Is this worthwhile?

Answers

I am sorry but I need point do not have a lot of people are not able to get a better understanding 12 is what I have

which type of associations is a real relationship, not accounted by other variables?

Answers

A real relationship, not accounted by other variables, is a causal relationship. This type of association suggests that one variable directly causes changes in the other. In other words, there is a cause-and-effect relationship between the two variables.

In this type of association, changes in one variable directly cause changes in the other variable, without any other variables influencing the relationship. This contrasts with spurious or indirect associations, where the relationship between two variables is due to the influence of other variables. To determine if an association is a real relationship, researchers often control for potential confounding variables to isolate the direct effect of the variables in question. However, it is important to note that establishing a causal relationship requires careful research design and data analysis to rule out the effects of other variables that could be influencing the relationship.

To learn more about variables : brainly.com/question/17344045

#SPJ11

in computing the determinant of the matrix A= [ -9 -10 10 3 0]0 1 0 9 -3-7 -3 1 0 -50 7 9 0 20 9 0 0 0by cofactor expansion, which, row or column will result in the fewest number of determinants that need to be computer in the second step?Row 5Column 1 Column 4 Column 2 Row 1

Answers

Therefore, we can use cofactor expansion along column 3 to calculate the determinant of matrix A.

The determinant of a 5x5 matrix can be calculated by expanding along any row or column. However, we can try to minimize the number of determinants that need to be computed in the second step by selecting the row or column with the most zeros.

In this case, we can see that column 3 has three zeros, which means that expanding along this column will result in the fewest number of determinants that need to be computed in the second step. Therefore, we can use cofactor expansion along column 3 to calculate the determinant of matrix A.

To learn more about determinant visit:

https://brainly.com/question/13369636

#SPJ11

use laplace transforms to solve the initual value problem y'-4y =f(x), y(0)=0 2 0<=x and x<4

Answers

The solution to the initial value problem y'-4y=f(x), y(0)=0 for 0<=x<4 is given by:

y(x) = F(-4)e^(-4x)

The Laplace transform of the differential equation y'-4y=f(x) is given by:

sY(s) - y(0) - 4Y(s) = F(s)

where Y(s) and F(s) are the Laplace transforms of y(x) and f(x), respectively.

Substituting the initial condition y(0)=0 and rearranging, we get:

Y(s) = F(s)/(s+4)

Now we need to find the inverse Laplace transform of Y(s) to obtain the solution y(x). Using the partial fraction decomposition method, we can write:

Y(s) = A/(s+4) + B

where A and B are constants to be determined.

Multiplying both sides by (s+4), we get:

F(s) = A + B(s+4)

Setting s=-4, we get:

A = F(-4)

Setting s=0, we get:

B = Y(0) = y(0) = 0

Therefore, the partial fraction decomposition of Y(s) is given by:

Y(s) = F(-4)/(s+4)

Taking the inverse Laplace transform of Y(s), we get:

y(x) = L^-1{F(-4)/(s+4)} = F(-4)L^-1{1/(s+4)}

Using the table of Laplace transforms, we find that the inverse Laplace transform of 1/(s+4) is e^(-4x). Therefore, the solution to the initial value problem is given by:

y(x) = F(-4)e^(-4x)

where F(-4) is the value of the Laplace transform of f(x) evaluated at s=-4.

For more questions like Differential equation click the link below:

https://brainly.com/question/14598404

#SPJ11

The point b is a reflection of point a across which axis?

Point b (7, 8) Point a (-7, -8).

A.The x-axis
B. The y-axis
C. The x-axis and then the y-axis

Answers

To find the reflection of point A (-7, -8) across an axis that results in point B (7, 8), we can observe that the x-coordinates of the two points have opposite signs, and the y-coordinates of the two points also have opposite signs. This suggests that point B is a reflection of point A across both the x-axis and the y-axis.

However, reflecting a point across the x-axis and then the y-axis is equivalent to reflecting the point across the origin. Therefore, point B is a reflection of point A across the origin.

So the correct option is:

C. The x-axis and then the y-axis

describe and justify the methods you used to solve the quadratic equations in parts a and B

I also submitted two pictures of questions, A and B

Answers

The solution of given equation by formula of quadratic Equation is x = -1 OR x = -0.5

What is quadratic Equation?

A quadratic equation is a polynomial equation of the second degree, meaning it contains one or more terms that involve a variable raised to the power of two. The standard form of a quadratic equation is:

ax² + bx + c = 0where a, b, and c are constants, and x is the variable.

According to given information

The equation is 2x(x+1.5)=-1.

Expanding the left-hand side, we get:

2x² + 3x + 1 = 0

We can solve for x using the quadratic formula:

x = (-b ± √(b²- 4ac)) / 2a

Where a = 2, b = 3, and c = 1.

x = (-3 ± √(3² - 4(2)(1))) / 4

x = (-3 ± √(1)) / 4

x = (-3 ± 1) / 4

So, x can be either:

x = -1 OR x = -0.5

Rounding to the nearest tenth, we have:

x ≈ -1.0 OR x ≈ -0.5

To Know more about quadratic Equation Visit:

brainly.com/question/30098550

#SPJ1

The number of chocolate chips in chocolate chip cookies follows the Poisson distribution. A bakery makes a batch of 200 cookies, using 1000 chocolate chips.(a) What is the probability that a randomly selected cookie contains exactly 4 chocolate chips?(b) What is the probability that a randomly selected cookie contains more than 2 chocolate chips?

Answers

(a) The probability that a randomly selected cookie contains exactly 4 chocolate chips is 0.1755.

(b) The probability that a randomly selected cookie contains more than 2 chocolate chips is 0.8753.

How to find the probability that a randomly selected cookie contains exactly 4 chocolate chips?

The number of chocolate chips in a chocolate chip cookie follows the Poisson distribution with parameter λ, where λ is the average number of chocolate chips per cookie. Here, λ = 1000/200 = 5.

(a) The probability that a randomly selected cookie contains exactly 4 chocolate chips is given by the Poisson probability mass function:

P(X = 4) = ([tex]e^{(-5)} * 5^4[/tex]) / 4! = 0.1755

Therefore, the probability that a randomly selected cookie contains exactly 4 chocolate chips is 0.1755.

How to find the probability that a randomly selected cookie contains more than 2 chocolate chips?

(b) The probability that a randomly selected cookie contains more than 2 chocolate chips is given by the complement of the probability that it contains at most 2 chocolate chips:

P(X > 2) = 1 - P(X ≤ 2)

To find P(X ≤ 2), we can use the Poisson cumulative distribution function:

P(X ≤ 2) = Σ(k=0 to 2) [ [tex](e^{(-5)}[/tex] * [tex]5^k[/tex]) / k! ] = 0.1247

Therefore,

P(X > 2) = 1 - P(X ≤ 2) = 1 - 0.1247 = 0.8753

So the probability that a randomly selected cookie contains more than 2 chocolate chips is 0.8753.

Learn more about poisson distribution

brainly.com/question/17280826

#SPJ11

Use the given information to find the exact value of a. sin 2 theta, b. cos 2 theta, and c. tan 2 theta. cos theta = 21/29, theta lies in quadrant IV a. sin 2 theta =

Answers

The values we have found, we get:

a. sin(2theta) = 2(-20/29)(21/29) = -840/841

b. cos(2theta) = (21/29)² - (-20/29)² = 441/841 - 400/841 = 41/841

c. tan(2theta) = (2(-20/29))/(1 - (-20/29)²) = 40/9

What is trigonometry?

Trigonometry is a branch of mathematics that deals with the relationships between the sides and angles of triangles.

Since cos(theta) is positive and lies in quadrant IV, we know that sin(theta) is negative. We can use the Pythagorean identity to find sin(theta):

sin²(theta) + cos²(theta) = 1

sin²(theta) = 1 - cos²(theta)

sin(theta) = -sqrt(1 - cos²(theta))

Substituting cos(theta) = 21/29, we get:

sin(theta) = -sqrt(1 - (21/29)²) = -20/29

Now, we can use the double angle formulas to find sin(2theta), cos(2theta), and tan(2theta):

sin(2theta) = 2sin(theta)cos(theta)

cos(2theta) = cos²(theta) - sin²(theta)

tan(2theta) = (2tan(theta))/(1 - tan²(theta))

Substituting the values we have found, we get:

a. sin(2theta) = 2(-20/29)(21/29) = -840/841

b. cos(2theta) = (21/29)² - (-20/29)² = 441/841 - 400/841 = 41/841

c. tan(2theta) = (2(-20/29))/(1 - (-20/29)²) = 40/9

To learn more about trigonometry from the given link:

https://brainly.com/question/29002217

#SPJ1

The following table shows the Myers-Briggs personality preferences for a random sample of 400 people in the listed professions Extroverted ntroverted Occupation Clergy (all denominations) M.D. Lawyer Column Total Use the chi-square test to determine if the listed occupations and personality preferences are independent at alpha 0.1. Find the value of the chi-square statistic for the sample. Row Total 107 157 136 400 65 92 52 182 18
Select one:
a. 3.09 b. 13.99 C. 0.25 d. 12.01 e. 0.01 The following table shows the Myers-Briggs personality preferences for a random sample of 400 people in the listed professions Extroverted Occupation Clergy (all denominations) M.D. Lawyer Column Total Use the chi-square test to determine if the listed occupations and personality preferences are independent at the 0.01 level of significance. Find (or estimate) the P-value of the sample test statistic Introverted 91 81 216 Row Total 104 161 135 400 184 Select one:
a. 0.01 < P-value < 0.025
b. 0.10< P-Value0.25 C. 0.25 < P-Value <0.5 d. 0.005 < P-Value <0.01 e. 0.025 < P-Value < 0.05 The following table shows the Myers-Briggs personality preferences for a random sample of 409 people in the listed professions. xtroverted Introverted Occupation Clergy (all denominations) M.D Lawyer Column Total Use the chi-square test to determine if the listed occupations and personality preferences are independent at the 0.10 level of significance. Depending on the P-value, will you reject or fail to reject the null hypothesis of independence? Row Total 108 164 137 5 0 191 218 09 Select one a. Since the P-value is greater than α, we fail to reject the null hypothesis that the Myers-Briggs personality preference and profession are not independent. At 0.10 level of significance, we conclude that the Myers-Briggs personality preference and profession are independent. Since the P-value is greater than α, we reject the null hypothesis that the Myers-Briggs personality preference and profession are not independent. At 0.10 level of significance, we conclude that the Myers-Briggs personality preference and profession are independent. C. Since the P-value is less than α, we fail to reject the null hypothesis that the Myers-Briggs personality preference and profession are independent. At 0.10 level of significance, we conclude that the Myers-Briggs personality preference and profession are not independent. O d. Since the P-value is less than α, we reject the null hypothesis that the Myers Briggs personality preference and profession are independent. At 0.10 level of significance, we conclude that the Myers-Briggs personality preference and profession are not independent. e. Since the P-value is greater than α, we fail to reject the null hypothesis that the Myers-Briggs personality preference and profession are independent. At 0.10 level of significance, we conclude that the Myers-Briggs personality preference and profession are not independent.

Answers

For the first question, we need to find the chi-square statistic value. Using the given table, we can calculate the expected frequencies and then use the chi-square formula to get the value.

The calculated chi-square value is 13.99. Since alpha is 0.1, we compare this value to the critical chi-square value at 2 degrees of freedom (since we have 2 rows and 3 columns), which is 4.605. Since the calculated value is greater than the critical value, we reject the null hypothesis that the listed occupations and personality preferences are independent.


For the second question, we need to find the P-value of the sample test statistic. Using the given table, we can calculate the expected frequencies and then use the chi-square formula to get the chi-square value. The calculated chi-square value is 6.27. Since we have 2 degrees of freedom, we can find the P-value using a chi-square distribution table or calculator. The calculated P-value is 0.043, which is less than alpha (0.01). Therefore, we reject the null hypothesis that the listed occupations and personality preferences are independent.



For the third question, we need to find the P-value of the sample test statistic and then determine whether to reject or fail to reject the null hypothesis. Using the given table, we can calculate the expected frequencies and then use the chi-square formula to get the chi-square value.

The calculated chi-square value is 3.39. Since we have 2 degrees of freedom, we can find the P-value using a chi-square distribution table or calculator. The calculated P-value is 0.183, which is greater than alpha (0.1). Therefore, we fail to reject the null hypothesis that the listed occupations and personality preferences are independent at the 0.10 level of significance.

To know more about value click here

brainly.com/question/30760879

#SPJ11

Electricity Company: Discount Power
Write a verbal description (word problem) for
this electricity company:
Complete the graph to represent the cost for
this electricity company. Choose appropriate
axis intervals and labels.
Complete the table to represent the cost for
this electricity company. Label each column
and choose the appropriate intervals.
Write an algebraic equation to represent the
costs for this electricity company

Answers

The word problem for the company is:

An electricity company charges its customers a monthly service fee of $3.50 plus 8.3 cents per kWH. Find the total cost for a month if 250kW is used.

What is a Word Problem?

A word problem is a mathematical problem presented in the form of a story or a narrative, usually involving real-world scenarios or situations.

Word problems often require the use of arithmetic, algebra, geometry, or other mathematical concepts and methods to find a solution. They can range in complexity from simple arithmetic problems to multi-step equations involving multiple variables.

Read more about word problems here:

https://brainly.com/question/21405634

#SPJ1

fill in the blank to complete the trigonometric identity. sin2(u) cos2(u) = tan2(u)

Answers

The trigonometric identity is sin²(u)/cos²(u) = tan²(u).

What is trigonometry?

The study of the correlation between a right-angled triangle's sides and angles is the focus of one of the most significant branches of mathematics in history: trigonometry.

sin²(u) + cos²(u) = 1 is the trigonometric identity that relates the three basic trigonometric functions sine (sin), cosine (cos), and tangent (tan) of an angle u in a right-angled triangle.

However, to derive the identity sin²(u) / cos²(u) = tan²(u), we can start with the definition of tangent: tan(u) = sin(u) / cos(u).

Then, we can square both sides of the equation:

tan²(u) = (sin(u) / cos(u))²

tan²(u) = sin²(u) / cos²(u)

Therefore, sin²(u) / cos²(u) = tan²(u).

Learn more about trigonometry on:

https://brainly.com/question/13729598

#SPJ1

The complete question is:

Fill in the blank to complete the trigonometric identity. sin²(u)__cos²(u) = tan²(u)

Other Questions
what is one major disadvantage of an online survey? If the shaded region is 1/6 of the perimeter of the circle with 10cm of the radius then find the measure of the angle inscribed in the circle. Sum up an article about the discovery for your grandma who is a fan of the royal family You make a pudding for a dinner party and put it in the refrigerator at 5 P.M. (t 0). Your refrigerator maintains a constant temperature Of 400. The pudding will be ready to serve when it cools to 450. When you put the pudding in the refrigerator you measure its temperature to be 1900, and when the first guest arrives at 6 P.M., you measure it again and get a temperature reading of 1000. Based on Newton's Law of Cooling, when is the earliest you can serve the pudding? how to find steady state response from transfer function Saved Select all the correct statements about linear least squares regression A. We can get multiple local optimum solutions if we solve a linear regression problem by minimizing the sum of squared errors using gradient descent.B. the cost function is summing over the distances of all predictions to the decision boundaryC. If the number of features (D) is less than the number of data point (N) the solution is unique D. imposing a gaussian prior on the weights of the model is the same as doing L2 regularization E. Given enough instances and if the features are linearly independent the solution is unique F. Even if the solution is not unique gradient descent will find an optimal solution Need help with questions 3, 5, and 6. employee performance is generally a product of: group of answer choices an employee's ability to evaluate leadership and his or her compliance toward the job description. a leader's ability to provide employee benefits and the application of cross-training. a leader's ability to reduce employee supervision and the application of fair wages. an employee's ability to do a job and the application of positive motivation. be sure to answer all parts. what is the original molarity of a solution of a weak acid whose ka is 3.5 105 and whose ph is 5.34 at 25? ___ 10^(__) m (enter your answer in scientific notation) proteins grams in fat food. the amount of protein (in grams) for a variety of fast food List and explain the major causes of World War I. Give at least two causes. what is the volume in cubic centimeters of a right rectangular prism with a length of 10 cm, a width of 8 cm, and a height of 6 cm find an optimal parenthesization of a matrix-chain product whose sequence of dimensions is {5, 10, 12, 3, 7, 5, 6, 11} . Find the x-intercept and the y-intercept 7x-3y=21 a random variable x is normally distributed with = 185 and = 14. find the 72th percentile of the distribution. round your answer to the tenths place. A sofa is being sold for 65% off the regular price . the sale price is $247 what is the regular price? Identify the various types of DNA repair mechanisms known to counteract the effects of UV radiation. Recombinational repair Excision repair Photoactivation repair SOS repair 1. is dependent on a photon-activated enzyme that cleaves thymine dimers. 2. is the process by which an endonuclease clips out UV- induced dimers, DNA polymerase III fills in the gap, and DNA ligase rejoins the phosphodiester backbone. 3. uses the corresponding region on the undamaged parental strand of the same polarity. 4. is a process in E. coli that induces error-prone DNA replication in an effort to fill gaps by inserting random nucleotides. sort 3, 4, 68, 32, 46, 21, 80, 45, 39 using bin sort. if the exchange rate between us dollars and japanese yen goes from 109 yen to a dollar to 107, then the japanese yen ____ versus the dollar and japanese exports probably _____ . connect your signal generator with vin(t) = vm sine(t) v, and vm 1 v. b. measure vo(t) as a function of . c. how much is your maximum gain? d. briefly explain and comment your results