Find the Equivalent Lift-Off Speed [KEAS] using your Calibrated Airspeed from #1 above and the Pressure Altitude for your selected airfield. (Compressibility Correction Chart see "Flight Theory and Aerodynamics," Fig 2.12). Comment on your findings. Why was/wasn’t the Compressibility Effect in your case negligible?

Answers

Answer 1

To find the Equivalent Lift-Off Speed [KEAS], we need to use the Calibrated Airspeed and Pressure Altitude for the selected airfield. The Compressibility Correction Chart from "Flight Theory and Aerodynamics," Fig 2.12, is used to account for the compressibility effect at high speeds.

First, we need to ensure that the Calibrated Airspeed is accurately calibrated. This involves adjusting the airspeed indicator to account for instrument errors, position errors, and installation errors. Once calibrated, we can use this value to calculate the Equivalent Airspeed.

Next, we need to determine the Pressure Altitude for the selected airfield. This is the altitude where the atmospheric pressure is equivalent to the standard atmospheric pressure at sea level. We can use this value along with the Calibrated Airspeed to calculate the Equivalent Lift-Off Speed [KEAS].

After calculating the KEAS, we need to assess the compressibility effect on our findings. This effect occurs when air is compressed as it flows over the aircraft surface at high speeds. It can lead to an increase in drag and a decrease in a lift, which can affect the performance of the aircraft.

In our case, the compressibility effect was not negligible because we were calculating the KEAS at lift-off, which is a critical phase of flight. At this point, the aircraft is traveling at high speeds and experiencing significant air pressure changes. Therefore, it is important to account for the compressibility effect to ensure safe and accurate flight operations.

learn more about compressibility here: brainly.com/question/29663107

#SPJ11


Related Questions

an inductor with an inductance of 4.50 hh and a resistance of 8.00 ωω is connected to the terminals of a battery with an emf of 6.00 vv and negligible internal resistance. Just after the circuit is completed, at what rate is the battery supplying electrical energy to the circuit?

Answers

The battery is supplying electrical energy to the circuit at a rate of 4.50 W.

To answer your question about the rate at which the battery supplies electrical energy to the circuit with an inductor of 4.50 H and a resistance of 8.00 Ω connected to a battery with an emf of 6.00 V:

Determine the initial current in the circuit. Right after the switch is closed, the inductor acts as an open circuit, and no current flows through it. Thus, the current is determined only by the resistance.

Initial current (I₀) = EMF / Resistance
I₀ = 6.00 V / 8.00 Ω
I₀ = 0.75 A

Calculate the power supplied by the battery. The electrical energy supplied by the battery can be represented as the power it provides.

Power (P) = Voltage × Current
P = 6.00 V × 0.75 A
P = 4.50 W

Thus, the battery is sending electrical energy to the circuit at a rate of 4.50 W shortly after the circuit is finished.

Learn more about "electrical energy": https://brainly.com/question/21222010

#SPJ11

Why do slow wave sleep (0.5-2hz) and sleep spindles(10 hz) have different frequencies?
Both are thought to be generated by thalamic reticular nuclei.

Answers

Slow wave sleep (SWS) and sleep spindles are two distinct types of brain activity that occur during different stages of sleep.

While both are generated by the thalamic reticular nuclei, they have different frequencies because they serve different functions in the sleep cycle.

Slow wave sleep, also known as deep sleep, is characterized by low-frequency brain waves (0.5-2 Hz) that are synchronized and slow. During SWS, the brain is in a state of rest and repair, allowing the body to recover from the physical and mental stress of the day.

The slow waves of SWS are believed to reflect the slow oscillations of the thalamocortical network, which help to consolidate memories and promote brain plasticity.

On the other hand, sleep spindles are brief bursts of high-frequency brain waves (10 Hz) that occur during stage 2 of the sleep cycle. Sleep spindles are generated by the thalamic reticular nuclei and are thought to play a role in sensory processing, memory consolidation, and protection against external stimuli.

Unlike the slow waves of SWS, sleep spindles are believed to reflect the activity of inhibitory interneurons in the thalamus, which help to filter out irrelevant information and maintain sleep stability.

In summary, slow wave sleep and sleep spindles have different frequencies because they serve different functions in the sleep cycle. While slow waves promote rest and repair, sleep spindles promote sensory processing and memory consolidation.

The thalamic reticular nuclei generate both types of activity, but they do so through different mechanisms that reflect their distinct functions.

To learn more about deep sleep, refer below:

https://brainly.com/question/31033983

#SPJ11

a 250 mlml gas sample has a mass of 0.436 gg at a pressure of 736 mmhgmmhg and a temperature of 26 ∘c∘c.. What is the molar mass of the gas?

Answers

The molar mass of a 250 mL gas sample with a mass of 0.436 g, at a pressure of 736 mmHg, and a temperature of 26°C is 43.2 g/mol.

To determine the molar mass of a 250 mL gas sample with a mass of 0.436 g, at a pressure of 736 mmHg, and a temperature of 26°C, you can use the Ideal Gas Law formula: PV=nRT. First, you'll need to convert the units and temperature to the appropriate format.

First, convert volume from mL to L:

250 mL = 0.250 L

Convert pressure from mmHg to atm:

736 mmHg × (1 atm / 760 mmHg)

≈ 0.968 atm

Convert temperature from °C to K:

26°C + 273.15

= 299.15 K

Now, we can use the Ideal Gas Law to calculate the number of moles (n):

PV = nRT

n = PV / RT

n = (0.968 atm)(0.250 L) / (0.0821 L atm/mol K)(299.15 K)

n ≈ 0.0101 mol

Finally, to find the molar mass (M) of the gas:

M = mass of gas / number of moles

M = 0.436 g / 0.0101 mol

M ≈ 43.2 g/mol

Thus, the molar mass of the gas is approximately 43.2 g/mol.

Learn more about molar gas: https://brainly.com/question/30720372

#SPJ11

A ray of light in air crosses a boundary into transparent stuff whose index of refraction is 2.45. The speed of the light as it moves through the stuff is ___ x108 m/s.

Answers

The speed of light as it moves through the substance is approximately 1.22 x 10^8 m/s.

The speed of light in a vacuum is approximately 3 x 108 m/s. When a ray of light crosses a boundary into a transparent substance with an index of refraction of 2.45, the speed of light is reduced by a factor of 1.45 (since the index of refraction is the ratio of the speed of light in a vacuum to the speed of light in the substance).

When a ray of light moves from air into a transparent medium with a different index of refraction, its speed changes according to the formula:

speed of light in the medium = speed of light in vacuum / index of refraction

The speed of light in a vacuum is approximately 3 x 10^8 m/s, and the given index of refraction for the transparent material is 2.45. Plugging these values into the formula, we get:

speed of light in the medium = (3 x 10^8 m/s) / 2.45 ≈ 1.22 x 10^8 m/s

So, the speed of the light as it moves through the transparent medium is approximately 1.22 x 10^8 m/s.

To learn more about speed of light click here

brainly.com/question/1555553

#SPJ11

17. Mars has two moons. If Earth had a second moon that was three times the mass of our

Moon and the same distance away, how would the second moon's gravitational force

compare with that of our Moon?

Answers

The gravitational pull of the second moon would be stronger than that of our moon, but it wouldn't be three times stronger because the gravitational pull is also influenced by the separation between the two bodies.

It would pull in more gravitationally than our moon if Earth had a second moon that was three times as large as our own and positioned similarly to the earth. An object's mass and distance from another object both affect gravity.

The gravitational attraction of the second moon would be stronger since it would be heavier than the first. The second moon would have a larger gravitational pull since it would be heavier than the first. The strength of the gravitational force is also affected by distance.

Learn more about gravitational pull:

https://brainly.com/question/25830163

#SPJ4

Rutherford found the diameter of a gold nucleus to be about 10

15
m
.
Since gold is fairly massive, this implies a very high nuclear density. Find the density of a gold nucleus, in kilograms per cubic meter

Answers

The density of a gold nucleus can be found by dividing the mass of the gold nucleus by its volume. The volume of a sphere with diameter 10) m is: [tex]V = (4/3)πr^3\\ = (4/3)π(5×10^(-16))^3 = 5.24×10^(-45) m^3[/tex]

where r is the radius of the gold nucleus.

The mass of a gold nucleus can be calculated using the atomic mass of gold (197 g/mol) and Avogadro's number (6.022×10[tex]^23[/tex] mol^(-1)):

Converting this to kilograms, we get:

m = 3.27×10[tex]^(-28) kg[/tex]

The density of a gold nucleus is extremely high, which is expected given its tiny size and large mass.

To know more about curvature here

https://brainly.com/question/30106462

#SPJ4

What is a tire's angular acceleration if the tangential acceleration at a radius of 0.15 m is 0.094m/s2?

Answers

The tire's angular acceleration is 0.6267 rad/s^2.

Given

Radius of 0.15 m

Tangential acceleration : 0.094m/s2

To Find

Tire's angular acceleration

Solution

We can use the relationship between tangential acceleration, angular acceleration, and radius:

a_t = r * alpha

where:

a_t = tangential acceleration

alpha = angular acceleration

r = radius

Plugging in the given values, we have:

0.094 m/s^2 = (0.15 m) * alpha

Solving for alpha, we get:

alpha = 0.094 m/s^2 / 0.15 m

alpha = 0.6267 rad/s^2

Therefore, the tire's angular acceleration is 0.6267 rad/s^2.

Learn more:

brainly.com/question/14893907

Light of wavelength 587.0 nm illuminates a slit of width 0.70 mm. (a) At what distance from the slit should a screen be placed if the first minimum in the diffraction pattern is to be 0.95 mm from the central maximum?(b) Calculate the width of the central maximum.

Answers

To ensure that the first minimum in the diffraction pattern is 0.95 mm away from the central maximum, the screen should be positioned at a distance of 3.0 m from the slit. The central maximum has a width of approximately 4.7 mm.

Given:

Wavelength, λ = 587.0 nm = 587.0 × 10⁻⁹ m

Slit width, a = 0.70 mm = 0.70 × 10⁻³ m

Distance from slit to screen, D = ?

Distance of first minimum from central maximum, y = 0.95 mm = 0.95 × 10⁻³) m

(a) Using the formula for the position of the first minimum in the diffraction pattern:

y = (λD)/a

Rearranging the formula to solve for D, we get:

D = (ay)/λ = (0.95 × 10⁻³ × 0.70 × 10^⁻³)/(587.0 × 10⁻⁹) = 1.13 m

Therefore, the screen should be placed 1.13 m away from the slit to observe the first minimum in the diffraction pattern at a distance of 0.95 mm from the central maximum.

(b) Using the formula for the width of the central maximum:

w = (λD)/a

Substituting the given values, we get:

w = (587.0 × 10⁻⁹ × 1.13)/(0.70 × 10⁻³) = 0.95 × 10⁻³m = 0.95 mm

Therefore, the width of the central maximum is 0.95 mm.

To know more about the central maximum refer here :

https://brainly.com/question/31389332#

#SPJ11

if the rotational inertia of a disk is 30 kg m2, its radius r is 3.6 m, and its angular velocity omega is 6.7 rad/s, determine the linear velocity v of a point on the edge of the disk

Answers

So, the linear velocity of a point on the edge of the disk is 24.12 m/s.

To determine the linear velocity v of a point on the edge of the disk, we can use the equation:
[tex]v = r * omega[/tex]where r is radius of the disk and omega is angular velocity.

Substituting:

v = 3.6 m x 6.7 rad/s
v = 24.12 m/s

Therefore, the linear velocity of a point on the edge of the disk is 24.12 m/s.
Hi! I'd be happy to help you with this question. We'll use the given rotational inertia, radius, and angular velocity to determine the linear velocity of a point on the edge of the disk.

Step 1: Identify the formula that relates linear velocity, radius, and angular velocity. The formula is:
[tex]v = r * ω[/tex]

where v: linear velocity, r: radius, and ω: angular velocity.

Step 2: Substitute values
v = (3.6 m) * (6.7 rad/s)

Step 3: Calculate the linear velocity.

v = 24.12 m/s

Learn more about velocity here:

https://brainly.com/question/17127206

#SPJ11

Calculate the time required to fly from P to B, in terms of the eccentricity e and the period T. B lies on the minor axis.

Answers

The time required to fly from P to B is given by T = (2×a/v) × (e + √(1-e²)), where a is the length of the major axis of the ellipse, e is the eccentricity, and v is the velocity of the spacecraft.

What is Kepler's second law?

Kepler's second law, also known as the law of equal areas, states that a planet or other celestial body moves faster when it is closer to the sun and slower when it is farther away.

Assuming that P and B are the foci of an elliptical orbit, with P located at the vertex of the major axis, and that the time required to complete one orbit (period) is T, we can use Kepler's second law to determine the time required to fly from P to B.

Therefore, the time required to travel from P to B is equal to the time required to travel from B to P along the minor axis.

The distance between the foci of an ellipse (2f) is related to the length of the major axis (2a) and the eccentricity (e) by the equation:

2f = 2a×e

Since B lies on the minor axis, the distance between B and the center of the ellipse (C) is equal to the length of the minor axis (2b), which can be related to the major axis and the eccentricity by the equation:

2b = 2a×√(1-e²)

The time required to travel from P to B along the minor axis is given by the equation:

T/2 = (1/2) × [(2b + 2f) / v]

Substituting the expressions for 2f and 2b gives:

T/2 = (1/2) × [(2ae + 2a√(1-e²)) / v]

Simplifying the expression gives:

T = (2×a/v) × (e + √(1-e²))

To know more about distance visit:

https://brainly.com/question/31194640

#SPJ1

part a estimate the number of octaves in the range from 20 hzhz to 40 khzkhz . express your answer as an integer.

Answers

There are 10 octaves in the frequency range from 20 Hz to 40 kHz.


The frequency of a repeated event is its number of instances per unit of time. It differs from angular frequency and is sometimes referred to as temporal frequency for clarification. The unit of frequency is hertz (Hz), or one occurrence per second.

The frequency range from 20 Hz to 40 kHz covers a span of 40,000 - 20 = 39,980 Hz.

One octave is defined as a doubling of frequency, so to calculate the number of octaves in this frequency range, we need to find how many times the frequency doubles from 20 Hz to 40 kHz.

We can calculate this as follows:

㏒₂(40,000/20) = ㏒₂(2000) = 10.96578

Rounding down to the nearest integer, we get:

Number of octaves = 10

Therefore, there will be 10 octaves in the frequency range from 20 Hz to 40 kHz.

To know more about frequency

https://brainly.com/question/29806417

#SPJ4

There are 10 octaves in the frequency range from 20 Hz to 40 kHz.


The frequency of a repeated event is its number of instances per unit of time. It differs from angular frequency and is sometimes referred to as temporal frequency for clarification. The unit of frequency is hertz (Hz), or one occurrence per second.

The frequency range from 20 Hz to 40 kHz covers a span of 40,000 - 20 = 39,980 Hz.

One octave is defined as a doubling of frequency, so to calculate the number of octaves in this frequency range, we need to find how many times the frequency doubles from 20 Hz to 40 kHz.

We can calculate this as follows:

㏒₂(40,000/20) = ㏒₂(2000) = 10.96578

Rounding down to the nearest integer, we get:

Number of octaves = 10

Therefore, there will be 10 octaves in the frequency range from 20 Hz to 40 kHz.

To know more about frequency

https://brainly.com/question/29806417

#SPJ4

Find E*(s), with T = 0.2s, for E(s) = 1 - e^-TS/s middot 5S/(s + 1)(s + 3).

Answers

E*(s) = [1/0.4] / (s+1) - [1/2.4] / (s+3) + [5/2.4] / (s+0.2) - [5s/(s+1)(s+3)]

To find E*(s), we first need to find the Laplace transform of E(s):

E*(s) = L{E(s)} = L{1 - e^(-TS)} * 5s/(s+1)(s+3)

Using the formula for the Laplace transform of an exponential function, we have:

L{e^(-TS)} = 1/(s+T)

So:

E*(s) = (1/(s+T) - 1) * 5s/(s+1)(s+3)

Simplifying this expression, we have:

E*(s) = [5s/(s+1)(s+3)(s+T)] - [5s/(s+1)(s+3)]

Now we need to use partial fraction decomposition to split the first term into two fractions. We can write:

5s/(s+1)(s+3)(s+T) = A/(s+1) + B/(s+3) + C/(s+T)

Multiplying both sides by (s+1)(s+3)(s+T) and simplifying, we get:

5s = A(s+3)(s+T) + B(s+1)(s+T) + C(s+1)(s+3)

Plugging in s=-1, s=-3, and s=-T, we get a system of equations:

-15A = -4B - 2C
5A = -2B - 2C
5A = -4B - 3C

Solving this system, we get:

A = 1/(2T-4)
B = -1/(2T+2)
C = 5/(2T+2)

Substituting these values back into E*(s), we get:

E*(s) = [1/(2T-4)] / (s+1) - [1/(2T+2)] / (s+3) + [5/(2T+2)] / (s+T) - [5s/(s+1)(s+3)]

Finally, plugging in T=0.2s, we get:

E*(s) = [1/0.4] / (s+1) - [1/2.4] / (s+3) + [5/2.4] / (s+0.2) - [5s/(s+1)(s+3)]

To learn more about exponential function, refer below:

https://brainly.com/question/15352175

#SPJ11

what angle ( in radians ) is subtended from the center of a circle of radius 1.20 m by an arc of length 0.20 m?

Answers

The angle subtended by the arc is 1/6 radians, which is approximately equal to 0.524 radians or 30 degrees.

To find the angle subtended by an arc of length 0.20 m on a circle of radius 1.20 m, we can use the formula for the arc length of a circle:

Arc Length = Radius x Central Angle

We can rearrange this formula to solve for the central angle:

Central Angle = Arc Length / Radius

Plugging in the given values, we get:

Central Angle = 0.20 m / 1.20 m

Simplifying, we get:

Central Angle = 1/6 radians

Therefore, the angle subtended by the arc is 1/6 radians, which is approximately equal to 0.524 radians or 30 degrees.

Learn more about arc of length

https://brainly.com/question/29886215

#SPJ4

Consider the internal reflection of light at the interface between water and ice.What is the minimum critical angle, in degrees, at which you will get total reflection at this interface?\Thetac= _______Values are for medium: nwater= 1.333 ; nice= 1.309

Answers

The minimum critical angle for total internal reflection of light at the interface between water and ice is approximately 79.5 degrees.

To determine the minimum critical angle for total internal reflection of light at the interface between water and ice, we can use Snell's law and the equation for critical angle:

sin(thetac) = n2/n1

where n1 is the refractive index of the first medium (water) and n2 is the refractive index of the second medium (ice). When light passes from a medium with a higher refractive index to one with a lower refractive index, the angle of refraction is larger than the angle of incidence, and there is no total internal reflection. However, if the angle of incidence is large enough, there will be no angle of refraction, and all of the light will be reflected back into the first medium.

In this case, n1 = 1.333 (the refractive index of water) and n2 = 1.309 (the refractive index of ice). Plugging these values into the equation for critical angle, we get:

sin(thetac) = 1.309/1.333 = 0.9818

Taking the inverse sine of this value, we find that:

thetac = 79.5 degrees

Therefore, the minimum critical angle for total internal reflection of light at the interface between water and ice is approximately 79.5 degrees.

Learn more about reflection  here:

https://brainly.com/question/30270479

#SPJ11

A 100 g particle experiences the one-dimensional.Suppose the particle is shot toward the right from x = 1.0 m with a speed of 22 m/s . Where is the particle's turning point? Express your answer with the appropriate units.

Answers

The particle's turning point is the point where its velocity becomes zero and starts to reverse direction.

To find this point, we can use the fact that the particle's acceleration is constant and equal to zero, since it is moving in one dimension.
We can use the equation:
v² = u² + 2as
Where:
v = final velocity (zero at turning point)
u = initial velocity (22 m/s to the right)
a = acceleration (zero)
s = distance travelled
Rearranging for s, we get:
s = (v² - u²) / 2a
Since a is zero, we can simplify to:
s = v² / 2u²
Plugging in the values, we get:
s = (0²) / (2*22²) = 0 m
This means that the particle's turning point is at x = 1.0 m (where it was initially shot from), since it does not travel any further before turning around.

Learn more about "acceleration " at: https://brainly.com/question/3046924

#SPJ11

in order to find the moment of inertia of a solid object, you need to express a mass element dm in terms of known and integrable quantities. for a cylinder of length l and density , dm is equal to:A. rhoL(2πz) dzB. rhoz(2πr) drC. rho(2πr^2) drD. rhoL(2πr) dr

Answers

The correct answer is D. rhoL(2πr) dr. In order to find the moment of inertia of a solid object, we need to express a mass element dm in terms of known and integrable quantities.

For a cylinder of length l and density rho, the mass element dm can be expressed as dm = rho(2πrL) dr, where r is the radius of the cylinder and dr is the infinitesimal thickness of the cylinder.
However, we are interested in finding the moment of inertia about an axis perpendicular to the cylinder, passing through its center. This requires us to express dm in terms of the perpendicular distance from the axis, which is given by r.
Therefore, we can rewrite dm as dm = rho(2πrL) r dr, which simplifies to dm = rhoL(2πr) dr.

To learn more about moment of inertia click here https://brainly.com/question/30051108

#SPJ11

A block is sliding down a frictionless slope. If in the process its its kinetic energy increased by 65 J, by how much did its gravitational potential energy decrease? APE =

Answers

The decrease in gravitational potential energy (APE) of the block is  65J when block is sliding down a frictionless slope and kinetic energy increases by 65J.
Therefore, APE = 65 J

The block sliding down a frictionless slope means that there is no frictional force opposing the motion.

Therefore, all the potential energy of the block is converted into kinetic energy as it slides down the slope.

According to the law of conservation of energy, the total energy of the block (kinetic energy + potential energy) remains constant.

So, if the kinetic energy of the block increased by 65 J, it must have lost an equal amount of potential energy.

Therefore,  the decrease in gravitational potential energy (APE) of the block is also 65J.

APE = 65 J

For more information on friction and kinetic energy refer to https://brainly.com/question/25959744?cb=1681559835186

#SPJ11

why is ism transparent at near-infrared and radio but opaque in visual wavelengths

Answers

The interstellar medium (ISM) is transparent at near-infrared and radio wavelengths but opaque in visual wavelengths   due to the following reasons:

1. Scattering and absorption: Visual wavelengths are scattered and absorbed more by the dust particles and gas molecules in the ISM. This makes it difficult for light at visual wavelengths to pass through, causing the ISM to appear opaque. On the other hand, near-infrared and radio wavelengths are less affected by scattering and absorption, allowing them to pass through the ISM more easily, making it transparent at these wavelengths.

2. Dust particle size: The size of dust particles in the ISM is typically similar to the wavelength of visible light. This causes more scattering and absorption of visual wavelengths, whereas near-infrared and radio wavelengths, which are much larger, are less affected by these dust particles.

3. Energy levels of atoms and molecules: The ISM consists of various atoms and molecules, each having specific energy levels. Visual wavelengths correspond to the energy transitions of these atoms and molecules, causing them to absorb and re-emit this light, making the ISM opaque. Near-infrared and radio wavelengths do not correspond to these energy levels, allowing them to pass through without being absorbed or re-emitted.

Learn more about visual wavelength https://brainly.com/question/10728818

#SPJ11

Two moles of helium gas initially at 181 K
and 0.27 atm are compressed isothermally to
1.39 atm.
Find the final volume of the gas. Assume
that helium behaves as an ideal gas. The
universal gas constant is 8.31451 J/K · mol.
Answer in units of m3

Find the work done by the gas.
Answer in units of kJ.

Find the thermal energy transferred.
Answer in units of kJ.

Answers

Answer:

I'm sorry I don't know an exact answer but try to use this, good luck!

Explanation:

Ideal gas law: P2*V2 = n*R*T

a rifle fires a 6.0 g bullet. the 3.2 kg rifle is designed to have a recoil momentum of no more than 2.6 kg.m/s. what is the maximum muzzle velocity that the bullet can have?

Answers

The speed of a projectile with respect to the muzzle at the moment it leaves the end of a gun's barrel is known as muzzle velocity. The mass of the projectile is greater and the recoil speed is lesser than the bullet speed.

To find the maximum muzzle velocity that the bullet can have, given the recoil momentum of the rifle, we need to apply the principle of conservation of momentum.


Step 1: Set up the conservation of momentum equation.
Total momentum before firing = Total momentum after firing
0 = momentum of bullet - momentum of rifle

Step 2: Put in the known values.
0 = (mass of bullet × muzzle velocity) - (mass of rifle × recoil velocity)

Step 3: Rearrange the equation to solve for muzzle velocity.
Muzzle velocity = (mass of rifle × recoil velocity) / mass of bullet

Step 4: Convert the mass of the bullet from grams to kilograms.
Mass of bullet = 6.0 g = 0.006 kg

Step 5: Plug in the values and calculate the muzzle velocity.
Muzzle velocity = (3.2 kg × 2.6 kg.m/s) / 0.006 kg
Muzzle velocity ≈ 1386.67 m/s

So, the maximum muzzle velocity that the bullet can have is approximately 1386.67 m/s.

Learn more about muzzle velocity:

https://brainly.com/question/14243531

#SPJ11    

Who ever does it will get 50 points

Please?

Answers

Answer:

in explanation...

Explanation:

Step 4: We first looked at the years of the different objects and then put them in chronological order, from most recent being closest to us and the object that was the oldest farther away. Then we looked at the months of the events and put them in order according to that (example, if one event was March of 2018 and another was July of 2019, then the March of 2019 object would be closer and more recent). By using this method, yes we were able to put them in chronological order.

Step 5: The geologic time scale was developed after scientists observed changes in the fossils going from oldest to youngest sedimentary rocks and they used relative dating to divide Earth's past in several chunks of time when similar organisms were on Earth. This is similar to us putting the events in order because we would place the most recent events as the youngest and the older events, that occurred longer ago, as older.  

Step 6: Scientists should use their observations of the way those rocks and fossils have formed and preserved over time to see exactly which fossil or rock was the oldest, as opposed to the youngest.

An industrial customer with a three-phase, 480 V service entrance is running the following set of loads:

• Two 15 HP, 89% efficient lathes, 0.79 lagging power factor
• One 7 ton heat pump' with a COP of 1.9 and a 0.95 lagging power factor
• Two electric autoclaves, 30 BTU/h, 98% efficient, 0.97 lagging PF One 25 kW high-intensity discharge (HID) lighting system, unity PF If the lighting system is replaced with a T8 fluorescent system with magnetic ballast that consumes 25% less than the previous system, but introduces a 0.91 leading power factor, by how much does the service entrance current change?

Answers

The service entrance current increases by 12.8 A when the lighting system is replaced with a T8 fluorescent system with magnetic ballast that consumes 25% less than the previous system, but introduces a 0.91 leading power factor.

To solve this problem, we need to calculate the total power and power factor of the existing loads and compare them to the new load with the T8 fluorescent lighting system.

First, let's calculate the total power of the existing loads:
- Two lathes: 2 x 15 HP x 0.89 = 26.7 kW
- One heat pump: 7 ton x 12,000 BTU/ton / (3412 BTU/kW x 1.9) = 14.3 kW
- Two autoclaves: 2 x 30 BTU/h x 0.98 / 3412 BTU/kW = 0.17 kW
- One HID lighting system: 25 kW

Total power = 26.7 kW + 14.3 kW + 0.17 kW + 25 kW = 66.17 kW
Next, let's calculate the total power factor of the existing loads:
- Two lathes: 0.79 lagging power factor
- One heat pump: 0.95 lagging power factor
- Two autoclaves: 0.97 lagging power factor
- One HID lighting system: unity power factor

To calculate the total power factor, we need to convert the lagging power factors to their corresponding angles using the arccosine function:
- Two lathes: cos(arccos(0.79)) = 0.618 leading
- One heat pump: cos(arccos(0.95)) = 0.317 leading
- Two autoclaves: cos(arccos(0.97)) = 0.266 leading
- One HID lighting system: cos(arccos(1)) = 1

Total power factor = (0.618 + 0.317 + 0.266 + 1) / 4 = 0.55 lagging
Now, let's calculate the power and power factor of the new T8 fluorescent lighting system:
- Power consumption: 0.75 x 25 kW = 18.75 kW (25% less than 25 kW)
- Power factor: 0.91 leading
To calculate the new total power and power factor, we need to subtract the power and power factor of the old HID lighting system and add the power and power factor of the new T8 fluorescent lighting system:
- Total power: 66.17 kW - 25 kW + 18.75 kW = 60.92 kW
- Total power factor: (0.55 x 4 - 1 + 0.91) / 4 = 0.427 leading

Finally, we can calculate the new service entrance current using the formula:
I = P / (sqrt(3) x V x PF)
where I is the current in amps, P is the power in kilowatts, V is the voltage in volts, and PF is the power factor.
For the existing loads, the current is:
I1 = 66.17 kW / (3) x 480 V x 0.55) = 101.5 A

For the new loads with the T8 fluorescent lighting system, the current is:
I2 = 60.92 kW / (3) x 480 V x 0.427) = 114.3 A
Therefore, the service entrance current increases by:
Delta I = I2 - I1 = 114.3 A - 101.5 A = 12.8 A .

Learn more about power factor here:

https://brainly.com/question/31230529

#SPJ11

What is the period of a comet if its average orbital radius is 4 AU?

Answers

The period of the comet with an average orbital radius of 4 AU is approximately [tex]8 AU^{3/2}[/tex].

The period of a comet is the time it takes for the comet to complete one orbit around the Sun. To calculate the period of a comet, we can use Kepler's Third Law, which states that the square of a planet's orbital period is proportional to the cube of its average orbital radius.
So, if the average orbital radius of a comet is 4 AU, we can use the following formula:
[tex]Period^2 = (Average Orbital Radius)^3[/tex]
Plugging in the value for the average orbital radius, we get:
[tex]Period^2 = (4 AU)^3[/tex]
Simplifying this equation, we get:
[tex]Period^2 = 64 AU^3[/tex]
Taking the square root of both sides, we get:
Period = [tex]\sqrt{(64 AU^3}[/tex]
Simplifying this equation, we get:
Period = [tex]8 AU^{3/2}[/tex]

To learn more about period click here https://brainly.com/question/30763550

#SPJ11

I need help yall


Please?

Answers

Answer:

in explanation...

Explanation:

Step 4: We first looked at the years of the different objects and then put them in chronological order, from most recent being closest to us and the object that was the oldest farther away. Then we looked at the months of the events and put them in order according to that (example, if one event was March of 2018 and another was July of 2019, then the March of 2019 object would be closer and more recent). By using this method, yes we were able to put them in chronological order.

Step 5: The geologic time scale was developed after scientists observed changes in the fossils going from oldest to youngest sedimentary rocks and they used relative dating to divide Earth's past in several chunks of time when similar organisms were on Earth. This is similar to us putting the events in order because we would place the most recent events as the youngest and the older events, that occurred longer ago, as older.  

Step 6: Scientists should use their observations of the way those rocks and fossils have formed and preserved over time to see exactly which fossil or rock was the oldest, as opposed to the youngest.

A crate is acted upon by a net force of 100 N. An acceleration of 4.0 m/s2 results. The weight of the crate is O 25 lb 0 25 N. 25 kg 245 N. 245 lb

Answers

Answer :

25 kg

Step-by-step explanation:

A crate is acted upon by a net force of 100 N. An acceleration of 4.0 m/s2 results.

Force = 100 N

Acceleration = 4.0 m/s²

We know that,

Force = Mass × acceleration

On substituting the values we get,

→ 100 N = Mass × 4.0

→ Mass = 100/4

→ Mass = 25 kg

Therefore, Weight of the crate is 25 kg.

Rank these spaceships on the basis of their length as measured by their respective captains_ Rank from largest to smallest: To rank items as equivalent; overlap them. 1. Lo 100 m U = 0.8c 2. Lo 200 U = 0.4c
3. Lo 100 m 0.4c 4. Lo 400 m U = 0.2c 5. Lo 200 0.8c 6. Lo 100 m U = 0.9c largest smallest ____________ ________

Answers

Therefore, the ranking of the spaceships on the basis of their length from largest to smallest as measured by their respective captains is: Lo 400 m U = 0.2c, Lo 200 0.8c, Lo 200 U = 0.4c, Lo 100 m U = 0.8c, Lo 100 m 0.4c, Lo 100 m U = 0.9c.

Rank from largest to smallest:
1. Lo 400 m U = 0.2c
2. Lo 200 U = 0.4c
3. Lo 100 m 0.4c
4. Lo 200 0.8c
5. Lo 100 m U = 0.8c
6. Lo 100 m U = 0.9c

Rank these spaceships based on their length as measured by their respective captains. The largest spaceship is the Lo 400 m U = 0.2c, followed by the Lo 200 U = 0.4c and then the Lo 100 m 0.4c. Next is the Lo 200 0.8c, followed by the Lo 100 m U = 0.8c, and finally the smallest spaceship is the Lo 100 m U = 0.9c.

Know more about Length here:

https://brainly.com/question/12241607

#SPJ11

How long does it take a dvd to spin up, from rest, to 675 rpm with an angular acceleration of 32.0 rad/s2?a. 221 s b. 1245 sc. 2125 sd. 0.0352s

Answers

The time taken by a DVD to spin up, from rest to 675 rpm with an angular acceleration of 32.0 rad/s² is 2.21 seconds, The correct answer is option a.2.21 s.

We can use the formula for angular acceleration to find the time it takes for the DVD to spin up from rest to 675 rpm:
                  ωf = ωi + αt

Where:

          ωf = final angular velocity (675 rpm or 70.5 rad/s)
          ωi = initial angular velocity (0)
          α = angular acceleration (32.0 rad/s2)
          t = time

We need to find t. First, we need to convert ωf to rad/s:

         ωf = 675 rpm x 2π/60 = 70.5 rad/s

Now we can solve for t:

        70.5 rad/s = 0 + 32.0 rad/s2 x t
        t = 70.5 rad/s ÷ 32.0 rad/s2
        t = 2.20 s

Therefore, the answer is a. 221 s.

Learn more about angular acceleration here:

https://brainly.com/question/13014974

#SPJ11

two objects of mass m and M interact with a central force that varies as 1/r^4 with proportionalconstant as F=k/r^4
derive an expression for the potential energy function,with the location of the reference for your formula being U(infinity)=0

Answers

The potential energy function for the given central force is U(r) = k * (r^-3) / 3, where k is the proportional constant.

How do you derive the formula?

To derive the potential energy function, we first need to integrate the force with respect to r.

The force, F = k/r^4

We know that, force = -dU/dr (where U is the potential energy)

So, dU/dr = -k/r^4

Integrating both sides with respect to r, we get:

U(r) = - ∫ k/r^4 dr

U(r) = -k * ∫ r^-4 dr

U(r) = k * (r^-3) / -3 + C

where C is the constant of integration.

As U(infinity) = 0, the potential energy function becomes:

U(r) = k * (r^-3) / 3

Learn more about formula derivation:https://brainly.com/question/15248292

#SPJ1

The potential energy function for the given central force is U(r) = k * (r^-3) / 3, where k is the proportional constant.

How do you derive the formula?

To derive the potential energy function, we first need to integrate the force with respect to r.

The force, F = k/r^4

We know that, force = -dU/dr (where U is the potential energy)

So, dU/dr = -k/r^4

Integrating both sides with respect to r, we get:

U(r) = - ∫ k/r^4 dr

U(r) = -k * ∫ r^-4 dr

U(r) = k * (r^-3) / -3 + C

where C is the constant of integration.

As U(infinity) = 0, the potential energy function becomes:

U(r) = k * (r^-3) / 3

Learn more about formula derivation:https://brainly.com/question/15248292

#SPJ1

Obtain the inductor current for both t0 and t> 0 in the given circuit. Assume L 3 H 24 V + t=0 2Ω 3Ω 6Ω The inductor current for t = 0-is A. The inductor current for t > 0 is i(t) = A.

Answers

The circuit's initial current is zero whenever the switch is open. The inductor behaves as a circuit as soon even as switch closes at time t=0+, therefore there is no current flowing through the circuit.

What does the circuit term T 0 +) mean?

The switch's early closure indicates that circuit is in dc steady-state at time zero. As a result, while the capacitor behaves like an open circuit, the inductor operates like a short circuit. During t = 0-, b. The switch is open at t = 0+, and the inductor & capacitor both experience the same current flow.

Inductor formula: what is it?

The ratio of the inductor voltage to the change in current is 1. The inductor's i- v equation is now as follows: v = L d I d t v = text L, dfrac, di, dt v=Ldtdi v, equal, i. introduction, L, end text, begin fraction, d, I divvied up by, d, t, ending fraction.

To know more about current visit:

https://brainly.com/question/10439697

#SPJ1

17. How much work is done to transfer 0.15 C of charge through a potential difference of 9V? e 173 O 0.17j 0 1.353 13.7 J 60

Answers

The amount of work done is 1.35 J.

How do you assess the volume of work completed?

Calculating the Work Done on an Object: Formula and Terms. Work is the energy used by one thing to exert a force on another object in order to move it over a distance. The formula W=Fd W = F d determines the work performed on an item for a given amount of force, F, and a certain distance, d.

The formula work = charge x potential difference may be used to determine how much effort is required to transfer 0.15 C

of charge across a 9 V potential difference.

Work = 0.15 C x 9 V = 1.35 J is

the result of substituting the supplied values.

To now more about work done visit:-

https://brainly.com/question/10334435

#SPJ1

Other Questions
a company recorded an event that increased total assets and net income, but had no affect on cash flow. this event could have been a result of , The name for the material used to surround anodes in their bed?A) ChlorideB) SulfateC) Chemical BackfillD) acidic compounds We need to achieve 85% FEATURE DESIRABILITY. FEATURE DESIRABILITY is a measure of how well your backpack design aligns with your segment's PREFERENCES. Which of the following is the most important CHARACTERISTIC for the OUTDOOR ENTHUSIAST segment?a. Capacity Comfortb. Durabilityc. Eco-Friendly Pension funds are primarily interested in investing in venture capital because:a) They want to create more jobs in their stateb) They want to increase the overall intellectual property of the United Statesc) Over the past ten years pension fund returns have exceeded the minimum amount of returns they need to pay their pension obligations.d) Over the past ten years pension fund returns have been less than the minimum amount of returns they need to pay their pension obligations.e) The stock market has returned in excess of 12% in 2017. earthquakes, landslides, and volcanic eruptions that occur beneath the sea may generate a large sea wave calle Give a recursive definition of the sequence An, n=1,2,3,... if: Recursive Form Basis A) An 4n-2 An = An-1+ 4 Ao B) An n(n+1) An = An-1+ Ao C) An = 1+(-1)" An An-2t Ao A1 = D) An = n2 An = An-1+ Sallie Thorp, a 21-year-old patient, presents to the physicians office with an asthma action plan form she acquired from a literature search on the World Wide Web at http://www.nhlbi.nih.gov/health/public/lung/asthma/asthma_actplan.pdf (Links to an external site.). She states that she would like to develop the plan with the help of the nurse and physician and review it at each appointment to keep it current. She has had moderate persistent asthma for 5 years, and she has visited the emergency department several times in the past year with severe asthma attacks. She stated that she forgets to take her medications, because the medications are at times that the hospital provided the inhalers (12 noon and midnight), and she gets confused on which inhalers are the long-acting ones and which inhaler is the short-acting rescue inhaler she is supposed to use when she has an exacerbation. She stated that if she could, she would like to take the inhalers at 8 am and again at 8 pm. The patient stated that she has a flow meter and that a respiratory therapist at the hospital taught her how to use it in the past, and he wrote down her personal best peak flow, which is 400 L/sec. The nurse reviews the patients medical chart and discovers that she has been prescribed the following from todays visit: Use albuterol (Proventil): 2 to 4 puffs every 20 minutes for up to 1 hour as rescue inhaler. If symptoms improve, then take the inhaler every 4 hours for 1 to 2 days. If no improvement after 2 days, call the physician Salmeterol (Serevent): 50 mcg every 12 hours Fluticasone (Flovent): 88 mcg or 2 puffs every 12 hours Cromolyn sodium (Nasalcrom): one spray to each nostril once daily and before being exposed to known asthma triggers. You may use the spray up to every 4 hours Measure peak flow meter every morning before using inhalers and record. Use peak flow meter, as needed, if you develop symptoms, such as cough, shortness of breath, wheezing, chest tightness; use of neck and chest muscles to breathe; problems talking or walking because of extreme shortness of breath Follow-up in 3 months Have the nurse provide education on asthma self-management and fill out the action plan that the patient brought with her today and have the physician review it and sign it The nurse also notes that the medications have not changed from the last visit. Explain the medications to the patient and practice filling in the asthma action plan. why should a service departments budgeted costs, rather than its actual costs, be charged to operating departments? Which answer describes the transformation of f(x)=x^21 tog(x)=(x+4)^21 ?A. a vertical stretch by a factor of 4B. a horizontal translation 4 units to the leftC. a vertical translation 4 units downD. a horizontal translation 4 units to the right Use the method of your choice to evaluate the following limit 1-cos y / 2xy Select the correct choice and, if necessary, fill in the answer box to complete your choice.a. Lim (xy)-(2,0) 1-cos y / 2xy2 = (Type an integer or a simplified fraction.) B. The limit does not exist. The air supply to a fermenter was turned off for a short period of time and then restated. A value for C* of 7.3 mg/1 has been determined for the operating conditions. Use the tabulated measurements of dissolved oxygen (DO) values to estimate the oxygen uptake rate and kia in this system. Time (min) DO (mg/l) -1 3.3Air off 0 3.31 2.42 1.33 0.34 0.15 0Air on 6 07 0.38 19 1.610 211 2.412 2.713 2.914 315 3.116 3.217 3.2 If the wide-flange beam is subjected to a shear of V = 30 kN, determine the maximum shear stress in the beam. Set w = 300 mm.If the wide-flange beam is subjected to a shear of What is the answer to this? we see that the first term does not fit a pattern, but we also see that f^{(k)}(1) =______ for k>1. hence we see that the taylor series for f centered at 1 is given by f(x) = 12 + ^[infinity]_k+1 _____ (x-1)^k what is the most popular way to recieve news? In the acid-catalyzed dehydration of 2-methylcyclohexanol, which product cyclohexene isomer will be formed in the smaller amount (the minor product)?equal amounts of 1- and 3-methylcyclohexenes will be formedtrans-2-butene3-methylcyclohexene1-methylcyclohexene Suppose that you borrow $10,000 for four years at 8% toward the purchase of a car. Use PMT=-find the monthly payments and the total interest for the loan.The monthly payment is $(Do not round until the final answer. Then round to the nearest cent as needed.)an example Get more help.Clear allPAnttoCheck answerLJUorrec A ferry boat is sailing at 12 km 30 degrees W of N with respect to a river that is flowing at 6.0 km/h E. As observed from the shore, what direction is the ferry boat sailing? Let A = {a, b, c, d, e, f, g, h} and (A, R) is a partial order relation with a Hasse diagram having the undirected edges between {(a, c), (b, c), (c, d), (c, e), (d, f), (e, f), (f, g), (f, h)}. If B = {c, d, e}, then the lower bound of B and greatest lower bound of B are respectively a mixture of 10.0 g of ne and 10.0 g ar have a total pressure of 1.60 atm. what is the partial pressure of ar? 1.07 atm 0.400 atm 0.537 atm 0.800 atm 1.32 atm