a random variable x is normally distributed with µ = 185 and σ = 14. find the 72th percentile of the distribution. round your answer to the tenths place.

Answers

Answer 1

The 72nd percentile of the normally distributed random variable x is 196.788, rounded to the tenths place.

What is percentile?

Percentile is expressed as a percentage of the group that is equal to or lower than the individual in question.

The 72nd percentile of a normally distributed random variable x is calculated by using the formula z = (x - μ) / σ, where z is the z-score, μ is the mean of the data, and σ is the standard deviation of the data.

In this case, z = (x - 185) / 14.

To find the 72nd percentile, we have to use the z-score table to look up the z-score that corresponds to the desired percentile.

The z-score for the 72nd percentile is 0.842.

Plugging this back into our formula, we get

x = 185 + (0.842 * 14)

= 196.788.

Therefore, the 72nd percentile of the normally distributed random variable x is 196.788, rounded to the tenths place.

For more questions related to standard deviation

https://brainly.com/question/475676

#SPJ1

Answer 2

The 72nd percentile of the normally distributed random variable x is 196.788, rounded to the tenths place.

What is percentile?

Percentile is expressed as a percentage of the group that is equal to or lower than the individual in question.

The 72nd percentile of a normally distributed random variable x is calculated by using the formula z = (x - μ) / σ, where z is the z-score, μ is the mean of the data, and σ is the standard deviation of the data.

In this case, z = (x - 185) / 14.

To find the 72nd percentile, we have to use the z-score table to look up the z-score that corresponds to the desired percentile.

The z-score for the 72nd percentile is 0.842.

Plugging this back into our formula, we get

x = 185 + (0.842 * 14)

= 196.788.

Therefore, the 72nd percentile of the normally distributed random variable x is 196.788, rounded to the tenths place.

For more questions related to standard deviation

https://brainly.com/question/475676

#SPJ1


Related Questions

the proportion of americans with hypertension is about 33%. the claim of lbp inc is that if you take their vitamin, the chances that you get high blood pressure will go down. what are the hypotheses for this?

Answers

The null hypothesis (H0) for this probability would be that there is no effect of taking the vitamin on the chances of getting high blood pressure.

The alternative hypothesis (Ha) would be that taking the vitamin reduces the chances of getting high blood pressure.

Therefore, the hypotheses for this claim can be written as:

H0: The proportion of Americans with hypertension who take the vitamin is the same as the proportion of Americans with hypertension who do not take the vitamin.

Ha: The proportion of Americans with hypertension who take the vitamin is lower than the proportion of Americans with hypertension who do not take the vitamin.

To know more about probability,

https://brainly.com/question/30034780

#SPJ11

explain why the set of natural numbers {1,2,3,4,...} and the set of even numbers {2, 4, 6, 8, . . .} have the same cardinality.

Answers

The sets of natural numbers {1, 2, 3, 4, ...} and even numbers {2, 4, 6, 8, ...} have the same cardinality because there exists a bijective function between the two sets. A bijective function is a one-to-one correspondence that pairs each element in one set with exactly one element in the other set. In this case, the function f(n) = 2n pairs each natural number n with an even number 2n, ensuring that the two sets have the same cardinality.

The two sets, the set of natural numbers {1,2,3,4,...} and the set of even numbers {2, 4, 6, 8, . . .}, have the same cardinality because we can create a one-to-one correspondence between the two sets. To do this, we can simply map each natural number to its corresponding even number (i.e., 1 maps to 2, 2 maps to 4, 3 maps to 6, and so on). This mapping covers all elements of both sets, without skipping any, and without duplicating any. Thus, the two sets have the same number of elements, which means they have the same cardinality.

Learn more about natural numbers here: brainly.com/question/17429689

#SPJ11

Need help asap! thanks!

Answers

Yes the opposite sides of the figure are congruent because:

Both WX and YZ have a length of 3.6

Both XY and WZ have a length of 16.8

How to Use Pythagoras Theorem?

Pythagoras Theorem is the way in which you can find the missing length of a right angled triangle.

The triangle has three sides, the hypotenuse (which is always the longest), Opposite (which doesn't touch the hypotenuse) and the adjacent (which is between the opposite and the hypotenuse).

Pythagoras Theorem is in the form of;

a² + b² = c²

Using Pythagoras theorem, we have:

WX = √(3² + 2²)

WX = √13 = 3.6

YZ = √(3² + 2²)

YZ = √13 = 3.6

Similarly:

XY = √(5² + 16²)

XY = √281

XY = 16.8

WZ = √(5² + 16²)

WZ = √281

WZ = 16.8

Read more about Pythagoras Theorem at: https://brainly.com/question/231802

#SPJ1

Yes the opposite sides of the figure are congruent because:

Both WX and YZ have a length of 3.6

Both XY and WZ have a length of 16.8

How to Use Pythagoras Theorem?

Pythagoras Theorem is the way in which you can find the missing length of a right angled triangle.

The triangle has three sides, the hypotenuse (which is always the longest), Opposite (which doesn't touch the hypotenuse) and the adjacent (which is between the opposite and the hypotenuse).

Pythagoras Theorem is in the form of;

a² + b² = c²

Using Pythagoras theorem, we have:

WX = √(3² + 2²)

WX = √13 = 3.6

YZ = √(3² + 2²)

YZ = √13 = 3.6

Similarly:

XY = √(5² + 16²)

XY = √281

XY = 16.8

WZ = √(5² + 16²)

WZ = √281

WZ = 16.8

Read more about Pythagoras Theorem at: https://brainly.com/question/231802

#SPJ1

suppose p is a prime number and p2 divides ab and gcd(a,b)=1. Show p2 divides a or p2 divides b.

Answers

p is a prime number

p^2 divides ab with gcd(a, b) = 1,

then p^2 divides a or p^2 divides b.

Fundamental Theorem of Arithmetic:


1. Since gcd(a, b) = 1, we know that a and b are coprime, meaning they have no common factors other than 1.

2. Given that p is a prime number and p^2 divides ab, this implies that p divides either a or b (or both) due to the Fundamental Theorem of Arithmetic.

3. Let's assume p divides a. Then, we can write a = pk for some integer k.

4. Now, we know that p^2 divides ab, which means ab = p^2m for some integer m.

Substitute a with pk from step 3: ab = (pk)b.

5. Thus, p^2m = pkb. Since p is a prime number, by Euclid's Lemma, we know that p must divide either kb or b itself. We already assumed p divides a, so p cannot divide b (as gcd(a, b) = 1). Therefore, p must divide kb.

6. As p divides a (a = pk) and p divides kb, we can conclude that p^2 divides a. So, p^2 divides a.

7. If we instead assumed p divides b, we would arrive at a similar conclusion: p^2 divides b.

In summary, if p is a prime number and p^2 divides ab with gcd(a, b) = 1, then either p^2 divides a or p^2 divides b.

To know more about Fundamental Theorem of Arithmetic:

https://brainly.com/question/15317294

#SPJ11

calculate constrained minimum find the points on the curve xy2 = 54 nearest the origin.

Answers

To calculate the constrained minimum, we need to use the method of Lagrange multipliers. We define the Lagrangian function L as L(x,y,λ) = xy^2 - λ(d^2 - x^2 - y^2 - z^2), where d represents the distance between the origin and the nearest point on the curve.

Taking the partial derivatives of L with respect to x, y, and λ, we get:

dL/dx = y^2 + 2λx = 0
dL/dy = 2xy - 2λy = 0
dL/dλ = d^2 - x^2 - y^2 - z^2 = 0

Solving these equations simultaneously, we get:

x = ± 3√6, y = ± √6, and λ = 3/2

Therefore, the points on the curve xy^2 = 54 nearest to the origin are:

(3√6, √6) and (-3√6, -√6)

These points are the constrained minimum because they are the closest points on the curve to the origin.
To find the constrained minimum and the points on the curve xy^2 = 54 nearest to the origin, we can use the method of Lagrange multipliers. Let f(x, y) = x^2 + y^2 be the distance squared from the origin, and g(x, y) = xy^2 - 54 as the constraint.

First, calculate the gradients:
∇f(x, y) = (2x, 2y)
∇g(x, y) = (y^2, 2xy)

Now, set ∇f(x, y) = λ ∇g(x, y):
(2x, 2y) = λ(y^2, 2xy)

This gives us two equations:
1) 2x = λy^2
2) 2y = λ2xy

From equation (2), we can get:
λ = 1/y

Now, substitute λ into equation (1):
2x = (1/y)y^2
2x = y

Using the constraint equation g(x, y) = xy^2 - 54 = 0, we can substitute y = 2x:
2x(2x)^2 = 54
8x^3 = 54
x^3 = 27/4
x = ∛(27/4) = 3/√4 = 3/2

Now we can find y using y = 2x:
y = 2(3/2) = 3

Thus, the point nearest to the origin on the curve xy^2 = 54 is (3/2, 3).

Visit here to learn more about Lagrangian function brainly.com/question/31367466

#SPJ11

Macy has a circular pool with a diameter of 18 feet . If she swims around the pool 4 times find the distance she will travel

Answers

Answer: Macy will travel a distance of 226.20 feet if she swims around the pool 4 times.

Step-by-step explanation:

C = πd, where d is the diameter of the circle

C = πd = π(18 feet) = 56.55 feet (rounded to two decimal places)

If Macy swims around the pool 4 times, she will travel a total distance of:

4 × C = 4 × 56.55 feet = 226.20 feet (rounded to two decimal places)

Answer:

She traveled approximately 226.08 feet.

Step-by-step explanation:

c = 2[tex]\pi r[/tex]  Since she swims the pool 4 times, we will multiply this by 4

c = 4(2)[tex]\pi r[/tex]

c = 8(3.14)(9)  If the diameter is 18, then the radius is 9.  I used 3.14 for [tex]\pi[/tex]

c = 226.08

Helping in the name of Jesus.

Prove that the following arguments are invalid. Predicate Logic Semantics 195 Use the method of Interpretation
(1) 1. (∃x)(Ax ⋅ Bx)
2. (∃x)(Bx ⋅ Cx)
/∴ (∃x)(Ax ⋅ Cx)

Answers

This interpretation shows that the argument is invalid.

We are given that;

Predicate Logic Semantics =195

Now,

Under this interpretation, the first premise (∃x)(Ax ⋅ Bx) is true, because there exists a number that is both even and a multiple of 3, such as 6.

The second premise (∃x)(Bx ⋅ Cx) is also true, because there exists a number that is both a multiple of 3 and a multiple of 5, such as 15.

However, the conclusion (∃x)(Ax ⋅ Cx) is false, because there does not exist a number that is both even and a multiple of 5. Any such number would be a multiple of 10, but 10 is not in the domain.

Therefore, by the interpretation answer will be invalid.

Learn more about interpretation of probability here:

https://brainly.com/question/23024246

#SPJ1

Find the absolute maximum and minimum, if either exists, for the function on the indicated interval. f(x) = (x - 3)(x - 15)^3 + 12 (A) (0, 10) (B) [4, 16) (C) [10, 17)

Answers

The absolute maximum and minimum of the function [tex]f(x) = (x - 3)(x - 15)^3 + 12[/tex] on the given intervals: (A) (0, 10): max = 11337, min = -1155, (B) [4, 16): max = 33792, min = -20099, and (C) [10, 17): max = 12, min = -11037.

To find the absolute maximum and minimum of the function [tex]f(x) = (x - 3)(x - 15)^3 + 12[/tex] on the given intervals:(A) On the interval (0, 10):We first need to find the critical points of the function by taking the derivative and setting it equal to zero. After simplification, we get:[tex]f'(x) = 4(x - 15)^2(x - 5)[/tex]Setting f'(x) = 0, we get the critical points at x = 5 and x = 15.Now, we need to evaluate the function at the critical points and at the endpoints of the interval:f(0) = -1155, f(5) = 12, f(10) = 11337, f(15) = 12Therefore, the absolute maximum is 11337 and the absolute minimum is -1155 on the interval (0, 10).(B) On the interval [4, 16):Similarly, we find the critical points by taking the derivative and setting it equal to zero. After simplification, we get:[tex]f'(x) = 4(x - 15)^2(x - 5)[/tex]Setting f'(x) = 0, we get the critical points at x = 5 and x = 15.Now, we need to evaluate the function at the critical points and at the endpoints of the interval:f(4) = -20099, f(5) = 12, f(16) = 33792Therefore, the absolute maximum is 33792 and the absolute minimum is -20099 on the interval [4, 16).(C) On the interval [10, 17):We repeat the same process as above:[tex]f'(x) = 4(x - 15)^2(x - 5)[/tex]Setting f'(x) = 0, we get the critical points at x = 5 and x = 15.Now, we need to evaluate the function at the critical points and at the endpoints of the interval:f(10) = -11037, f(15) = 12, f(17) = 9684Therefore, the absolute maximum is 12 and the absolute minimum is -11037 on the interval [10, 17).In summary, we have found the absolute maximum and minimum of the function [tex]f(x) = (x - 3)(x - 15)^3 + 12[/tex]on the given intervals: (A) (0, 10): max = 11337, min = -1155, (B) [4, 16): max = 33792, min = -20099, and (C) [10, 17): max = 12, min = -11037.

For more such question on absolute maximum

https://brainly.com/question/31425320

#SPJ11

Please answer parts a-c: (a) Sketch the graph of the function f(x) = 2*. (b) If f(x) is translated 4 units down, what is the equation of the new function g(x)? (c) Graph the transformed function g(x) on the same grid. **Both functions must be present on your graph. Remember to include at least two specific points per function! **
answer:
equation of g(x):​

Answers

A graph of the function [tex]f(x) = 2^x[/tex] is shown in the image below.

If f(x) is translated 4 units down, the equation of the new function g(x) is [tex]g(x) = 2^x-4[/tex]

The transformed function g(x) is shown on the same grid below.

What is a translation?

In Mathematics and Geometry, the vertical translation a geometric figure or graph downward simply means subtracting a digit from the value on the y-coordinate of the pre-image or function.

In Mathematics and Geometry, a horizontal translation to the right is modeled by this mathematical equation g(x) = f(x - N) while a vertical translation to the positive y-direction (downward) is modeled by this mathematical equation g(x) = f(x) - N.

Where:

N represents an integer.g(x) and f(x) represent functions.

In this scenario, we can logically deduce that the graph of the parent function f(x) was translated or shifted downward (vertically) by 4 units as shown below.

Read more on translation here: brainly.com/question/4521517

#SPJ1

find the area of the surface obtained by rotating the curve =√6 x=0,7 calculator

Answers

The area of the surface obtained by rotating the given curve about the x-axis is approximately 1182.45 square units.

How to find the area of the surface obtained by rotating the curve?

The given curve is y = √(6x) where x ranges from 0 to 7. To obtain the surface of revolution when this curve is rotated about the x-axis, we can use the formula:

A = 2π ∫[a,b] y * ds

where a = 0, b = 7, y = √(6x), and ds = √(1 + [tex]y'^2[/tex]) dx.

To find y', we differentiate y with respect to x:

[tex]y' = d/dx (\sqrt(6x)) = (1/2) * (6x)^{(-1/2)} * 6 = 3/ \sqrt(6x) = \sqrt(2x)/2[/tex]

Substituting the given values, we have:

A = 2π ∫[0,7] [tex]\sqrt(6x) * \sqrt(1 + (\sqrt(2x)/2)^2) dx[/tex]

Simplifying the expression inside the integral:

[tex]1 + (\sqrt(2x)/2)^2 = 1 + 2x/4 = 1 + x/2[/tex]

√(6x) * √(1 + x/2) = √(3x(2 + x))

Substituting this expression and integrating, we get:

A = 2π ∫[0,7] √(3x(2 + x)) dx

[tex]= 2\pi * (12/5) * (77^{(5/2)} - 27^{(5/2)})[/tex]

≈ 1182.45

Therefore, the area of the surface obtained by rotating the given curve about the x-axis is approximately 1182.45 square units.

Learn more about surface area

brainly.com/question/29101132

#SPJ11

TEXT ANSWER
2x + 5y = -10
-2x + y = 46

SHOW ALL WORK in the way that works best for you

Answers

Answer:

x= - 20

y= 6

Step-by-step explanation:

2x + 5y = -10

-2x + y = 46

if u solve it

it is 6y= 36 so y =6

and substitute y value into the equation:

-2x+ 6 = 46

-2x= 40

so x= -20

when testing the hypothesized equality of two population means, the implied null hypothesis is ________. multiple choice h0: µ1 = 0 h0: µ1 − µ2 = 0 h0: µ2 = 0 h0: µ1 − µ2 ≠ 0

Answers

The implied null hypothesis when testing the hypothesized equality of two population means is h0: µ1 − µ2 = 0.

The null hypothesis (h0) is a statement that assumes there is no significant difference or relationship between variables being compared. In the context of testing the hypothesized equality of two population means, the null hypothesis states that the difference between the means of the two populations (µ1 and µ2) is equal to zero (µ1 − µ2 = 0). This implies that there is no significant difference in the means of the two populations being compared.

To test this null hypothesis, a statistical test, such as a t-test or a z-test, is typically used. The test statistic is calculated based on the sample data, and the resulting p-value is compared to a predetermined significance level (e.g., α = 0.05) to determine if there is enough evidence to reject or fail to reject the null hypothesis.

If the p-value is greater than the significance level, then there is not enough evidence to reject the null hypothesis, and it is concluded that there is no significant difference in the means of the two populations. On the other hand, if the p-value is less than the significance level, then there is enough evidence to reject the null hypothesis, and it is concluded that there is a significant difference in the means of the two populations.

Therefore, the implied null hypothesis when testing the hypothesized equality of two population means is h0: µ1 − µ2 = 0.

To learn more about null hypothesis here:

brainly.com/question/30821298#

#SPJ11

A strip of width 4 cm is attached to one side of a square to form a rectangle. The area of the rectangle formed is 77c * m ^ 2 then find the length of the side of the square.A strip of width 4 cm is attached to one side of a square to form a rectangle. The area of the rectangle formed is 77c * m ^ 2 then find the length of the side of the square.

Answers

Answer:

x = -2 + sqrt(4 + 77c*m^2) cm.

Step-by-step explanation:

Let's denote the side of the square by "x".

When the strip of width 4 cm is attached to one side of the square, the resulting rectangle has dimensions of (x+4) cm by x cm.

The area of the rectangle is given by:

(x+4) * x = 77c * m^2

Expanding the left-hand side and simplifying, we get:

x^2 + 4x = 77c * m^2

Moving all the terms to one side, we get:

x^2 + 4x - 77c * m^2 = 0

Now we can use the quadratic formula to solve for x:

x = [-4 ± sqrt(4^2 - 41(-77cm^2))] / (21)

x = [-4 ± sqrt(16 + 308cm^2)] / 2

x = [-4 ± 2sqrt(4 + 77cm^2)] / 2

x = -2 ± sqrt(4 + 77c*m^2)

Since the length of a side of a square must be positive, we can discard the negative solution and get:

x = -2 + sqrt(4 + 77c*m^2)

Therefore, the length of the side of the square is x = -2 + sqrt(4 + 77c*m^2) cm.

The length of the side of the square is x = -2 + 2√(1 + 19c) cm.

What is Area of Rectangle?

The area of Rectangle is length times of width.

Let the side of the square be x cm.

When a strip of width 4 cm is attached to one side of the square, the resulting rectangle will have dimensions (x + 4) cm and x cm.

The area of the rectangle is given as 77c m² so we have:

(x + 4)x = 77c

Expanding the left side, we get:

x² + 4x = 77c

Bringing all the terms to one side, we have:

x² + 4x - 77c = 0

Now, we can use the quadratic formula to solve for x:

x = [-4 ± √(4² - 4(1)(-77c))] / 2(1)

x = [-4 ± √(16 + 308c)] / 2

x = [-4 ± √(16(1 + 19c))] / 2

x = [-4 ± 4√(1 + 19c)] / 2

x = -2 ± 2√(1 + 19c)

Since x must be positive, we take the positive root:

x = -2 + 2√(1 + 19c)

Therefore, the length of the side of the square is x = -2 + 2√(1 + 19c) cm.

To learn more on Area of Rectangle click:

https://brainly.com/question/20693059

#SPJ2

calculate the euclidean distance between the following two points: (5,8,-2) and (-4,5,3) round to two decimal places

Answers

The Euclidean distance between the two points (5,8,-2) and (-4,5,3) is approximately 10.72 (rounded to two decimal places).

Explanation: -

To calculate the Euclidean distance between two points (5,8,-2) and (-4,5,3), you can use the following formula:

Euclidean Distance = √((x2 - x1)^2 + (y2 - y1)^2 + (z2 - z1)^2)

Here, (x1, y1, z1) = (5, 8, -2) and (x2, y2, z2) = (-4, 5, 3). Now, plug in the values:

Step 1. Calculate the differences between the co-ordinates;
  (x2 - x1) = (-4 - 5) = -9
  (y2 - y1) = (5 - 8) = -3
  (z2 - z1) = (3 - (-2)) = 5

Step 2. Square the differences:
  (-9)^2 = 81
  (-3)^2 = 9
  (5)^2 = 25

Step 3. Add the squared differences:
  81 + 9 + 25 = 115

Step 4. Take the square root:
  √115 ≈ 10.72

So, the Euclidean distance between the two points is approximately 10.72 (rounded to two decimal places).

Know more about the "Euclidean distance" click here:

https://brainly.com/question/30598325

#SPJ11

let {n,k} denote the number of partitions of n distinct objects into k nonempty subsets. show that {n+1,k}=k{n,k}+{n,k-1}

Answers

The total number of ways to partition the set of n+1 distinct objects into k nonempty subsets is {n+1,k} = k{n,k} + {n,k-1}, as required.

To show that {n+1,k}=k{n,k}+{n,k-1}, we can use a combinatorial argument.

Consider a set of n+1 distinct objects. We want to partition this set into k nonempty subsets. We can do this in two ways

Choose one of the n+1 objects to be the "special" object. Then partition the remaining n objects into k-1 nonempty subsets. This can be done in {n,k-1} ways.

Partition the n+1 objects into k nonempty subsets, and then choose one of the subsets to be the subset that contains the special object. There are k ways to choose the subset that contains the special object, and once we have chosen it, we need to partition the remaining n objects into k-1 nonempty subsets. This can be done in {n,k-1} ways.

Learn more about combinatorial argument here

brainly.com/question/28452452

#SPJ4

find the normal vector to the tangent plane of z = 7 e x 2 − 4 y z=7ex2-4y at the point (8, 16, 7) component = -1.

Answers

The normal vector to the tangent plane is the opposite of this gradient, which is:

[tex]n = (-14e^{64}, 4, -1)[/tex]

What is gradient of the surface?

The gradient of the surface is given by:

∇z = ( ∂z/∂x, ∂z/∂y, ∂z/∂z )

where ∂z/∂x and ∂z/∂y are the partial derivatives of z with respect to x and y, respectively.

The gradient of the surface at that point must first be determined before we can determine the normal vector to the tangent plane of the surface [tex]z=7e^{x^{2} } -4y[/tex] at the point (8, 16, 7).

Taking the partial derivatives, we get:

[tex]∂z/∂x = 14e^{x^{2} }[/tex]

∂z/∂y = -4

Plugging in the values x=8 and y=16, we get:

∂z/∂x = [tex]14e^{(8)^2} = 14e^{64}[/tex]

∂z/∂y = -4

Therefore, the gradient of the surface at the point (8, 16, 7) is:

∇z = ( [tex]14e^{64}, -4,[/tex]∂z/∂z )

The last component of the gradient (∂z/∂z) is always equal to 1, so we have:

∇z = ( [tex]14e^{64},[/tex] -4, 1 )

This gradient is perpendicular to the tangent plane of the surface at the point (8, 16, 7). Therefore, the normal vector to the tangent plane is the opposite of this gradient, which is:

n =[tex](-14e^{64}, 4, -1)[/tex]

The component of the normal vector in the z-direction is -1, as given in the problem statement.

know more about normal vector visit:

https://brainly.com/question/29050578

#SPJ1

what is equivalent to 5x - 19

Answers

For x = 3, the expression 5x - 19 is equivalent to -4.

Here, we have an expression, 5x - 19, which is not an equation yet because it doesn't have an equal sign (=). An equation requires that both sides of the equal sign be equivalent.

To make this expression into an equation, we need to set it equal to something. Let's say we want to find an expression that is equivalent to 5x - 19. We can represent this unknown expression as "y". So, our equation will be:

5x - 19 = y

This equation is now saying that the expression 5x - 19 is equivalent to y. We can also say that "y" is a function of "x", meaning that the value of "y" depends on the value of "x".

We can use this equation to find the value of "y" for any given value of "x". If we substitute x = 3, we get:

5(3) - 19 = y

y = 15 - 19

y = -4

To know more about equation here

https://brainly.com/question/10413253

#SPJ1

Complete Question:

what is equivalent to 5x - 19 when x = 3?

Let the plane contains the points (1,1,1),(1,2,3)&(2,1,3) parallel or perpendicular

Answers

The given points (1,1,1), (1,2,3), and (2,1,3) do not lie on a plane that is parallel or perpendicular to any given plane, since they do not satisfy the necessary conditions for either case.

To determine whether the given points lie on a plane that is parallel or perpendicular to any given plane, we need to find the normal vector of the plane containing the given points.

Let the given points be A(1,1,1), B(1,2,3), and C(2,1,3). To find the normal vector of the plane containing these points, we can take the cross product of the vectors AB and AC:

AB = <1-1, 2-1, 3-1> = <0, 1, 2>

AC = <2-1, 1-1, 3-1> = <1, 0, 2>

Normal vector N = AB x AC

= <0, 1, 2> x <1, 0, 2>

= <-2, -2, 1>

Now, to determine if the plane containing the points is parallel or perpendicular to a given plane, we need to compare the normal vector of the plane to the normal vector of the given plane. However, we are not given a plane to compare to.

Therefore, we cannot determine whether the given points lie on a plane that is parallel or perpendicular to any given plane.

Learn more about plane

https://brainly.com/question/28247880

#SPJ4

Consider the sum 10 + 21 +32 +43 + ... +406. A. How many terms (summands) are in the sum? B. Compute the sum using a technique discussed in this section.

Answers

A. There are 37 terms in the sum.

B. The sum of the given series is 7,696.

How many terms are in the sum?

A. Using arithmetic sequences, We can observe that each term in the sum is obtained by adding 11 to the previous term. Therefore, the nth term can be expressed as:

[tex]a_n = 10 + 11(n-1)[/tex]

We want to find the number of terms in the sum up to [tex]a_n[/tex] = 406. Setting [tex]a_n[/tex]= 406 and solving for n, we get:

406 = 10 + 11(n-1)

396 = 11(n-1)

n = 37

Therefore, there are 37 terms in the sum.

How to compute the sum?

B. We can use the formula for the sum of an arithmetic series:

[tex]S_n = n/2 * (a_1 + a_n)[/tex]

where [tex]S_n[/tex] is the sum of the first n terms, [tex]a_1[/tex] is the first term, and[tex]a_n[/tex] is the nth term.

In this case, we have:

[tex]a_1[/tex]= 10

[tex]a_n[/tex]= 406

n = 37

Substituting these values, we get:

[tex]S_{37}[/tex] = 37/2 * (10 + 406)

[tex]S_{37}[/tex] = 18.5 * 416

[tex]S_{37}[/tex] = 7,696

Therefore, the sum of the given series is 7,696.

Learn more about arithmetic sequences

brainly.com/question/15412619

#SPJ11

Pls help me asap!!!

On the axes below, make an appropriate scale and graph exactly one cycle of the trigonometric function y = 7 sin 6x.

Answers

The graph is given in the image below:

How to make the right scale for the trig function

To plot a full cycle of y = 7sin(6x), begin by dividing the period (2π) by six to obtain π/3, which is then used to mark every increment of π/6 along the x-axis.

Additionally, since y ranges from -7 to 7, label the y-axis in increments of either 1 or 2.

Plot the key points at (0,0), (π/12,7), (π/6,0), (π/4,-7), and (π/3,0), and finally connect them smoothly with a curve to complete the plot of one full cycle.

Read more about trigonometric functions here:

https://brainly.com/question/25618616

#SPJ1

a proton moves with a velocity of = (6î − 4ĵ ) m/s in a region in which the magnetic field is = (î 2ĵ − ) t. what is the magnitude of the magnetic force this particle experiences?

Answers

The magnitude of the magnetic force experienced by the proton is sqrt(64t^2 + 36) N.

To find the magnitude of the magnetic force experienced by a proton moving in a magnetic field, we need to use the formula:

F = q(v x B)

where F is the magnetic force, q is the charge of the particle, v is its velocity and B is the magnetic field.

In this case, the proton has a charge of +1.602 x 10^-19 C, and its velocity is given by:

v = 6î - 4ĵ m/s

The magnetic field is given by:

B = î + 2ĵ - t

To calculate the cross product of v and B, we need to expand the determinant:

v x B =

| î ĵ k |

| 6 -4 0 |

| 1 2 -t |

= (-8t) î - 6k

where k is the unit vector in the z-direction.

So, the magnetic force experienced by the proton is:

F = q(v x B) = (1.602 x 10^-19 C)(-8t î - 6k)

To find the magnitude of this force, we need to take the magnitude of the vector (-8t î - 6k):

|F| = sqrt((-8t)^2 + (-6)^2) = sqrt(64t^2 + 36)

Therefore, the magnitude of the magnetic force experienced by the proton is sqrt(64t^2 + 36) N.

To learn more about magnitude visit:

https://brainly.com/question/14452091

#SPJ11

Answer this math question for 15 points

Answers

Answer:

(the length of leg)^2=87^2-60^2=3969

so when take the root :

the length of leg=63ft

What is 6/18 simplified

Answers

Answer: 1/3

Step-by-step explanation:

First think of what is the GCF (greatest common factor of 6 and 18) the answer is 6. because the factors of 6 are 1,2,3,6. the factors of 18 are 1,2,3,6,9,18. they both share 1,2,3, and 6. so those are common. but GCF is asking for the greatest one, so 6 is the GCF.

Divide the top and bottom by 6:

[tex]\frac{6}{18} / 6 = \frac{1}{3}[/tex]

Numerator: 6/6 = 1

Denominator: 18/6 = 3

So the final answer is 1/3

The table shows the number of students who signed up for different after school activities. Each student signed up for exactly one activity.
Activity Students
Cooking
9
99
Chess
4
44
Photography
8
88
Robotics
11
1111
Total
32
3232
Match the following ratios to what they describe.
Description
Ratio

Answers

a) The ratio of the photography students to the chess students is 2 : 1

b) The ratio of photography students to all students is 1 : 4

c) The ratio of chess students to all students is 1 : 8

Given data ,

Let the number of cooking students = 9

Let the number of chess students = 4

Let the number of photography students be = 8

Let the number of robotics students = 11

So , the total number of students = 32

a)

The ratio of the photography students to the chess students = 8 / 4

On simplifying the proportion , we get

The ratio of the photography students to the chess students = 2 : 1

b)

The ratio of photography students to all students = 8 / 32

The ratio of photography students to all students = 1 : 4

c)

The ratio of chess students to all students = 4 / 32

The ratio of chess students to all students = 1 : 8

Hence , the proportion is solved

To learn more about proportion click :

https://brainly.com/question/7096655

#SPJ1

The complete question is attached below :

The table shows the number of students who signed up for different after school activities. Each student signed up for exactly one activity.

PLS HELP VERY CONFUSED!! AABC has vertices at (-4, 4), (0,0) and (-5,-2). Find the coordinates of points A, B and C after a reflection across y = -x.​

Answers

Answer:

A' = (-4, 4)

B' = (0, 0)

C' = (2, 5)

Step-by-step explanation:

When a point is reflected across the line y = -x, the x-coordinate becomes -y, and the y-coordinate becomes -x. Therefore, the mapping rule is:

(x, y) → (-y, -x)

Given vertices of triangle ABC:

A = (-4, 4)B = (0, 0)C = (-5, -2)

Therefore, if we reflect the given points across the line y = -x, the coordinates of the reflected points are:

[tex]\begin{aligned}& \sf A = (-4, 4)& \implies\;\; \sf A'& =\sf (-4,-(-4))=(-4,4)\\& \sf B = (0, 0) &\implies\;\; \sf B' &= \sf (-0, -0)=(0,0)\\& \sf C = (-5, -2)& \implies\;\; \sf C' &= \sf (-(-2),-(-5))=(2,5)\end{aligned}[/tex]

The volume of air in a person's lungs can be modeled with a periodic function. The
graph below represents the volume of air, in ml., in a person's lungs over time t,
measured in seconds.
What is the period and what does it represent in this
context?
1000
you
(2-5, 2900)
(5-5, 1100)
Time (in seconds)
(8.5, 2900)
(11.5, 1100)

Answers

The period of the function represent the given context is (8.5, 2900).

The period of this function is 8.5 seconds, and it represents the time it takes for the person's lungs to fill up with air, then empty out again.

The graph shows that the volume of air in the person's lungs is at its maximum (2900 ml) at the start of each period, and then decreases over time until it reaches its minimum (1100 ml) at the end of each period.

Therefore, the period of the function represent the given context is (8.5, 2900).

To learn more about the function visit:

https://brainly.com/question/28303908.

#SPJ1

The steps for circumscribing a circle about a triangle are shown:

Step 1 Construct the angle bisector of one side of the triangle.
Step 2 Construct the perpendicular bisector of another side of the triangle.
Step 3 Indicate the point of intersection of the bisectors with a point representing the center of the circle.
Step 4 Place the compass on the center, adjust its length to reach any vertex of the triangle, and draw your circumscribed circle.

Which step is incorrect, and how can it be fixed?

a
Step 1, replace "angle bisector" with "perpendicular bisector"

b
Step 3, replace "circle" with "triangle"

c
Step 4, replace "vertex" with "side"

d
All steps are correct

Answers

There is an error in Step 1. The correct answer should be: a) Step 1, replace "angle bisector" with "perpendicular bisector"

What do the terms "inscribed" and "circumscribed" figures mean?

An inscribed figure is, in essence, one shape drawn inside of another. A form drawn outside another shape is referred to as a circumscribed figure. All of a polygon's corners, or vertices, need to touch the circle in order for it to be enclosed inside of it.

The appropriate procedures for drawing a circle around a triangle are as follows:

Step 1: Create the perpendicular bisector of one triangle side .

Step 2: Create the perpendicular bisector of a different triangle side .

Step 3: Mark the place where the bisectors cross a point that represents the centre of the circle.

Step 4: Center the compass and adjust its length to reach any triangle vertex before drawing your circle's circumference.

Hence, option a is correct answer.

Learn more about circumscribed figures here:

https://brainly.com/question/1436883

#SPJ1

..if there were 10 customers and your expenses are about 52 dollars, how much is your profit and revenue?​

Answers

Answer:

Step-by-step explanation:

what is in the middle of, 26.27 and 26.89?

Answers

The middle value between 26.27 and 26.89 is 26.58.

To find the middle value between 26.27 and 26.89, you can follow these steps:

1. Add the two numbers together: 26.27 + 26.89 = 53.16
2. Divide the sum by 2 to find the average: 53.16 ÷ 2 = 26.58

The middle value between 26.27 and 26.89 is 26.58.

The middle value of a set of numbers is commonly referred to as the "median". The median is a statistical measure of central tendency that represents the value that separates the lower and upper halves of a dataset.

To find the median of a set of numbers, the numbers must first be arranged in order from lowest to highest (or highest to lowest). If the dataset contains an odd number of values, the median is the middle value.

For example, if we have the set of numbers {1, 3, 5, 7, 9}, the median is 5, which is the value that separates the lower half {1, 3} from the upper half {7, 9}.

If the dataset contains an even number of values, the median is the average of the two middle values. For example, if we have the set of numbers {2, 4, 6, 8}, the median is (4 + 6) / 2 = 5, which is the average of the two middle values that separate the lower half {2, 4} from the upper half {6, 8}.

The median is a useful measure of central tendency because it is not affected by extreme values or outliers in the dataset, unlike the mean, which can be skewed by such values.

To know more about middle value, refer here:

https://brainly.com/question/20846131

#SPJ11

Find f.
f '(x) = √x(3+10x)
f (1) = 9
f (x) = ____

Answers

The function f (x) = 2x^(3/2) + (4/3)x^(5/2) + (17/3)

To find the function f(x), given that f'(x) = √x(3+10x) and f(1) = 9, follow these steps:

1. Integrate f'(x) with respect to x to find f(x).
∫(√x(3+10x)) dx

2. Perform a substitution to make the integration easier. Let u = x, then du = dx.
∫(u^(1/2)(3+10u)) du

3. Now, distribute the u^(1/2) term and integrate term by term:
∫(3u^(1/2) + 10u^(3/2)) du

4. Integrate each term:
[2u^(3/2) + (4/3)u^(5/2)] + C

5. Replace u with x:
f(x) = [2x^(3/2) + (4/3)x^(5/2)] + C

6. Use the given point f(1) = 9 to find the value of the constant C:
9 = [2(1)^(3/2) + (4/3)(1)^(5/2)] + C
9 = 2 + (4/3) + C
C = 9 - 2 - (4/3)
C = 7 - (4/3)
C = (17/3)

7. Plug the value of C back into f(x):
f(x) = [2x^(3/2) + (4/3)x^(5/2)] + (17/3)

So, the function f(x) is given by:
f(x) = 2x^(3/2) + (4/3)x^(5/2) + (17/3)

Know more about function here:

https://brainly.com/question/11624077

#SPJ11

Other Questions
polyphonic music requires more experienced listening. true or false Tom and Philip were given the graph of a linear function and asked to find the slope. Tom says that the slope is 12 while Philip says that the slope is 2.Which reason correctly justifies Tom's answer? You want to know the number of students in your school that have a January birthday. You survey the students in your math class. Three students have a January birthday, and 32 do not. So, you conclude that about 8.6% of the students in your school have a January birthday. Determine whether the conclusion is valid. Explain. (Sorry its so long) A 0.290 kg frame, when suspended from a coil spring, stretches the spring 0.0400 mm. A 0.200 kg lump of putty is dropped from rest onto the frame from a height of 30.0 cm.Find the maximum distance the frame moves downward from its initial equilibrium position?I got d= 0.1286 m, but it's wrong.Figure Suppose that a certain quantity of methane occupies a volume of 0.138 L under a pressure of 300 atm at 200 C, and the volume required at 600 atm at 0 C. For 300 atm and at 200 C, Z=1.067, while for 600 atm at 0 C, Z=1.367. which of these is a legal u-turn? over two sets of double yellow lines in the roadway on a highway where there is a paved opening for a turn 150 feet away from a hill or curve submit answer find x if y=33x-4y=8(-2-4)(WITH SOLUTION) determine whether the set s = {1, x^2, 4 + x^2} spans P_2.O S spans P_2O S does not span P_2 which invertory cost flow assmption most accurately states the value of invertory and why? A pole that is 3.3 m tall casts a shadow that is 1.71 m long. At the same time, a nearby building casts a shadow that is 48.25 m long. How tall is the building? Round your answer to the nearest meter. What is the distance from Point A to Point B? Round your answer to the nearest tenth if necessary.(Hint: sketch a right triangle and use the Pythagorean theorem.) Find Sin B. Please help me on this, i am so stuck :( Given the values of Hrxn, Srxn, and T below, determine Suniv.A. Hrxn= 84 kJ , Srxn= 144 J/K , T= 300 KExpress your answer using two significant figures. show that no polygon exists in which the ratio of the number of diagnolas to the sum of the measures of the polyon's angles is 1 to 18 if a tree dies and the trunk remains undisturbed for 1.190 10 years, what percentage of the original c is still present? (the half-life of c is 5730 years.) 4.suppose you are given two points on a demand curve. at price p1 = $3, the quantity demanded is q1 = 5. at price p2 =$1, the quantity demanded q2 = 9 A profit maximizing firm is producing at an output of 250 units where it's average fixed costs are $2.50 and its average total costs are $6. What are the firm's total variable costs? A $550 B $1375 C $875 D $1625 E None of the above are correct. Please help me with these 6th grade math questions, thank you! Based on evidence from the model, how does temperature affect the way stem cells differentiate? OA. Female turtles hatch from eggs below 22C or above 28C. Male turtles hatch from eggs between 25C and 27C. OB. Temperatures between 22C and 28C produce the largest baby turtles.OC. Identical numbers of female and male turtles hatch from eggs below 22C or above 28C. OD. Temperatures between 22C and 28C produce greater numbers of both female and male baby turtles. What to prepare for a week of festival Land-Art festival