A ferry boat is sailing at 12 km 30 degrees W of N with respect to a river that is flowing at 6.0 km/h E. As observed from the shore, what direction is the ferry boat sailing?

Answers

Answer 1

The ferry boat is sailing in a direction of 0 degrees (due North) at a speed of 10.39 km/h. To determine the direction of the ferry boat as observed from the shore, we must consider both the ferry boat's velocity and the river's velocity. The ferry boat is sailing at 12 km/h 30 degrees W of N, and the river is flowing at 6.0 km/h E.

Step 1: Break the ferry boat's velocity into its components:
- Northward component: 12 km/h * cos(30°) = 10.39 km/h
- Westward component: 12 km/h * sin(30°) = 6 km/h

Step 2: Add the river's velocity to the ferry boat's components:
- Northward component: 10.39 km/h (unchanged)
- Eastward component: 6.0 km/h (from the river) - 6 km/h (from ferry boat) = 0 km/h

Step 3: Determine the resultant velocity's magnitude and direction:
- Magnitude: √(10.39^2 + 0^2) = 10.39 km/h
- Direction: tan^-1(0/10.39) = 0° (N).

To know more about ferry boat refer here:

https://brainly.com/question/30583317#

#SPJ11


Related Questions

Three capacitors, of capacitance 5.00 μF,10.0 μF, and 50.0 μF, are connected inseries across a 12.0-V voltage source.(a) How much charge is stored in the 5.00-μFcapacitor?37.5 μC (b) What is the potential difference across the 10.0-μFcapacitor?3.75 V

Answers

(a) The charge stored in the 5.00-μF capacitor is 40.0 μC.

(b) The potential difference across the 10.0-μF capacitor is 4.00 V.

Let's first find the equivalent capacitance for the series connection of the three capacitors. For capacitors in series, the formula is:

1/C_eq = 1/C1 + 1/C2 + 1/C3

Where C_eq is the equivalent capacitance, and C1, C2, and C3 are the individual capacitances. Plugging in the values:

1/C_eq = 1/5.00 μF + 1/10.0 μF + 1/50.0 μF

Solving for C_eq, we get:

C_eq = 3.33 μF

Now, we can find the total charge stored in the system using the formula:

Q_total = C_eq × V

Where Q_total is the total charge and V is the voltage across the series connection. Plugging in the values:

Q_total = 3.33 μF × 12.0 V = 40.0 μC

Since the capacitors are in series, the charge stored in each capacitor is the same:

Q_5.00 μF = Q_10.0 μF = Q_50.0 μF = 40.0 μC

(a) The charge stored in the 5.00-μF capacitor is 40.0 μC.

Now, let's find the potential difference across the 10.0-μF capacitor using the formula:

V = Q / C

Where V is the potential difference and C is the capacitance. Plugging in the values:

V_10.0 μF = 40.0 μC / 10.0 μF

(b) The potential difference across the 10.0-μF capacitor is 4.00 V.

For more such questions on Capacitor.

https://brainly.com/question/30427136#

#SPJ11

(a) The charge stored in the 5.00-μF capacitor is 40.0 μC.

(b) The potential difference across the 10.0-μF capacitor is 4.00 V.

Let's first find the equivalent capacitance for the series connection of the three capacitors. For capacitors in series, the formula is:

1/C_eq = 1/C1 + 1/C2 + 1/C3

Where C_eq is the equivalent capacitance, and C1, C2, and C3 are the individual capacitances. Plugging in the values:

1/C_eq = 1/5.00 μF + 1/10.0 μF + 1/50.0 μF

Solving for C_eq, we get:

C_eq = 3.33 μF

Now, we can find the total charge stored in the system using the formula:

Q_total = C_eq × V

Where Q_total is the total charge and V is the voltage across the series connection. Plugging in the values:

Q_total = 3.33 μF × 12.0 V = 40.0 μC

Since the capacitors are in series, the charge stored in each capacitor is the same:

Q_5.00 μF = Q_10.0 μF = Q_50.0 μF = 40.0 μC

(a) The charge stored in the 5.00-μF capacitor is 40.0 μC.

Now, let's find the potential difference across the 10.0-μF capacitor using the formula:

V = Q / C

Where V is the potential difference and C is the capacitance. Plugging in the values:

V_10.0 μF = 40.0 μC / 10.0 μF

(b) The potential difference across the 10.0-μF capacitor is 4.00 V.

For more such questions on Capacitor.

https://brainly.com/question/30427136#

#SPJ11

A) which equation Ef = Ei+W applies to the system of the *ball alone*?
A. 0 = 0.5*m*vi^2-mg
B. 0.5m*vi^2 = -mgh
C. 0+mgh = 0.5*m*vi^2+0
D. 0 = 0.5*m*vi^2+mgh

Answers

The correct equation for the system of the ball alone is: D. 0 = 0.5m[tex]vi^2[/tex]+mgh Option D is Correct.

This equation represents the conservation of mechanical energy, where the initial energy of the ball (potential energy mgh) is converted into kinetic energy (0.5m) as it falls to the ground, with no other forms of energy involved in the system. According to the law of mechanical energy conservation, energy is preserved for closed systems free from dissipative forces.

The conservation of mechanical energy is described mathematically below.  As a result, energy can go from potential to kinetic or vice versa, but it cannot "disappear." For instance, in the absence of air resistance, the mechanical energy of a moving object in the gravitational field of the Earth is conserved and remains constant.

Learn more about equation Visit: brainly.com/question/27526920

#SPJ4

A spaceship negotiates a circular turn of radius 2,680 km at a speed of 30,540 km/h. What is the magnitude of the angular velocity?

Answers

The formula for angular velocity is defined as:

angular velocity = linear velocity / radius

Given the spaceship turns at a circular radius of 2,680 km and a speed of 30,540 km/h, we can first convert the speed to meters per second (m/s) and the radius to meters (m) to ensure our answer is in SI units:

Radius = 2,680 km = 2680000 m
Speed = 30,540 km/h = 8475 m/s

Substituting these values into the formula above, we can calculate the magnitude of the angular velocity:

Angular velocity = 8475 m/s / 2680000 m
Angular velocity = 0.00316 radians/second (rounded to 5 decimal places)

Therefore, the magnitude of the angular velocity is 0.00316 radians/second.

An athlete running at the velocity of 23m\s due east is confronted with two trade winds. The wind travelling at 10 m\s in a direction of N 65°E and the other wind travelling at 8 m\s in a direction of S70°E. Find the resultant velocity and direction of the athlete.​

Answers

Answer:

Resultant velocity is 16.647m/s and the direction is counterclockwise from the x-axis which is 19.69⁰.

Explanation:

The sum of velocities the x-axis is given as 8sin70⁰+10sin65⁰= 16.5806N

The sum of velocities the y-axis is given as

-8cos70⁰+10cos65⁰=1.49002N

Resultant velocity = (16.58² + 1.49²)^(1/2)

= 16.647m/s

Direction= arctan(1.49002/16.5806)=5.135⁰

the _______ current is determined by the manufacturer of the hermetic refrigerant motor compressor by testing at rated refrigerant pressure, temperature conditions, and voltage.

Answers

Answer: Rated. Brainliest?

Explanation:

The rated current is determined by the manufacturer of the hermetic refrigerant motor compressor by testing at rated refrigerant pressure, temperature conditions, and voltage. This information is typically provided in the manufacturer's specifications or technical data sheet for the compressor. The rated current is an important parameter to consider when selecting and sizing the electrical components for the compressor system, such as the motor starter, overload protection device, and wiring.

Answer: Rated. Brainliest?

Explanation:

The rated current is determined by the manufacturer of the hermetic refrigerant motor compressor by testing at rated refrigerant pressure, temperature conditions, and voltage. This information is typically provided in the manufacturer's specifications or technical data sheet for the compressor. The rated current is an important parameter to consider when selecting and sizing the electrical components for the compressor system, such as the motor starter, overload protection device, and wiring.

A positively charged particle passes through a uniform magnetic field. The velocities of the particle differ in orientation in the three snapshots but not in magnitude. Rank the situations according to the period T.

Answers

We have three situations involving a positively charged particle passing through a uniform magnetic field. In each situation, the velocity of the particle has the same magnitude but different orientations.

We need to rank these situations according to the period (T).
The period (T) of a charged particle's motion in a uniform magnetic field depends on the charge (q), mass (m), magnetic field strength (B), and the angle (θ) between the velocity vector and the magnetic field.
The formula for the period is: T = (2πm) / (|q|Bsinθ)
Here, θ is the angle between the particle's velocity and the magnetic field.
1. When the velocity is parallel to the magnetic field (θ = 0° or 180°), the period will be infinite as sinθ = 0, and the particle will not experience any force due to the magnetic field.
2. When the velocity is perpendicular to the magnetic field (θ = 90°), the period will be minimum as sinθ = 1, and the charged particle will experience the maximum force due to the magnetic field.
3. For any other orientation of the velocity with respect to the magnetic field (0° < θ < 180° and θ ≠ 90°), the period will fall between the minimum and infinite value.
To rank the situations according to the period T:
- Situation with parallel velocity (θ = 0° or 180°) will have the largest period (infinite)
- Situation with perpendicular velocity (θ = 90°) will have the smallest period
- Situation with any other orientation (0° < θ < 180° and θ ≠ 90°) will have a period between the largest and smallest periods
Keep in mind that these rankings are based on the angle between the velocity and the magnetic field, which affects the period of the charged particle's motion.

learn more about magnetic here

https://brainly.com/question/17120024

#SPJ11

We have three situations involving a positively charged particle passing through a uniform magnetic field. In each situation, the velocity of the particle has the same magnitude but different orientations.

We need to rank these situations according to the period (T).
The period (T) of a charged particle's motion in a uniform magnetic field depends on the charge (q), mass (m), magnetic field strength (B), and the angle (θ) between the velocity vector and the magnetic field.
The formula for the period is: T = (2πm) / (|q|Bsinθ)
Here, θ is the angle between the particle's velocity and the magnetic field.
1. When the velocity is parallel to the magnetic field (θ = 0° or 180°), the period will be infinite as sinθ = 0, and the particle will not experience any force due to the magnetic field.
2. When the velocity is perpendicular to the magnetic field (θ = 90°), the period will be minimum as sinθ = 1, and the charged particle will experience the maximum force due to the magnetic field.
3. For any other orientation of the velocity with respect to the magnetic field (0° < θ < 180° and θ ≠ 90°), the period will fall between the minimum and infinite value.
To rank the situations according to the period T:
- Situation with parallel velocity (θ = 0° or 180°) will have the largest period (infinite)
- Situation with perpendicular velocity (θ = 90°) will have the smallest period
- Situation with any other orientation (0° < θ < 180° and θ ≠ 90°) will have a period between the largest and smallest periods
Keep in mind that these rankings are based on the angle between the velocity and the magnetic field, which affects the period of the charged particle's motion.

learn more about magnetic here

https://brainly.com/question/17120024

#SPJ11

assuming friction is negligible, write an equation for how fast the car is traveling after a time t. express your solution in terms of t and the variables given in the problem statement.

Answers

The equation for how fast the car is traveling after a time t can be expressed using the formula for uniform acceleration:

v = u + at

where v is the car's ultimate velocity,
u is its beginning velocity (which is zero),
a is the acceleration, and
t is the time elapsed.

We may deduce from the issue description that the car's acceleration is provided by:

a = F/m

where F denotes the force applied to the automobile and
m is the mass of the car.

When we plug this acceleration value into the velocity equation, we get:

v = 0 + (F/m)t

Simplifying this expression, we get:

v = Ft/m

As a result, the equation for how quickly the automobile travels after time t is:

v = Ft/m

To know more about "Acceleration" refer here:

https://brainly.com/question/27545237#

#SPJ11

Consider the three waves described by the equations below. Which wave(s) is moving in the negative x direction? Wave A: y =2 sin(-2t-5x) Wave B: y =0.6 cos(-2t-5x) Wave C: y =2 sin (2t+5x) (5 Points) a. B only b. A and B c. B and C d. C only e. A and C

Answers

Wave B and Wave C are moving in the negative x direction, so the correct answer is c. B and C.

To determine which waves are moving in the negative x direction, we need to examine the coefficients of the x term in each equation.

Wave A has a positive coefficient (5x), meaning it is moving in the positive x direction.

Wave B has a negative coefficient (-5x), indicating it is moving in the negative x direction.

Wave C also has a negative coefficient (+5x), meaning it is moving in the negative x direction.

Therefore, both Wave B and Wave C are moving in the negative x direction, making the correct answer option c. B and C.

For more such questions on Wave, click on:

https://brainly.com/question/25699025

#SPJ11

The velocity potential function in a two-dimensional flow field is given by ϕ = x2 – y2The magnitude of velocity at point P (1, 1) isZero22√28

Answers

The velocity potential function in a two-dimensional flow field is given by ϕ = x^2 - y^2. To find the magnitude of velocity at point P (1, 1), we need to compute the gradient of the function, which represents the velocity vector.

To find the magnitude of velocity at point P (1, 1) in a two-dimensional flow field, we first need to differentiate the given velocity potential function ϕ with respect to x and y to obtain the x- and y-components of velocity, respectively.

∂ϕ/∂x = 2x
∂ϕ/∂y = -2y

Then, we can use the following equation to find the magnitude of velocity at point P:

|V| = √(u^2 + v^2)

where u and v are the x- and y-components of velocity at point P, respectively.

Substituting the values of x and y for point P (1, 1), we get:

u = 2(1) = 2
v = -2(1) = -2

Therefore,

|V| = √(2^2 + (-2)^2) = √8 = 2√2

Hence, the magnitude of velocity at point P (1, 1) in the given two-dimensional flow field is 2√2.

Learn more about flow here:

https://brainly.com/question/30168856

#SPJ11

unpolarized light passes through two polarizers whose transmission axes are at an angle of 25.0 ∘∘ with respect to each other. you may want to review (page 897) . Part A
What fraction of the incident intensity is transmitted through the polarizers?

Answers

Assuming the initial intensity of the unpolarized light is I, the first polarizer will only allow half of that intensity to pass through since it only transmits light that is polarized along its transmission axis.

Therefore, the intensity of light after the first polarizer is I/2.


When this polarized light passes through the second polarizer whose transmission axis is at an angle of 25.0 degrees with respect to the first polarizer, the intensity of light transmitted will be further reduced.

The intensity of light transmitted through a polarizer with an angle θ between its transmission axis and the polarization direction of the incident light is given by:


I_transmitted = I_initial * cos^2(θ)



In this case, θ = 25.0 degrees, so the intensity of light transmitted through the second polarizer is:


I_transmitted = (I/2) * cos^2(25.0)



Using a calculator, we find that cos^2(25.0) = 0.81, so:



I_transmitted = (I/2) * 0.81 = 0.405I



Therefore, the fraction of the incident intensity that is transmitted through the two polarizers is:



I_transmitted / I_initial = 0.405I / I = 0.405


So, approximately 40.5% of the incident intensity is transmitted through the polarizers.

To know more about unpolarized light here

https://brainly.com/question/1601505

#SPJ11

The particles are shot away from each other along a straight line with speeds 2V and V, respectively. The magnitude of the acceleration of m2 is smaller than m1. is related to my in an unknown way. related to its initial speed. None of these answers is correct. is zero. is equal to that of m1. is larger than m1. Point charge my has mass 2M and charge -40. Point charge m2 has mass 4M and charge +2Q. Initially, my is to the left of m2 and separated by a distance D in deep space, where Earth's gravity is negligible

Answers

The statement "The magnitude of the acceleration of m[tex]_{2}[/tex] is smaller than m[tex]^{1}[/tex]" is correct, considering the given information about their masses and charges.

To get an explanation of the behavior of two point charges, m[tex]_{1}[/tex] and m[tex]^{2}[/tex], with their given properties:

1. We have two point charges: m[tex]^{1}[/tex] has mass 2M and charge -4Q, while m[tex]^{2}[/tex]has mass 4M and charge +2Q.

2. They are initially separated by a distance D in deep space, where Earth's gravity is negligible.

3. Since the charges have opposite signs, they will attract each other due to the electrostatic force. This force can be calculated using Coulomb's Law: F = k * (|Q1*Q2|) / D², where k is Coulomb's constant.

4. The magnitudes of the accelerations experienced by m[tex]^{1}[/tex] and m[tex]^{2}[/tex] can be determined by applying Newton's second law: F = ma. Divide the electrostatic force by the respective masses of m[tex]^{1}[/tex] and m[tex]^{2}[/tex] to find their accelerations.

5. As m[tex]^{1}[/tex] and m[tex]^{2}[/tex] are shot away from each other along a straight line, their initial speeds are 2V and V, respectively.

6. Since m[tex]^{2}[/tex] has a larger mass (4M) compared to m[tex]^{1}[/tex] (2M), its acceleration will be smaller than m[tex]^{1}[/tex]'s acceleration when experiencing the same electrostatic force. This is because a larger mass requires a larger force to achieve the same acceleration.

We can therefore say that the statement "The magnitude of the acceleration of m[tex]^{2}[/tex] is smaller than m[tex]^{1}[/tex]" is correct, considering the given information about their masses and charges.

More on acceleration: https://brainly.com/question/29270275

#SPJ11

(a) if you increase the length of a pendulum by a factor of 5, how does the new period tn compare to the old period t? tn t =

Answers

If you increase the length of a pendulum by a factor of 5, the new period (tn) is √(5) times the old period (t).

To answer your question, we'll use the formula for the period of a pendulum:

T = 2π√(L/g)

where T is the period, L is the length of the pendulum, and g is the acceleration due to gravity (approximately 9.81 m/s²).

Now, let's consider the old period (t) and the new period (tn) after increasing the length by a factor of 5

t = 2π√(L/g)

tn = 2π√((5L)/g)

To find the relationship between tn and t, we can divide tn by t:

tn/t = (2π√((5L)/g)) / (2π√(L/g))

By simplifying the equation, we get:

tn/t = √(5)

So, the new period (tn) is √(5) times the old period (t).

More on pendulum: https://brainly.com/question/17844737

#SPJ11

. Explain the concept of generational wealth. In How Jews Became White and What That
Says About America, how did the GI Bill described in the essay impact the generational
wealth for the men who served, marginalized populations, and women. Support your
response with two paragraphs.

Answers

Generational wealth refers to the accumulation of assets, such as property, businesses, and investments, that are passed down from one generation to the next. This type of wealth is often built over time and can provide a significant advantage to families who have access to it. Generational wealth can be used to fund education, start businesses, and provide a financial safety net for future generations.

In "How Jews Became White and What That Says About America," the author explores the impact of the GI Bill on generational wealth. The GI Bill was intended to provide educational and financial support to veterans returning from World War II. However, the bill was structured in a way that excluded many marginalized populations, including women and people of color. As a result, white men were disproportionately able to take advantage of the benefits offered by the GI Bill, including low-interest home loans and access to higher education. This allowed many white families to accumulate generational wealth that was passed down to future generations. Meanwhile, marginalized populations were left behind, unable to access the same opportunities for wealth-building. This has had a lasting impact on generational wealth in America, contributing to the racial wealth gap that exists to this day.

consider a 568 nm wavelength yellow light falling on a pair of slits separated by 0.12 mm.

Answers

The yellow light with a wavelength of 568 nm would create an interference pattern with fringes spaced 4.73 x 10^-4 m apart.

When a 568 nm wavelength yellow light falls on a pair of slits separated by 0.12 mm, it diffracts and creates an interference pattern on a screen. The slits act as sources of secondary waves, and the interference pattern arises due to the constructive and destructive interference between these waves.

The distance between the slits and the screen determines the spacing of the fringes in the interference pattern. The wavelength of the light determines the distance between adjacent fringes. Therefore, in this scenario, the yellow light with a wavelength of 568 nm would create an interference pattern with fringes spaced 4.73 x 10^-4 m apart.

To learn more about wavelength click here

brainly.com/question/7143261

#SPJ11

What is the effect of spherical aberration on lens?

Answers

The effect of spherical aberration on a lens is the distortion of the image due to varying focal lengths of light rays passing through different parts of the lens. This results in blurred images and loss of sharpness.

Spherical aberration occurs when light rays entering the lens at different distances from the central axis are focused at varying points along the optical axis, rather than converging at a single focal point.

This is primarily because the lens surfaces are spherical and not perfectly shaped for focusing all rays accurately. As a consequence, the image formed will appear blurred, and fine details are lost.

To minimize spherical aberration, lens designers often use aspherical lens elements, which have a more complex shape compared to a simple spherical lens. By adjusting the curvature of the lens surface, it's possible to better focus light rays, thus reducing distortion and improving image quality.

Another solution is to use a combination of lenses with different refractive indices to correct for the aberration. This approach can lead to the creation of advanced optical systems with high image clarity and minimal distortion.

To know more about spherical aberration click on below link:

https://brainly.com/question/15113640#

#SPJ11

Hearing aids can be tuned to filter out or amplify either high- or low-frequency sounds, depending on the frequency range in which a user has suffered hearing loss. If, for instance, a user needed to amplify low-frequency sounds and the hearing aid had a capacitance of 3.0 μF. what inductance L should it have in order to produce peak signals at 1700 Hz? L= mH

Answers

The hearing aid should have an inductance of 31.23 mH to amplify low-frequency sounds and produce peak signals at 1700 Hz.

To determine the inductance (L) needed for a hearing aid to amplify low-frequency sounds at 1700 Hz with a capacitance of 3.0 μF, we can use the formula for the resonant frequency of an LC circuit:

f = 1 / (2 * π * √(L * C))

where f is the frequency, L is the inductance, and C is the capacitance. We are given f = 1700 Hz and C = 3.0 μF (3.0 × 10⁻⁶ F), and we need to find L.

First, we'll rearrange the formula to solve for L:

L = (1 / (4 * π² * f² * C))

Next, we'll plug in the given values:

L = (1 / (4 * π² * (1700)² * (3.0 × 10⁻⁶)))

After calculating, we get:

L ≈ 3.11 × 10⁻³ H

So, the required inductance (L) should be approximately 3.11 mH for the hearing aid to produce peak signals at 1700 Hz and amplify low-frequency sounds.

Learn more about   amplify here:

https://brainly.com/question/30892699

#SPJ11

A resistance thermometer which measures temperature by measuring the change in resistance of a conductor, is made of platinum and has a resistance of 50.0 ohms at 20.0 degrees Celsius. a) When the device is immersed in a vessel containing melting indium, its resistance increases to 76.8 ohms. From this information, find the melting point of indium. b) The indium is heated further until it reaches a temperature of 235 degrees Celsius. What is the new current in the platinum to the current IMP at the melting point?

Answers

The melting point of indium is approximately 20.0 degrees Celsius + 68.4 degrees Celsius = 88.4 degrees Celsius.

The new current in the platinum conductor at 235 degrees Celsius is approximately 0.202 times the current at the melting point.

a) To find the melting point of indium, we can use the relationship between resistance and temperature for the platinum conductor. We know that the resistance of the thermometer increases from 50.0 ohms at 20.0 degrees Celsius to 76.8 ohms when immersed in melting indium. The change in resistance is therefore 76.8 ohms - 50.0 ohms = 26.8 ohms.

We can use the formula for the resistance-temperature relationship of platinum to find the temperature at which this change in resistance occurs:

ΔR = R₀(1 + αΔT)

where ΔR is the change in resistance, R₀ is the initial resistance at 20.0 degrees Celsius, α is the temperature coefficient of resistance for platinum (which is approximately 0.00392 ohms/ohm/degree Celsius), and ΔT is the change in temperature in degrees Celsius. Solving for ΔT, we get:

ΔT = (ΔR/R₀ - 1) / α

Substituting in the values we have, we get:

ΔT = (26.8 ohms / 50.0 ohms - 1) / 0.00392 ohms/ohm/degree Celsius
ΔT = 68.4 degrees Celsius

Therefore, the melting point of indium is approximately 20.0 degrees Celsius + 68.4 degrees Celsius = 88.4 degrees Celsius.

b) To find the new current in the platinum conductor at 235 degrees Celsius, we need to use the relationship between resistance, current, and voltage for the thermometer. Assuming that the voltage across the platinum conductor remains constant, the current in the conductor will change due to the change in resistance.

We can use Ohm's law to relate the current to the resistance and voltage:

I = V / R

where I is the current, V is the voltage, and R is the resistance. Solving for I, we get:

I = V / (R₀(1 + αΔT))

where ΔT is the change in temperature from 20.0 degrees Celsius to 235 degrees Celsius. Substituting in the values we have, we get:

I = V / (50.0 ohms (1 + 0.00392 ohms/ohm/degree Celsius (235 degrees Celsius - 20.0 degrees Celsius)))
I ≈ 0.202 IMP (where IMP is the current at the melting point)

Therefore, the new current in the platinum conductor at 235 degrees Celsius is approximately 0.202 times the current at the melting point.

For more information on resistance and melting point refer to https://brainly.in/question/2284790

#SPJ11

: An object said to be in freefall experiences the following forces: Select the correct answer O Gravity O Neither gravity nor air resistance O Both gravity and air resistance O Air resistance

Answers

An object said to be in freefall experiences the following forces: Both gravity and air resistance.

An object that is falling through a vacuum is subjected to only one external force, the gravitational force, expressed as the weight of the object.
In freefall, an object is influenced by two primary forces:
1. Gravity - This force pulls the object towards the center of the Earth, causing it to accelerate downward.
2. Air resistance - This force acts against the object's motion, providing an upward force that opposes gravity. As the object's speed increases, so does the air resistance.

To learn more about gravity https://brainly.com/question/940770

#SPJ11

how far from an 8.00 µc point charge will the potential be 300 v? m at what distance will it be 6.00 ✕ 102 v? m

Answers

The potential will be 6.00 x[tex]10^2[/tex] V at a distance of 1.20 x [tex]10^4[/tex] meters from the 8.00 µC point charge.

We can use the formula for electric potential due to a point charge:

V = k * q / r

where V is the potential, k is Coulomb's constant (9.0 x [tex]10^9[/tex] N·m²/C²), q is the charge, and r is the distance from the charge.

For the first part of the question:

300 = 9.0 x [tex]10^9 *[/tex] 8.00 x[tex]10^-6[/tex] / r

r = 9.0 x [tex]10^9[/tex] * 8.00 x [tex]10^-6[/tex] / 300 = 240 m

Therefore, the potential will be 300 V at a distance of 240 meters from the 8.00 µC point charge.

For the second part of the question:

6.00 x 10² = 9.0 x [tex]10^9[/tex] * 8.00 x 10⁻⁶ / r

r = 9.0 x 10⁹ * 8.00 x [tex]10^-6[/tex]/ (6.00 x 10²) = 1.20 x [tex]10^4[/tex]m

Therefore, the potential will be 6.00 x[tex]10^2[/tex] V at a distance of 1.20 x [tex]10^4[/tex]meters from the 8.00 µC point charge.

Learn more about potential ,

https://brainly.com/question/4305583

#SPJ4

a laser beam ( = 632.2 nm) is incident on two slits 0.290 mm apart. how far apart are the bright interference fringes on a screen 5 m away from the slits?

Answers

The distance apart of the bright interference fringes on the screen would be 1.45 mm.

The distance between the two slits (d) is given as 0.290 mm, and the wavelength of the laser beam (λ) is given as 632.2 nm. The distance between adjacent bright fringes (y) on the screen can be calculated using the formula y = (λD)/d, where D is the distance between the slits and the screen.

Substituting the given values, we get y = (632.2 nm x 5 m) / 0.290 mm = 10.92 mm.

However, the distance between the bright fringes is the distance between the centers of adjacent bright fringes, which is equal to twice the distance between adjacent bright fringes. Therefore, the distance apart of the bright interference fringes on the screen would be 1/2 of 10.92 mm, which is equal to 1.45 mm.

For more questions like Distance click the link below:

https://brainly.com/question/15172156

#SPJ11

How many fissions take place per second in a 200-MW reactor?Assume 200 MeV is released per fission?

Answers

There are 1.25 x 10²⁰ fissions taking place per second in a 200-MW reactor.

How can we determine fissions?

The amount of fissions that take place per second in a 200-MW reactor can be calculated using the following steps:

Determine the thermal power output of the reactor:

The thermal power output of the reactor is given as 200 MW. This is the amount of heat energy produced by the reactor per second.

Convert the thermal power output to the number of fissions per second:

We know that each fission releases 200 MeV of energy. We can use this information to calculate the number of fissions per second using the following equation:

Power output = Number of fissions per second x Energy released per fission

Rearranging this equation, we get:

Number of fissions per second = Power output / Energy released per fission

Substituting the given values, we get:

Number of fissions per second = (200 x [tex]10^6[/tex] J/s) / (200 x [tex]10^6[/tex] eV/fission x 1.6 x 10⁻¹⁹ J/eV)

Number of fissions per second = 1.25 x 10²⁰ fissions/s

Therefore, there are 1.25 x 10²⁰ fissions taking place per second in a 200-MW reactor.

In a nuclear reactor, the energy is produced by the fission of atomic nuclei, which releases a large amount of energy in the form of heat. The heat is then used to produce steam, which drives turbines to generate electricity.

The thermal power output of a reactor is the amount of heat energy produced per second. The number of fissions per second can be calculated by dividing the thermal power output by the energy released per fission.

In this case, we assumed that 200 MeV is released per fission. This is a reasonable assumption for a typical fission process. The actual energy released per fission may vary depending on the type of fuel used and the specific fission reaction that occurs.

The final answer of 1.25 x 10²⁰ fissions/s is a very large number, reflecting the enormous amount of energy produced by a nuclear reactor. It is important to note that this energy must be carefully controlled and managed to ensure the safety and reliability of the reactor.

Learn more about fissions.

brainly.com/question/2732120

#SPJ11

A student is studying chemical changel and adds a solid substance to a liquid substance. Which statement best describes what the student should observe if a chemical reaction is occurring?
O The liquid is absorbed into the sold
OSmoke appears as the liquid contacts the sold
O The temperature of the sold remains the same.
O The mass of the sold stays the same.

Answers

The temperature of the sold remains the same

which of the following statements is false? question 14 options: if two spiral galaxies collide an elliptical galaxy will form as a result. the milky way galaxy has two giant bubbles emitting gamma rays above and below the galactic centre. stars collide with one another as often as galaxies do. we have identified light from a quasars emitted 12.5 billion years ago that seems to have a similar composition to the sun. the milky way is one of at least 54 galaxies that are part of the local group.

Answers

The statement that stars collide with one another as often as galaxies do is false. While galaxy collisions do occur, they are relatively rare compared to the number of stars in a galaxy.

In fact, the chances of two stars colliding in our own Milky Way galaxy are extremely low. The other statements are true: collisions between spiral galaxies can result in the formation of an elliptical galaxy, the Milky Way does have two giant gamma ray emitting bubbles above and below its center, light from a quasar has been identified with a similar composition to the sun, and the Milky Way is indeed one of at least 54 galaxies in the local group. The composition of galaxies, including their stars, gas, and dust, is a complex field of study that continues to yield new insights into the nature of the universe.

Learn more about galaxies here:

brainly.com/question/13031150

#SPJ11

in Exercise 1, the theoretical centripetal force was calculated from the O tension O velocity O weight None of the above

Answers

The theoretical centripetal force was calculated from the tension.

1. Centripetal force is the force required to keep an object moving in a circular path. In this exercise, it's provided by the tension in the string.
2. To calculate the theoretical centripetal force, you need to use the following formula: Fc = (mv2) / r, where Fc is the centripetal force, m is the mass of the object, v is its velocity, and r is the radius of the circle.
3. You will measure the tension in the string, which is equal to the centripetal force acting on the object since there are no other forces acting in the horizontal direction.
4. By using the formula and the measured tension, you can calculate the theoretical centripetal force and compare it with the actual value obtained during the experiment.
Remember, it is important to maintain accuracy in measurements and calculations for a better understanding of the concepts involved.

For more such questions on centripetal force , click on:

https://brainly.com/question/20905151

#SPJ11

in anesthetizing locations, low-voltage equipment that is frequently in contact with the bodies of persons or has exposed current-carrying elements shall ___.

Answers

In anesthetizing locations, low-voltage equipment that is frequently in contact with the bodies of persons or has exposed current-carrying elements shall be properly insulated and grounded to ensure safety and minimize the risk of electrical shock.

Anesthetizing locations are areas in healthcare facilities where anesthesia is administered to patients. These locations are typically equipped with electrical equipment. If any of this equipment malfunctions or has a fault, it could result in the patient receiving an electrical shock, which can cause severe injury or even death.

Grounding the equipment in these areas helps to prevent electric shock by providing a safe path for any electrical current that may escape from the equipment to travel through. Grounding ensures that any excess electrical charge is directed into the ground instead of through a person's body, which reduces the risk of injury or death from electric shock.

In addition to grounding, healthcare facilities also have other safety measures in place to prevent electric shock, such as regular maintenance of electrical equipment, testing and inspection of electrical systems, and the use of safety equipment and protocols. By following these safety measures, healthcare workers can ensure that anesthetizing locations are safe and free from electrical hazards.

Learn more about anesthesia here:

https://brainly.com/question/30875652

#SPJ11

In two experiments, a small block (200 g) and a large block (400g) are attached to a spring with a spring constant k = 20 N/m.After the spring is compressed 5 cm the blocks are released. Whichone experiences the largest force and which one the largestacceleration?

Answers

Both blocks experience the same largest force (1 N) as they are attached to the same spring with the same compression distance.

However, the small block experiences the largest acceleration (5 m/s²) compared to the large block (2.5 m/s²).

In both experiments, a small block (200 g) and a large block (400 g) are attached to a spring with a spring constant k = 20 N/m. After the spring is compressed 5 cm, the blocks are released. To determine which one experiences the largest force and which one the largest acceleration, we need to calculate the spring force and acceleration for both blocks.

Step 1: Calculate the spring force (F) using Hooke's Law.
F = k * x
where F is the spring force, k is the spring constant, and x is the compression distance.

For both blocks, k = 20 N/m and x = 5 cm = 0.05 m.

F = 20 N/m * 0.05 m
F = 1 N

Step 2: Calculate the acceleration (a) for each block using Newton's second law.
F = m * a
where F is the spring force, m is the mass of the block, and a is the acceleration.

For the small block (200 g = 0.2 kg):
1 N = 0.2 kg * a
a = 1 N / 0.2 kg
a = 5 m/s²

For the large block (400 g = 0.4 kg):
1 N = 0.4 kg * a
a = 1 N / 0.4 kg
a = 2.5 m/s²

In conclusion, both blocks experience the same largest force (1 N) as they are attached to the same spring with the same compression distance. However, the small block experiences the largest acceleration (5 m/s²) compared to the large block (2.5 m/s²).

For more information on force and acceleration refer to  https://brainly.com/question/14343220

#SPJ11

a grinding wheel is a uniform cylinder with a radius of 6.30 cmcm and a mass of 0.680 kg. Calculate its moment of inertia about its center. Calculate the applied torque needed to accelerate it from rest to 1900rpm in 6.00s if it is known to slow down from 1250rpm to rest in 54.0s

Answers

a. The moment of inertia of a grinding wheel is a uniform cylinder with a radius of 6.30 cm and a mass of 0.680 kg is 0.00085368 kg m².

b. The applied torque needed to accelerate it from rest to 1900 rpm in 6.00 s if it is known to slow down from 1250 rpm to rest in 54.0 s is 0.0284 Nm.

To calculate the moment of inertia of the grinding wheel, which is a uniform cylinder with a radius of 6.30 cm and a mass of 0.680 kg, we can use the formula for a solid cylinder:

I = (1/2) × M × R²

I = (1/2) × 0.680 kg × (0.063 m)²

= 0.00085368 kg m²

To calculate the applied torque needed to accelerate the grinding wheel from rest to 1900 rpm in 6.00 s, first, convert rpm to radians per second:

ωf = (1900 rpm × 2π rad/rev) × (1 min / 60 s)

= 199.47 rad/s

Next, find the angular acceleration:

α = (ωf - ωi) / t

= (199.47 rad/s - 0 rad/s) / 6.00 s

= 33.245 rad/s²

Now, use the equation τ = I * α to find the torque:

τ = 0.00085368 kg m² × 33.245 rad/s²

= 0.0284 Nm

So, the applied torque needed to accelerate the grinding wheel from rest to 1900 rpm in 6.00 s is 0.0284 Nm.

Learn more about moment of inertia: https://brainly.com/question/29415485

#SPJ11

An electric field greater than about 3 x 1066 V/m causes air to breakdown (electrons are removed from the items and then recombine, emitting light). If you shovel along a carpet and then reach for a door nob, a spark flies across the gap you estimate to be 1 mm between your finger in the doorknob.
Part A
Estimate the voltage between your finger and the doorknob.
ΔΔV = _____
Part B
Why is there no harm done?
a. Because very little charges transferred between you and the doorknob.
b. Because very large charges transferred between you and the doorknob.
c. Because there is very little voltage between you and the doorknob.
d. Because there is very large voltage between you and the doorknob.
.

Answers

The voltage between your finger and the doorknob.

ΔΔV = 3 x 103 V.   The correct option is a for second question.

Part A:
Using the breakdown voltage of air as a reference, we can estimate the voltage between your finger and the doorknob using the equation ΔV = Ed, where E is the electric field strength and d is the distance between the two objects. In this case, E is greater than 3 x 1066 V/m and d is approximately 1 mm or 0.001 m.

Therefore, ΔV = (3 x 1066 V/m)(0.001 m)

= 3 x 103 V.

Part B:
The correct answer is a. Because very little charges transferred between you and the doorknob. While the voltage between your finger and the doorknob is relatively high, the amount of charge transferred is very small, resulting in a spark that is harmless to the human body.

The spark is simply the result of electrons moving from your body to the doorknob, equalizing the charge between the two objects. Additionally, the duration of the spark is very short, limiting the amount of energy transferred to your body.

To know more about energy: https://brainly.com/question/13881533

#SPJ11

a ceiling fan is turned on and a net torque of 1.6 n·m applied to the blades. the blades have a total moment of inertia of 0.60 kg·m2. what is the angular acceleration of the blades?

Answers

If a net torque of 1.6 n·m is applied to the blades of a fan having a moment of inertia of 0.6 kg.m² then the angular acceleration of the blades is 2.67 rad/s².

The relationship between torque, moment of inertia, and angular acceleration is given by the equation:

Net torque = moment of inertia x angular acceleration

We are given the net torque as 1.6 n·m and the moment of inertia as 0.60 kg·m².

1.6 n·m = 0.60 kg·m² x angular acceleration

Angular acceleration = 1.6 n·m / 0.60 kg·m²
Angular acceleration = 2.67 rad/s²
Therefore, the angular acceleration of the blades is 2.67 rad/s².

Learn more about angular acceleration: https://brainly.com/question/9612563

#SPJ11

give two convincing pieces of evidence that you succeeded in synthesizing ferrocene

Answers

Ferrocene was first synthesized in 1951 by Poson and Shefield. Ferrocene is obtained by treating freshly treated cyclopentadienyl magnesium bromide (Grignard reagent) with ferric chloride in ethylene glycol ether: 2C 5 H 5 MgBr + FeCl 2 -> C 5 H 5 FeC 5 H 5 + MgBr 2 + MgCl 2.

There are a few pieces of evidence that can be used to confirm the successful synthesis of ferrocene.

Firstly, the melting point of the product should be consistent with the expected melting point of ferrocene, which is around 172-174°C. A melting point determination can be carried out using a melting point apparatus to confirm this.

Secondly, a Fourier Transform Infrared (FTIR) spectrum of the product can be obtained and compared to a reference spectrum of ferrocene. The spectrum should show the characteristic peaks of ferrocene, such as the iron-cyclopentadienyl stretch at around 200 cm-1, and the ring stretching vibrations at around 800-1600 cm-1. If these peaks are present in the spectrum of the product, it can be concluded that ferrocene has been successfully synthesized.

Overall, by confirming the melting point and FTIR spectrum of the product, it is possible to provide convincing evidence that ferrocene has been synthesized.

Know more about the synthesis of ferrocene:

https://brainly.com/question/30640696

#SPJ11

Other Questions
What are each of the following observations an example of?Drag the appropriate items to their respective bins.There is a gas leak in the kitchen andyou smell gas in the bedroom after 10minutes.When person applies perfume in onecorner of the room you can smell itsfragrance in another room.If the tightly packed food is placed inthe kitchen for a long time then youcan smell the gas as it penetratesthrough the small holes in the plastic.When a small hole is made in the topof a coke bottle the carbon dioxide gasmoves out of the bottle over time.Diffusion. Effusion An airfoil with a characteristic length L=0.2 ft is placed in airflow at p=1 atm and T.=60F with free stream velocity V=150 ft/s and convection heat transfer coefficient h=21 Btu/h-ft2.oF. A second larger airfoil with a characteristic length L=0.4 ft is placed in the airflow at the same air pressure and temperature, with free stream velocity V=75 ft/s.Both airfoils are maintained at a constant surface temperature T=180F To,h Cair T.,h Determine the heat flux from the second airfoil [solution:q=1260 Btu/h-ft] How does Denise Levertov use her craft to illuminate the horrors of war?Please help!!! Write essay! Reilly Company uses a job-order costing system and the following information is available from its records. The company has three jobs in process: #8, #12, and #15.Raw material used$130,000Direct labor per hour$9.50Overhead applied based on direct labor cost125%Direct material was requisitioned as follows for each job respectively: 25 percent, 30 percent, and 30 percent; the balance of the requisitions was considered indirect. Direct labor hours per job are 2,800; 3,300; and 4,000; respectively. Indirect labor is $45,000. Other actual overhead costs totaled $50,000.Refer to Reilly Company. If Job #15 is completed and transferred, what is the balance in Work in Process Inventory at the end of the period if overhead is applied at the end of the period?Select one:a. $191,925b. $201,888c. $205,284d. $208,908 Consider the freezing of liquid water at -10*C. For this process what are the signs for delta h, delta S and delta G?delta H delta S delta Ga. + - 0b. - + 0c. - + -d. + - -e. - - -I think it is e. Is this right. if not what is the right answer. find 10111 + 1011 in binary notation then convert to decimal. An increasing-cost industry is so named because of the positive slope of which curve?A) Each firm's short-run average cost curveB) Each firm's short-run marginal cost curveC) Each firm's long-run average cost curveD) Each firm's long-run marginal cost curveE) The industry's long-run supply curve vlock 1 is 1kg and b is 3 kg after collision they sticke together, what is kinetic energy of a What does the section "commercial fishing" reveal about the author's point of view? use two details from the article to support your response. under what three conditions does extrinsic reinforcement undermine intrinsic interest? under what two conditions does extrinsic reinforcement enhance intrinsic interest? Some bacteria survive in theabsence of oxygen. Which ofthe following environmentscould they survive in?A. on the stems of plantsB. on the skin of animalsC. on a table topD. deep soil if anyone understands this could u help me out??? All of the following are see-saw except (molecular Geometry)IF4+1IO2F21SOF4SF4XeO2F2 find a unit normal vector to the surface f ( x , y , z ) = 0 f(x,y,z)=0 at the point p ( 2 , 5 , 27 ) p(2,5,-27) for the function f ( x , y , z ) = ln ( x 5 y z ) An increase in infrastructure projects, such as new parks and roads, initiated by the federal government is a likely signal that WHAT condition is present in the U.S. economy? All of these answers are correct O A recognized period of recession Slow economic growth Increased levels of unemployment Who suggested that government intervention should focus on influencing aggregate demand when dealing with an economic recession? John Maynard Keynes O Paul Krugman Alan Greenspan Janet Yellen answer only the yellow dish,. ignore the writing it is a blank space. please I need explanation how to do it. only you fill the yellow dish. please help find the volume of the solid obtained by rotating hte region boudned by the given curves about the specified line. sketch the region, the solid, and a typical disk or washer. y = 1/4x^2, x=2 a hair breaks under a tension of 1.2 n. what is the diameter of the hair? the tensile strength is 2.2 108 pa. Solve the following initial value problem:dydt=3y+6, y(0)=8. PLEASE HELP I don't understand what to do