a 25.0 ml sample of 0.150 m hydrazoic acid, hn3, is titrated with a 0.211 m naoh solution. what is the ph after 10.18 ml of base is added? the ka of hydrazoic acid is 1.8 x 10−5.

Answers

Answer 1

Hydrazoic acid ([tex]HN_{3}[/tex]) is a weak acid with a Ka value of 1.8 x [tex]10^{-5}[/tex] When it reacts with NaOH, it undergoes a neutralization reaction, producing water and sodium azide ([tex]NaN_{3}[/tex]). The balanced equation for the reaction is:

[tex]HN_{3} (aq) + NaOH(aq)[/tex] → [tex]NaN_{3} (aq) + H_{2} O(l)[/tex]

To determine the pH after adding 10.18 mL of 0.211 M NaOH to a 25.0 mL sample of 0.150 M [tex]HN_{3}[/tex], we can use the Henderson-Hasselbalch equation, which relates the pH to the acid dissociation constant (Ka) and the ratio of the concentrations of the acid and its conjugate base.

First, we need to calculate the initial concentration of [tex]HN_{3}[/tex] in the 25.0 mL sample:

0.150 M × 0.0250 L = 0.00375 mol [tex]HN_{3}[/tex]

Next, we need to calculate the number of moles of NaOH added to the solution:

0.211 M × 0.01018 L = 0.00215 mol NaOH

Since NaOH and [tex]HN_{3}[/tex] react in a 1:1 ratio, the number of moles of [tex]HN_{3}[/tex] that remain after the neutralization reaction is:

0.00375 mol - 0.00215 mol = 0.00160 mol [tex]HN_{3}[/tex]

The volume of the resulting solution is 25.0 mL + 10.18 mL = 35.18 mL.

Now we can use the Henderson-Hasselbalch equation:

pH = pKa + log([[tex]A^{-}[/tex]]/[HA])

where [[tex]A^{-}[/tex]] is the concentration of the conjugate base ([tex]NaN_{3}[/tex]) and [HA] is the concentration of the weak acid ([tex]HN_{3}[/tex]).

At the equivalence point of the titration, all of the [tex]HN_{3}[/tex] has reacted with the NaOH to form [tex]NaN_{3}[/tex], so the concentration of the conjugate base is:

[[tex]A^{-}[/tex]] = (0.00215 mol NaOH / 0.03518 L) = 0.0612 M

The concentration of the weak acid remaining after the titration is:

[HA] = (0.00160 mol [tex]HN_{3}[/tex] / 0.03518 L) = 0.0455 M

The pKa of [tex]HN_{3}[/tex] is given as 1.8 x [tex]10^-5[/tex]. Converting this to Ka gives:

Ka = [tex]10^-pKa[/tex] = 5.56 x [tex]10^{-6}[/tex]

Substituting these values into the Henderson-Hasselbalch equation gives:

pH = 4.25 + log(0.0612/0.0455) ≈ 9.13

Therefore, the pH of the solution after adding 10.18 mL of NaOH is approximately 9.13.

Learn more about Hydrazoic acid

https://brainly.com/question/13770854

#SPJ4


Related Questions

25. The reaction catalyzed by the enzyme aldolase has a G˚' ≈ +23 kJ/mol. In muscle cells, the reaction proceeds in this same, forward direction. How can this occur?
a. This G˚' means it is thermodynamically favored.
b. The enzyme changes the ∆G of the reaction in cells to something favorable.
c. The concentration of reactant(s) must be significantly greater than product(s) in cells.
d. The concentration of product(s) must be significantly greater than reactant(s) in cells.

Answers

In muscle cells, the reaction proceeds in the same way when enzyme changes the ∆G of the reaction in cells to something favorable. Option B is correct.

The fact that the reaction catalyzed by aldolase has a positive standard free energy change (∆G˚' ≈ +23 kJ/mol) indicates that the reaction is thermodynamically unfavored under standard conditions. However, in muscle cells, the reaction proceeds in the forward direction, indicating that the actual free energy change (∆G) of the reaction in cells is negative.

The most likely explanation for this is that the enzyme aldolase catalyzes the reaction in such a way that it lowers the activation energy required for the reaction to proceed, making it kinetically favorable. This does not change the thermodynamics of the reaction, but it allows the reaction to occur at a reasonable rate.

Hence, B. is the correct option.

To know more about free energy change here

https://brainly.com/question/14562388

#SPJ4

A weak acid HA is titrated with strong base. Halfway to the equivalence point, the pH of the solution is 7. What is the value of pKa for HA?Express your answer using at least three significant figures. Do not use scientific notation.

Answers

The value of pKa for the weak acid HA in this scenario is 7.  To determine the value of pKa for a weak acid HA titrated with a strong base halfway to the equivalence point with a pH of 7, follow these steps:


Step:1. Recall that at the halfway point of the titration, [HA] = [A-], where A- is the conjugate base.
Step:2. Use the Henderson-Hasselbalch equation: pH = pKa + log ([A-]/[HA])
Step:3. Since [HA] = [A-], the ratio [A-]/[HA] is equal to 1.
Step:4. Simplify the equation by taking the log of 1, which is 0: pH = pKa + 0
Step:5. In this case, the pH is given as 7, so the equation becomes: 7 = pKa


Learn more about pKa here, https://brainly.com/question/12273811

#SPJ11

consider the titration of 30 ml of 0.45 m hi with 0.75 m rboh. a. what is the ph at the equivalence point? b. what is ph after 5 ml of rboh has been added?

Answers

bThe salt sodium formate can be found at the equivalency point. At pH 7.0, a strong acid or base will titrate to their equivalent point. Although the pH at the equivalence point is larger or lower than 7.0 in titrations of weak acids or bases, respectively.

The solution's pH will be (log 5 0.7CH3COOH = 4.76), which is the equivalency point. 0.200 M HBr, a potent acid, serves as the titrant. NaOH has a high base strength, hence the equivalence point will have a pH of 7. As a result, pH = 7 and H = 7.When 0.100M hydroxyacetic acid and 0.0500M KOH are titrated, the pH at the equivalence point is 8.18.

To know more about strong acid, click here:

https://brainly.com/question/31143763

#SPJ4

Calculate the mass of glucose ( C6H12O6 ) in a 110 ml sample of a 1.02 m glucose solution.

Answers

The mass of glucose in a 110 mL sample of a 1.02 M glucose solution is 20.02 g.

To find the mass of glucose, follow these steps:

1. Convert the volume of the solution to liters: 110 mL = 0.110 L.


2. Determine the number of moles of glucose in the solution using the molarity formula:
  Moles of glucose = Molarity × Volume
  Moles of glucose = 1.02 M × 0.110 L = 0.1122 mol


3. Calculate the molar mass of glucose (C₆H₁₂O₆) using the periodic table:
  Molar mass = (6 × C) + (12 × H) + (6 × O)
  Molar mass = (6 × 12.01) + (12 × 1.01) + (6 × 16.00) = 180.18 g/mol


4. Find the mass of glucose by multiplying the number of moles by the molar mass:
  Mass of glucose = Moles × Molar mass
  Mass of glucose = 0.1122 mol × 180.18 g/mol = 20.02 g

To know more about periodic table click on below link:

https://brainly.com/question/11155928#

#SPJ11

what happens to the solubility of caf2 in water if 0.1 m hno3 is added to the solution at 298 k? (ksp = 4.0 x 10−11)

Answers

*shrug

Adding HNO3 to a solution of CaF2 and water will increase the concentration of H+ ions in the solution, according to the following reaction:

HNO3 + H2O ⇌ H3O+ + NO3-

The increased concentration of H+ ions will shift the equilibrium of the dissociation reaction of CaF2 in the opposite direction, making it less soluble. The dissociation reaction of CaF2 is as follows:

CaF2(s) ⇌ Ca2+(aq) + 2F-(aq)

The solubility product constant expression for CaF2 is:

Ksp = [Ca2+][F-]^2

If the solubility of CaF2 is S, then at equilibrium, [Ca2+] = S and [F-] = 2S. Therefore,

Ksp = S * (2S)^2 = 4S^3

Now, if 0.1 M HNO3 is added to the solution, it will increase the H+ ion concentration, which will shift the dissociation equilibrium of CaF2 to the left, decreasing the solubility. The reaction can be written as:

CaF2(s) + 2H+(aq) ⇌ Ca2+(aq) + 2HF(aq)

The equilibrium expression for this reaction is:

K = [Ca2+][HF]^2/[H+]^2

At equilibrium, the concentrations of Ca2+ and HF will be less than S, and the concentration of H+ will be 0.1 M. We can use the solubility product constant and the equilibrium expression to solve for the new solubility:

K = [Ca2+][HF]^2/[H+]^2

4.0 x 10^-11 = (S - x)(2S - 2x)^2/(0.1)^2

Solving for x, we get x = 2.9 x 10^-5 M

Therefore, the new solubility of CaF2 in the presence of 0.1 M HNO3 is S - x = 1.0 x 10^-6 M.

*IG:whis.sama_ent*

*shrug

Adding HNO3 to a solution of CaF2 and water will increase the concentration of H+ ions in the solution, according to the following reaction:

HNO3 + H2O ⇌ H3O+ + NO3-

The increased concentration of H+ ions will shift the equilibrium of the dissociation reaction of CaF2 in the opposite direction, making it less soluble. The dissociation reaction of CaF2 is as follows:

CaF2(s) ⇌ Ca2+(aq) + 2F-(aq)

The solubility product constant expression for CaF2 is:

Ksp = [Ca2+][F-]^2

If the solubility of CaF2 is S, then at equilibrium, [Ca2+] = S and [F-] = 2S. Therefore,

Ksp = S * (2S)^2 = 4S^3

Now, if 0.1 M HNO3 is added to the solution, it will increase the H+ ion concentration, which will shift the dissociation equilibrium of CaF2 to the left, decreasing the solubility. The reaction can be written as:

CaF2(s) + 2H+(aq) ⇌ Ca2+(aq) + 2HF(aq)

The equilibrium expression for this reaction is:

K = [Ca2+][HF]^2/[H+]^2

At equilibrium, the concentrations of Ca2+ and HF will be less than S, and the concentration of H+ will be 0.1 M. We can use the solubility product constant and the equilibrium expression to solve for the new solubility:

K = [Ca2+][HF]^2/[H+]^2

4.0 x 10^-11 = (S - x)(2S - 2x)^2/(0.1)^2

Solving for x, we get x = 2.9 x 10^-5 M

Therefore, the new solubility of CaF2 in the presence of 0.1 M HNO3 is S - x = 1.0 x 10^-6 M.

*IG:whis.sama_ent*

16.047 g of nh4cl(s) (mw = 53.45, kb nh3 = 1.79 × 10-5) is added to 25 ml of 6 m naoh(aq) (mw = 40). assume the volume of the solution stays constant, what is the ph of the resulting solution?

Answers

the pH of the solution after 5.00 mL of 0.125 M HClO4 have been added is 12.98.

The balanced chemical equation for the reaction between KOH and HClO4 is:

KOH + HClO4 -> KClO4 + H2O

From this equation, we can see that the stoichiometry of the reaction is 1:1, which means that 1 mole of HClO4 reacts with 1 mole of KOH.

To calculate the pH of the solution after each addition of HClO4, we need to determine how many moles of HClO4 have been added and how many moles of KOH remain in solution.

At the start of the titration, the number of moles of KOH in the sample is:

moles of KOH = concentration × volume = 0.150 mol/L × 0.0200 L = 0.00300 mol

When we add x moles of HClO4, they will react completely with x moles of KOH. Therefore, the number of moles of KOH remaining in solution after x moles of HClO4 have been added is:

moles of KOH remaining = 0.00300 mol - x mol

The volume of HClO4 required to react completely with all the KOH is given by:

moles of HClO4 = moles of KOH = 0.00300 mol

volume of HClO4 = moles of HClO4 / concentration of HClO4 = 0.00300 mol / 0.125 mol/L = 0.0240 L

So, we need 0.0240 L of 0.125 M HClO4 to react completely with the KOH in the sample.

To calculate the pH after a certain volume of HClO4 has been added, we can use the following steps:

1. Calculate the number of moles of HClO4 that have been added.
2. Calculate the number of moles of KOH remaining in solution.
3. Calculate the total volume of the solution after the HClO4 has been added.
4. Calculate the concentration of the remaining KOH.
5. Calculate the pOH of the solution using the concentration of the remaining KOH.
6. Calculate the pH of the solution using the formula pH = 14 - pOH.

For example, if 5.00 mL of 0.125 M HClO4 have been added, the number of moles of HClO4 added
is:

moles of HClO4 = concentration × volume = 0.125 mol/L × 0.00500 L = 0.000625 mol

The number of moles of KOH remaining in solution is:

moles of KOH remaining = 0.00300 mol - 0.000625 mol = 0.00238 mol

The total volume of the solution after the HClO4 has been added is:

total volume = initial volume + volume of HClO4 = 20.0 mL + 5.00 mL = 25.0 mL = 0.0250 L

The concentration of the remaining KOH is:

concentration of KOH = moles of KOH remaining / total volume = 0.00238 mol / 0.0250 L = 0.0952 mol/L

The pOH of the solution is:

pOH = -log[OH-] = -log(0.0952) = 1.020

The pH of the solution is:

pH = 14 - pOH = 14 - 1.020 = 12.98

Therefore, the pH of the solution after 5.00 mL of 0.125 M HClO4 have been added is 12.98.
Visit to know more about pH :-

https://brainly.com/question/172153

#SPJ11

What is the proeutectoid phase for an iron–carbon alloy in which the mass fractions of total ferrite and total cementite are 0.90 and 0.1, respectively?

Answers

The proeutectoid phase for an iron-carbon alloy with mass fractions of 0.90 total ferrite and 0.10 total cementite is ferrite.

To explain, in an iron-carbon alloy system, the proeutectoid phase is the phase that forms before the eutectoid reaction occurs. The eutectoid reaction happens at 0.76 wt% carbon in the iron-carbon phase diagram.

In this specific alloy, the mass fractions are 0.90 total ferrite and 0.10 total cementite, which means that the alloy has a lower carbon content compared to the eutectoid composition (less than 0.76 wt% carbon).

Since ferrite is the stable phase at lower carbon concentrations, the proeutectoid phase for this alloy is ferrite. The microstructure will mainly consist of ferrite, with some small amounts of cementite dispersed within it.

To know more about proeutectoid phase click on below link:

https://brainly.com/question/15937103#

#SPJ11

Which salt would form an acidic solution when dissolved in water? The Ka of NH: is 5.6 × 10-10 and the Kb of CN-is 1.6×10- Select the correct answer below ○ NH,CN O Naci O NH, Br O More than one solution will be acidic.

Answers

The salt that would form an acidic solution when dissolved in water is NH₄CN.

Why would NH₄CN form an acidic solution when dissolved in water?

NH₄CN consists of the ammonium ion (NH⁴⁺) and the cyanide ion (CN⁻). NH⁴⁺ is the conjugate acid of NH₃ (ammonia. Ammonia is commonly recognised as a weak base. CN⁻ is the conjugate base of HCN (hydrogen cyanide), which is a weak acid.

The Ka of NH⁴⁺ is 5.6 × 10-10, which means that NH⁴⁺ is a weak acid. The Kb of CN⁻ is 1.6 × 10-5, which means that CN⁻ is a weak base.

When NH₄CN  is dissolved in water, NH⁴⁺ can donate a proton to water to form H3O⁺ (hydronium ion) and NH₃, making the solution acidic.

Therefore, NH₄CN would form an acidic solution when dissolved in water.

Learn more about acidic solutions here:

https://brainly.com/question/13632841

#SPJ1

Equation for free energy change associated with transport across a concentration gradient when a species is charged

Answers

The equation ΔG = RTln(C2/C1) + zFΔψ is commonly known as the Nernst equation and is used to calculate the free energy change associated with transport of a charged species across a membrane.

The Nernst equation for free energy change associated with transport across a concentration gradient when a species is charged is given by ΔG = RTln(C2/C1) + zFΔψ, where ΔG is the change in free energy, R is the gas constant, T is the temperature, C1 and C2 are the concentrations of the species on either side of the membrane, z is the charge of the species, F is the Faraday constant, and Δψ is the membrane potential. This equation takes into account both the concentration gradient and the electrical potential across the membrane, and shows that transport of a charged species is dependent on both factors. The concentration gradient is the difference in the concentration of the species on either side of the membrane. If the concentration of the species is higher on one side of the membrane than the other, then the species will tend to move from the side of higher concentration to the side of lower concentration. This movement of the species is known as diffusion.

To know more about Nernst equation please refer: https://brainly.com/question/30891307

#SPJ11

calculate the poh of a solution that results from mixing 45.8 ml of 0.15 m ethylamine (c2h5nh2) with 16.5 ml of 0.13 m c2h5nh3cl. the kb value for c2h5nh2 is 6.5 x 10-4.

Answers

The pH of the solution is 10.32.

What is the pH of the solution?

The first step is to write the chemical equation for the reaction between ethylamine and its conjugate acid, ethyl ammonium chloride:

C2H5NH2 + HCl → C2H5NH3+Cl-

Next, we need to determine the initial concentration of ethylamine and the concentration of ethyl ammonium chloride:

initial concentration of C2H5NH2 = 0.15 M x (45.8 mL / 62.3 mL) = 0.110 M

concentration of C2H5NH3+Cl- = 0.13 M x (16.5 mL / 62.3 mL) = 0.035 M

Now we can use the Kb value of ethylamine to calculate the concentration of hydroxide ions:

Kb = [C2H5NH2][OH-] / [C2H5NH3+]

[OH-] = Kb x [C2H5NH3+] / [C2H5NH2] = (6.5 x 10^-4) x (0.035) / (0.110) = 2.085 x 10^-4 M

Finally, we can use the concentration of hydroxide ions to calculate the pOH and then the pH:

pOH = -log[OH-] = -log(2.085 x 10^-4) = 3.68

pH + pOH = 14, so:

pH = 14 - pOH = 14 - 3.68 = 10.32

Therefore, the pH of the solution is 10.32.

Learn more about ethyl

brainly.com/question/4439718

#SPJ11

which compound has only ionic bonds co2 al2o3 h2o2

Answers

The compound with only ionic bonds is Al₂O₃.

Ionic bonds occur between metals and non-metals, where electrons are transferred from the metal to the non-metal. In the given compounds, CO₂ has covalent bonds as both carbon and oxygen are non-metals.

H₂O₂ also has covalent bonds since hydrogen and oxygen are both non-metals. However, Al₂O₃ has ionic bonds as aluminum (Al) is a metal, and oxygen (O) is a non-metal.

The aluminum atoms lose electrons to the oxygen atoms, forming positively charged Al³⁺ ions and negatively charged O²⁻ ions. These ions then attract each other, forming the ionic compound Al₂O₃.

To know more about ionic bonds click on below link:

https://brainly.com/question/11527546#

#SPJ11

What is the effect of the structure of the alkyl halide on SN1 andSN2 reactivity?
Compare simple primary, secondary, and tertiary alkylhalides. Compare unhindered
primary and hindered primary alkyl halides. Compareunhindered primary and allylic
primary alkyl halides.

Answers

Alkyl halide structure affects SN₁ and SN₂ reactivity. Simple primary are highly reactive in SN₂, while tertiary are highly reactive in SN₁. Hindered primary exhibit slower SN₂ due to steric hindrance, while unhindered primary have faster SN₂.

SN₂ and SN₁ reactions are two important types of nucleophilic substitution reactions that are commonly observed in organic chemistry. In SN₂ reactions, the nucleophile attacks the alkyl halide at the same time as the leaving group departs, resulting in a concerted reaction. In contrast, SN₁ reactions involve the formation of a carbocation intermediate before the nucleophile attacks.

The reactivity of alkyl halides towards SN₂ reactions increases with increasing accessibility of the halogen atom to the nucleophile. Thus, simple primary alkyl halides with a small alkyl group and a reactive halogen atom are highly reactive towards SN₂ reactions.

On the other hand, bulky tertiary alkyl halides with a less reactive halogen atom are highly reactive towards SN₁ reactions, as the carbocation intermediate can stabilize the charge through resonance or inductive effects.

In the case of primary alkyl halides, the presence of steric hindrance can slow down the SN₂ reaction. Thus, hindered primary alkyl halides exhibit a slower SN₂ reaction due to steric hindrance, while unhindered primary alkyl halides have a faster SN₂ reaction.

To know more about Alkyl halide structure, refer here:
https://brainly.com/question/17063582#
#SPJ11

what is the pe value in an acid mine water sample having [fe3 ] = 7.03e-3m and [fe2 ]=3.71e-4m? fe3 e- fe2 pe° = 13.2

Answers

The pe value in the acid mine water sample is approximately 12.641.

To calculate the pe value in an acid mine water sample, we can use the Nernst equation:

pe = pe° + (RT/nF) ln([Fe[tex]^{2+}[/tex]]/[Fe[tex]_{3+}[/tex]])

Given that [Fe3+] = 7.03e-3 M and [Fe[tex]^{2+}[/tex]] = 3.71e-4 M, and pe° = 13.2, we can substitute these values into the equation and solve for pe:

pe = 13.2 + (RT/nF) ln(3.71e-4/7.03e-3)

At room temperature (25°C), the gas constant R = 8.314 J/K/mol, the Faraday constant F = 96,485 C/mol, and n = 2 (since the reaction involves the transfer of 2 electrons). Plugging in these values, we get:

pe = 13.2 + (8.314×298/2/96485) ln(3.71e-4/7.03e-3)
  = 13.2 + (-0.559)
  = 12.641

Therefore, approximately 12.641 is the pe value in the acid mine water sample.

More on pe value: https://brainly.com/question/16555546

#SPJ11

Rank the following compounds in order of increasing strength of intermolecular forces. HF
HCI
H2
F2 Select one:
(A) H2 < HCI < HF < F2
(B) HF < F2 < HCI < H2
(C) H2< F2 < HCI < HE
(D) HCI < HF < < F2 < H2

Answers

Compounds in order of increasing strength of intermolecular forces H2 < HCI < HF < F2

The strength of intermolecular forces depends on the type of forces present. Hydrogen bonds are the strongest, followed by dipole-dipole interactions, and then London dispersion forces. H2 and F2 have nonpolar covalent bonds, so they only exhibit London dispersion forces. Since H2 has a smaller molar mass than F2, it has weaker London dispersion forces.

HCl is a polar molecule, resulting in dipole-dipole interactions, which are stronger than London dispersion forces. HF forms hydrogen bonds, which are the strongest intermolecular forces among the given compounds. The presence of F, a highly electronegative element, enables HF to form strong hydrogen bonds, resulting in the highest intermolecular force strength.

To learn more about intermolecular forces click here

brainly.com/question/9007693

#SPJ11

Balance the following equation in acidic solution using the lowest possible integers and give the coefficient of

H+. Cr2O72-(aq) + Sn (s) → Cr3+(aq) + Sn2+(aq)

Answers

The balanced equation for the reaction between Cr₂O₇²⁻(aq), Sn(s), and H⁺ in acidic solution is:

Cr₂O₇²⁻(aq) + 3Sn(s) + 14H⁺ → 2Cr³⁺(aq) + 3Sn²⁺(aq) + 7H₂O(l) The coefficient of H⁺ in the balanced equation is 14.

The first step in balancing the given redox reaction is to identify the oxidation states of each element in the reactants and products. In this case, Cr has an oxidation state of +6 in Cr₂O₇²⁻ and +3 in Cr³⁺, while Sn has an oxidation state of 0 in Sn(s) and +2 in Sn²⁺(aq). The H⁺ ions act as a reactant in the acidic solution, so they do not have an assigned oxidation state.

The next step is to balance the equation by adding coefficients to each compound so that the number of atoms of each element is the same on both sides of the equation.

The oxidation states of each element must also be balanced by transferring electrons between the reactants and products. In this case, the reduction half-reaction involves Sn(s) being oxidized to Sn²⁺(aq) and involves the transfer of two electrons.

The oxidation half-reaction involves Cr₂O₇²⁻(aq) being reduced to Cr³⁺(aq) and involves the transfer of six electrons. By multiplying the reduction half-reaction by three and the oxidation half-reaction by two, the electrons can cancel out, and the equation can be balanced.

Finally, the coefficient of H⁺ can be determined by adding H⁺ ions to the appropriate side of the equation to balance the hydrogen atoms. Since there are 14 hydrogen atoms on the reactant side, 14 H⁺ ions must be added to the product side to balance the equation.

learn more about oxidation here:

https://brainly.com/question/19761029

#SPJ11

What mass of naobr(s) must be dissolved in 114 ml of 0.255 m HoBr to produce a buffer solution with ph 8.30? Assume no change in volume. ka = 2.3 x 10^-9 for hobr.

Answers

0.155 g of NaOBr(s) must be dissolved in 114 mL of 0.255 M HOBr to produce a buffer solution with a pH of 8.30.

We need to determine the ratio of [tex][OBr^-]/[HOBr][/tex] required to prepare a buffer solution with a pH of 8.30. The pKa of HOBr is given as 2.3 x [tex]10^-^9[/tex]. Therefore, we can use the Henderson-Hasselbalch equation to calculate the ratio of [tex][OBr^-]/[HOBr][/tex]:

pH = [tex]pK_a + log([OBr^-]/[HOBr])[/tex]

8.30 = 9.64 + [tex]log([OBr^-]/[HOBr])[/tex]

[tex]log([OBr^-]/[HOBr])[/tex] = -1.34

[tex]([OBr^-]/[HOBr])[/tex] = 4.47 x [tex]10^-^2[/tex]

We need to calculate the moles of HOBr present in 114 mL of 0.255 M HOBr:

moles HOBr = (0.255 mol/L) x (0.114 L) = 0.0291 mol

Since the ratio of[tex][OBr^-]/[HOBr][/tex] is known, we can calculate the moles of [tex]OBr^-[/tex] required to form the buffer solution:

moles [tex]OBr^-[/tex] = [tex][OBr^-]/[HOBr][/tex] x moles HOBr

moles [tex]OBr^-[/tex]= 4.47 x 10^-2 x 0.0291 mol = 1.30 x [tex]10^-^3[/tex] mol

Finally, we need to calculate the mass of NaOBr(s) required to produce 1.30 x[tex]10^-^3[/tex] mol of [tex]OBr^-[/tex]. The molar mass of NaOBr is 118.89 g/mol.

mass NaOBr = moles NaOBr x molar mass NaOBr

mass NaOBr = 1.30 x [tex]10^-^3[/tex] mol x 118.89 g/mol = 0.155 g

Therefore, 0.155 g of NaOBr(s) must be dissolved in 114 mL of 0.255 M HOBr to produce a buffer solution with a pH of 8.30.

To know more about Buffer solution refer here ;

https://brainly.com/question/27371101

#SPJ11

When the following molecular equation is balanced using the smallest possible integer coefficients, the values of these coefficients are: ___ hydrochloric acid (aq) + ___ iron(III) oxide (s) → ___ water (1) + ___ iron(III) chloride (aq)

Answers

The balanced equation for the given molecular equation is:

6HCl(aq) + Fe2O3(s) → 3H2O(l) + 2FeCl3(aq)

So, the coefficients are:

6HCl(aq) + 1Fe2O3(s) → 3H2O(l) + 2FeCl3(aq)

Therefore, the coefficients are 6, 1, 3, and 2 for HCl, Fe2O3, H2O, and FeCl3 respectively.

A molecular equation is a chemical equation that shows the chemical formulas of all the reactants and products without indicating the ionic nature of the compounds. It represents the overall chemical change that occurs during a chemical reaction. In a molecular equation, the reactants and products are written as complete compounds with their chemical formulas, and the coefficients are used to balance the equation to satisfy the Law of Conservation of Mass.

For example, the molecular equation for the reaction between hydrochloric acid (HCl) and sodium hydroxide (NaOH) is:

HCl(aq) + NaOH(aq) → NaCl(aq) + H2O(l)

This equation shows the reactants (HCl and NaOH) and the products (NaCl and H2O) in their molecular form. It does not show the ionic nature of the compounds or the charges on the ions. The coefficients in this equation are 1, 1, 1, and 1 for HCl, NaOH, NaCl, and H2O respectively.

Visit here to learn more about hydrochloric acid brainly.com/question/15231576

#SPJ11

identify an expression for the equilibrium constant of each chemical equation. part a part complete sf4(g)⇌sf2(g) f2(g)]

Answers

The equilibrium constant expression is Kc = [SF2][F2] / [SF4].

How equilibrium constant expression for chemical equation SF4(g) ⇌ SF2(g) + F2(g) be represented?

The equilibrium constant is a fundamental concept in chemical equilibria that describes the relative concentrations of reactants and products at equilibrium. It is a dimensionless quantity that is used to indicate the position of equilibrium and the extent to which a reaction proceeds.

In the case of the chemical equation SF4(g) ⇌ SF2(g) + F2(g), the equilibrium constant expression is Kc = [SF2][F2] / [SF4]. This expression indicates that the equilibrium constant is equal to the product of the concentrations of the products (SF2 and F2) raised to their stoichiometric coefficients, divided by the concentration of the reactant (SF4) raised to its stoichiometric coefficient.

The equilibrium constant provides information about the direction in which a reaction proceeds. If Kc > 1, the reaction favors the products, and if Kc < 1, the reaction favors the reactants. If Kc = 1, the concentrations of reactants and products are equal at equilibrium.

The value of the equilibrium constant depends on the temperature and pressure of the system. Changes in these parameters can shift the position of equilibrium and alter the value of Kc. For example, an increase in temperature can favor the endothermic reaction by shifting the equilibrium to the right, resulting in an increase in the concentration of products and a corresponding increase in the value of Kc.

In summary, the equilibrium constant is a useful tool for predicting the position of equilibrium and the extent to which a reaction proceeds. It provides valuable information for understanding chemical equilibria and is essential for designing chemical processes and predicting their outcomes.

Learn more about equilibrium constant

brainly.com/question/10038290

#SPJ11

The lab experiment instructs you to react 0.21 g of nahco3 with excess ch3cooh. how much co2 in ml would this reaction generate if all the sodium bicarbonate reacts fully?

Answers

The reaction generates 97.02 mL of CO₂.

To find the amount of CO₂ produced, follow these steps:


1. Determine the moles of NaHCO₃ using its molar mass (23+1+12+48 = 84 g/mol): 0.21 g / 84 g/mol ≈ 0.0025 mol.


2. In the reaction, 1 mol NaHCO₃ produces 1 mol CO₂, so 0.0025 mol NaHCO₃ produces 0.0025 mol CO₂.


3. Calculate the volume of CO₂ at STP (1 mol = 22.4 L): 0.0025 mol * 22.4 L/mol ≈ 0.056 L.


4. Convert liters to milliliters: 0.056 L * 1000 mL/L = 56 mL.

Approximately 97.02 mL of CO₂ will be generated if all the sodium bicarbonate reacts fully.

To know more about STP click on below link:

https://brainly.com/question/24050436#

#SPJ11

When we are on an airplane above the clouds, why does it look like we're passing up each cloud very slowly even though we're going about 500 mph?

Answers

Answer:

When we are on an airplane above the clouds, it can appear as if we're passing each cloud slowly because there is no frame of reference to judge our speed. Our eyes can't detect any movement on the ground, and there are no other objects in the sky to provide a sense of speed or motion. Additionally, clouds are often quite large, so it can take several minutes to pass over one even at high speeds. This can create the illusion that we're moving slowly, even though we're actually traveling at several hundred miles per hour. Our brains are not accustomed to seeing objects at such a high altitude and speed, so it can be difficult to accurately judge our motion relative to the clouds.

From the following data, calculate the pressure of hydrogen gas generated by the reaction of magnesium metal and hydrochloric acid during the Ideal Gas Law experiment. Patm = Pl.0() + PL. () Vapor Pressure of Water at Various Temperatures Temperature (°C) PH20 (torr) 20.0 21.0 17.5 18.7 22.0 19.3 Mass Mg = 0.037 g VH2(9) = 37.4 mL TH2(g) = 22.0°C Atmospheric pressure = 761.6 torr 1 atm = 760 mmHg = 760.0 torr Select one: 0.9732 atm 0.97 atm 1.028 atm 0.9767 atm 1.0 atm

Answers

The pressure of hydrogen gas generated by the reaction of magnesium metal and hydrochloric acid during the Ideal Gas Law experiment is 0.9767 atm.

To calculate the pressure of hydrogen gas, we need to use the Ideal Gas Law equation, PV = nRT, where P is the pressure, V is the volume, n is the number of moles of gas, R is the gas constant, and T is the temperature in Kelvin. We can rearrange this equation to solve for P: P = nRT/V.

First, we need to calculate the number of moles of hydrogen gas generated by the reaction. The balanced equation for the reaction is:

Mg(s) + 2HCl(aq) → MgCl₂(aq) + H₂(g)

From the mass of magnesium used, we can calculate the number of moles of magnesium:

n(Mg) = m/M(Mg) = 0.037 g / 24.31 g/mol = 0.00152 mol

Since the reaction produces 1 mole of hydrogen gas for every mole of magnesium, we know that the number of moles of hydrogen gas produced is also 0.00152 mol.

Next, we need to calculate the volume of hydrogen gas produced. The volume of hydrogen gas collected was 37.4 mL, which is equivalent to 0.0374 L.

Now, we can substitute the values we have calculated into the Ideal Gas Law equation and solve for P:

P = nRT/V = (0.00152 mol)(0.08206 L atm/K mol)(295.15 K)/(0.0374 L) = 1.028 atm

However, this value is the pressure of hydrogen gas relative to the atmospheric pressure. We need to subtract the vapor pressure of water at the given temperature from the atmospheric pressure to get the pressure of hydrogen gas relative to a vacuum:

Patm - PH2O = PVacuum

From the table of vapor pressures, we can find that the vapor pressure of water at 22.0°C is 19.3 torr.

Therefore, the pressure of hydrogen gas generated by the reaction of magnesium metal and hydrochloric acid during the Ideal Gas Law experiment is:

Patm - PH2O = PVacuum

(761.6 torr - 19.3 torr) / 760.0 torr/atm = 0.9767 atm

learn more about ideal gas law here:

https://brainly.com/question/28257995

#SPJ11

The pressure of hydrogen gas generated by the reaction of magnesium metal and hydrochloric acid during the Ideal Gas Law experiment is 0.9767 atm.

To calculate the pressure of hydrogen gas, we need to use the Ideal Gas Law equation, PV = nRT, where P is the pressure, V is the volume, n is the number of moles of gas, R is the gas constant, and T is the temperature in Kelvin. We can rearrange this equation to solve for P: P = nRT/V.

First, we need to calculate the number of moles of hydrogen gas generated by the reaction. The balanced equation for the reaction is:

Mg(s) + 2HCl(aq) → MgCl₂(aq) + H₂(g)

From the mass of magnesium used, we can calculate the number of moles of magnesium:

n(Mg) = m/M(Mg) = 0.037 g / 24.31 g/mol = 0.00152 mol

Since the reaction produces 1 mole of hydrogen gas for every mole of magnesium, we know that the number of moles of hydrogen gas produced is also 0.00152 mol.

Next, we need to calculate the volume of hydrogen gas produced. The volume of hydrogen gas collected was 37.4 mL, which is equivalent to 0.0374 L.

Now, we can substitute the values we have calculated into the Ideal Gas Law equation and solve for P:

P = nRT/V = (0.00152 mol)(0.08206 L atm/K mol)(295.15 K)/(0.0374 L) = 1.028 atm

However, this value is the pressure of hydrogen gas relative to the atmospheric pressure. We need to subtract the vapor pressure of water at the given temperature from the atmospheric pressure to get the pressure of hydrogen gas relative to a vacuum:

Patm - PH2O = PVacuum

From the table of vapor pressures, we can find that the vapor pressure of water at 22.0°C is 19.3 torr.

Therefore, the pressure of hydrogen gas generated by the reaction of magnesium metal and hydrochloric acid during the Ideal Gas Law experiment is:

Patm - PH2O = PVacuum

(761.6 torr - 19.3 torr) / 760.0 torr/atm = 0.9767 atm

learn more about ideal gas law here:

https://brainly.com/question/28257995

#SPJ11

what is the difference between a solute and a solvent???????? :)​

Answers

A solvent is a substance which is present in larger amount in the solution.

A solute is the the substance which is present in lesser amount in the solution.

EXAMPLE:-

In the salt-water solution, water is the solvent and salt is the solute

hope it helps! byeeee

Answer:

Let me explain this to you with a simple example:-

Let's take Water and Salt,

When we mix both water and salt we get a solution.

Salt gets dissolved in water. Therefore, the substance which gets dissolved is called the solute. So here, Salt is the solute.

Water is dissolving the salt. Therefore, the substance that is dissolving the solute is called the solvent.

Solute + Solvent = Solution

what is the ph of a 0.01 m solution of hbf4 , pka = −9. clearly show all your work or reasoning and put a box around your answer.

Answers

Hydrogen tetrafluoroborate (HBF4) is a strong acid with a pKa of -9. This means that in water, it will donate a proton to form the hydronium ion (H3O+). To find the pH of a 0.01 M solution of HBF4,

we need to calculate the concentration of H3O+ ions. HBF4 → H+ + BF4- Let x be the concentration of H+ ions produced in the solution.

[tex][H+][BF4-]/[HBF4] = Ka[H+][BF4-]/(0.01) = 10^-9[H+][BF4-] = 10^-11[/tex]

Since HBF4 dissociates completely, the concentration of H+ ions is equal to the concentration of HBF4. Therefore:

[tex][H+] = [HBF4] = 0.01 MpH = -log[H+]pH = -log(0.01)pH = 2[/tex]

Therefore, the pH of a 0.01 M solution of HBF4 is 2.

Learn more about HBF4    here:

https://brainly.com/question/31382447

#SPJ11

What makes up nearly all of the atom's mass?
OA. The sum of all neutrons and electrons
OB. The sum of all protons and electrons
OC. The sum of all isotopes
OD. The sum of all protons and neutrons
SUBMIT

Answers

The total of all protons and neutrons is Option D, which is the right response. Protons, neutrons, and electrons are the three fundamental particles that make up an atom.

The nucleus of an atom is made up of protons and neutrons, which are collectively referred to as nucleons and are primarily responsible for an atom's mass. Neutrons weigh 1.6749 x 10-27 kg, whereas protons weigh 1.6726 x 10-27 kg.

Protons and neutrons make up the majority of an atom's mass when added together. However, electrons contribute very little to the mass of the atom due to their much smaller mass of 9.11 x 10-31 kg. As a result, Option D is the right response.

Learn more about  neutrons  at:

https://brainly.com/question/28992636

#SPJ1

a 36.0 g sample contains 14.6 g cl and 21.4 g b. what is the percent composition of boron in this sample?

Answers

In the sample provided, boron makes up 59.4% of the total makeup.

What percentage of this sample contains boron?

We must first determine the overall mass of the sample and then the mass of boron in the sample in order to determine the percent composition of boron in the given sample.

Sample mass overall is 36.0 g.

Chlorine mass in the sample is 14.6 g.

The sample's boron weight is 21.4 g.

As a result, the sample's boron content can be determined using the formula:

% composition of boron is calculated as follows: (mass of boron / total mass of sample) x 100%; (21.4 g / 36.0 g) x 100%; % composition of boron = 0.594 x 100%; and % composition of boron = 59.4%

To know more about composition visit:

https://brainly.com/question/29525205

#SPJ1

he reaction: 2 n2o5(g) 4 no2(g) o2(g), is first order in n2o5(g). when [n2o5(g)] = 0.025 m, the rate is 7.2 x 10-4 m/min. how long will it take for the rate to drop to 3.6 x 10-4 m/min?

Answers

The time will it take for the rate to drop to 3.6 x 10⁻⁴ m/min is given by the time t = 24.1 min.

The pace at which reactants change into products is known as the rate of reaction or reaction rate. It goes without saying that the pace at which chemical reactions take place varies greatly. While certain chemical reactions occur almost instantly, others often take time to achieve their ultimate equilibrium.

This page seeks to educate readers on and clarify the concept of the rate of reaction for a particular chemical molecule.

2N₂O₅(g) → 4NO₂(g) + O₂(g)

2N₂O₅(g) = 0.025M : rate = 7.2 x 10⁻⁴ M/min.

To get rate = 3.6 x 10⁻⁴ M/min how much time

[tex]-r_A=k[N_2O_5][/tex]

7.2 x 10-4 = k x 0.025

k = 288 x 10⁻⁴ min

For rate = 3.6 x 10⁻⁴

288 x 10⁻⁴ [Ca] = 3.6 x 10⁻⁴

Ca = 0.0125 M

[tex]kC_A=-\frac{dC_A}{dt}[/tex]

[tex]C_A=[C_A_o](1-e^{-kt})[/tex]

0.0125 = 0.025([tex]1-e^{-kt}[/tex])

0.5 = [tex]1-e^{-kt}[/tex]

t = 0.693/k

t = 24.1 min

t = 0.693/(288 x 10⁻⁴)

t = 24.1 min.

Therefore, the required time is 24.1 min.

Learn more about Time taken:

https://brainly.com/question/12136408

#SPJ4

Select the route that would most likely produce the desired results from the given starting material. Br I. () H2SO4 and heat;(2) HBr II. (1) KOH in ethanol: (2) HBr II. (1)H SO4 and heat: (2) HBr+ peroxides IV. (1) potassium tert-butoxide in tert-butanol; (2) HBr+ peroxides A) I B) II C) IIID. IV

Answers

The desired product is HBr, and it can be obtained from Br2 using different methods.

what the route that would most likely produce the desired results from the given starting material?

A: Br2 + H2SO4 and heat

This reaction does not produce HBr. Instead, it produces SO2, Br2, and H2O. Therefore, this route would not produce the desired results.

B: Br2 + KOH in ethanol

This reaction produces KBr and H2O, but not HBr. Therefore, this route would not produce the desired results either.

 Option D, which involves the use of potassium tert-butoxide in tert-butanol and HBr with peroxides to produce HBr from Br2

C: Br2 + H2SO4 and heat + peroxides

This reaction produces HBr, but it can be hazardous because peroxides can cause an explosive reaction. Therefore, this route is not recommended unless the peroxides are handled with caution.

D: Br2 + potassium tert-butoxide in tert-butanol + HBr + peroxides

This reaction produces HBr and is a reliable method for obtaining it. However, it also involves the use of peroxides, which can be hazardous.

Overall, the most suitable route for obtaining HBr from Br2 is Option D, using potassium tert-butoxide in tert-butanol and HBr with peroxides. It is essential to handle the peroxides with caution and follow proper safety procedures to avoid accidents.

Learn more about   HBr

brainly.com/question/29795378

#SPJ11

Use the bond energies in Table 7.2 to calculate the standard enthalpy change (∆H∘) of the following reaction. Your answer should be kJ. a. Cl2(g)⟶2Cl(g) b. 2N(g)⟶N2(g) c. CH4(g)+Cl2(g)⟶CH3Cl(g)+HCl(g) d. CH4(g)+2H2O(g)⟶4H2(g)+CO2(g)

Answers

Using the bond energies to calculate the standard enthalpy change (∆H₀) of the following reaction are:

Cl₂(g)⟶2Cl(g) ∆H₀ = 4.02 x 10⁻²² 2N(g)⟶N₂(g) ∆H₀ = 15.64 x 10⁻²²CH₄(g)+Cl₂(g)⟶CH₃Cl(g)+HCl(g) ∆H₀ = - 1.727 x 10⁻²²CH₄(g)+2H₂O(g)⟶4H₂(g)+CO₂(g) ∆H₀ = -6.37 x 10⁻²².

Bond Energy, commonly referred to as average bond enthalpy or just bond enthalpy, is a measurement that provides information about how strong a chemical bond is. "The average value obtained from the bond dissociation enthalpies (in the gaseous phase) of all the chemical bonds of a particular type in a given chemical compound," is how the word "bond energy" is defined by the IUPAC. As a result, the average amount of energy needed to break one of these chemical bonds may be thought of as the bond energy of a chemical bond in a specific molecule.

a) Cl₂(g)⟶2Cl(g)

∆H₀ = ( 242 kJmol-1)/Na = 4.02 x 10⁻²²

b) 2N(g)⟶N₂(g)

∆H₀ = ( 942 kJmol-1)/Na = 15.64 x 10⁻²²

c) CH₄(g)+Cl₂(g)⟶CH₃Cl(g)+HCl(g)

∆H₀ =(413+242-328-431)/Na = -1.727 x 10⁻²²

d) CH₄(g)+2H₂O(g)⟶4H₂(g)+CO₂(g)

∆H₀ =(( 4*413)+(4*463)-(4*436)-(2*1072))/Na = -6.37 x 10⁻²².

It is essential to remember that the average value of each chemical bond's individual bond dissociation enthalpies constitutes the bond energy of a chemical bond inside a molecule. The average of the bond dissociation energies of each individual carbon-hydrogen bond, for instance, determines the bond energy of the carbon-hydrogen bond in the methane (CH4) molecule.

Learn more about Bond energies:

https://brainly.com/question/12648422

#SPJ4

Describe how to prepare 100 ml of 0.200 m acetate buffer, ph 5.00, stating with pure liquid acetic acid and solutions containing 3m hcl and 3mnaoh

Answers

To prepare 100 mL of 0.200 M acetate buffer with a pH of 5.00, you'll need to mix appropriate amounts of acetic acid, 3 M HCl, and 3 M NaOH.

1. Calculate the required moles of acetate buffer: 0.200 M * 0.100 L = 0.020 moles.
2. Determine the ratio of acetic acid (CH₃COOH) to sodium acetate (CH₃COONa) using the Henderson-Hasselbalch equation: pH = pKa + log ([CH₃COONa] / [CH₃COOH]). The pKa of acetic acid is 4.74.
3. Calculate the required moles of CH₃COOH and CH₃COONa using the ratio from step 2.
4. Mix the required moles of CH₃COOH with an appropriate amount of 3 M HCl or 3 M NaOH to convert it into CH₃COONa.
5. Adjust the final volume to 100 mL with distilled water.

By following these steps, you'll create 100 mL of 0.200 M acetate buffer at a pH of 5.00 using pure liquid acetic acid, 3 M HCl, and 3 M NaOH.

To know more about Henderson-Hasselbalch equation click on below link:

https://brainly.com/question/13423434#

#SPJ11

chcl3 is 0.4693 are 74.166 cm3 mol−1 and 80.235 cm3 mol−1 mol−1 , respectively. what is the volume of a solution of mass 1.000 kg?

Answers

The volume of a solution of CHCl3 with a mass of 1.000 kg is approximately 1.2485 L.

To determine the volume of a solution of CHCl3 with a mass of 1.000 kg, we need to use the density and molar mass of CHCl3 to convert from mass to volume.

First, we can calculate the number of moles of CHCl3 in the solution:

mass of CHCl3 = 1.000 kg = 1000 g
molar mass of CHCl3 = 12.01 + 1.008 x 3 + 35.45 = 119.37 g/mol

moles of CHCl3 = mass of CHCl3 / molar mass of CHCl3 = 1000 / 119.37 = 8.387 mol

Next, we can use the molar volume of gases at standard temperature and pressure (STP) to convert from moles of CHCl3 to volume:

molar volume of gas at STP = 22.414 L/mol

volume of CHCl3 at STP = moles of CHCl3 x molar volume of gas at STP = 8.387 mol x 22.414 L/mol = 188.0 L

However, the density of CHCl3 is not the same as that of an ideal gas at STP. We are given the specific volumes of CHCl3 at 74.166 cm3/mol and 80.235 cm3/mol, for a total solution volume of:

volume of CHCl3 solution = moles of CHCl3 x specific volume of CHCl3 solution
= 8.387 mol x (74.166 cm3/mol + 80.235 cm3/mol) = 1248.5 cm3

Finally, we can convert the volume from cubic centimeters to liters:

volume of CHCl3 solution = 1248.5 cm3 = 1.2485 L

Therefore, the volume of a solution of CHCl3 with a mass of 1.000 kg is approximately 1.2485 L.

Visit to know more about CHCl3:-

brainly.com/question/8733538

#SPJ11

Other Questions
) a particle is moving along a curve xy2 = 12. as it passes through the point (3, 2), its x position is changing at a rate of 3cm/sec. how fast is y changing at that instant? explain why f (2)+ f(3) f (5) If the product is not dry before taking an IR spectrum, how will the spectrum change for that ofpure isopentyl acetate (as see in your text p. 90)? (2 pts) The total pressure of a gas mixture is the sum of the partial pressure of its components is known as A) Avogadro's Law. C) Charles's Law. E) Dalton's Law. B) Ideal Gas Law. D) Boyle's Law. Write me a meme about monetary policy PLEASE HELP!! Which is an example of a rock formation that is composed of two or more rock types?A. Tapeats sandstone formationB. Bright Angel shale formationC. Chinle formationD. Mauv limestones What is wavelength of electrons with energy of 50 keV? with appropriate units and fundamental constants, like [J]-[kg(m/s)], sc A h 6.6 10M Js 4.14 101s ev s; 13-6.24 10'" eV; m-9.1 10" kg. Como se hace para primaria. a closely wound, circular coil with radius 2.40 cm has 760 turns.Part A :What must the current in the coil be if the magnetic field at the center of the coil is 0.0550 T Pacemaker cells in the heart are very important. Which of the following would result if the pacemaker cells depolarized and reached threshold faster than normal?(A) The ORS would increase in amplitude (get taller)(B) The P-wave would increase in amplitude (get taller)(C) The ventricles would produce more force when contracting(D) Heart rate would increase A person invests 3500 dollars in a bank. The bank pays 6.25% interest compounded annually. To the nearest tenth of a year, how long must the person leave the money in the bank until it reaches 8700 dollars? sketch the region. s = (x, y) | x 1, 0 y ex 65 yo M presents with painless hematuria. He is a heavy smoker and works as a painter. What is the most likely diagnosis? Which phrase describes blackbody radiation? A. light given off by an object based on its color. B. light given off by an object based on its temperature. C. radiation that explains the wave model of light. D. radiation that decreases in energy as an object warms. In a corporate setting, property taxes are an example of a(n) __________.a. mixed costb. committed fixed costc. discretionary fixed costd. engineering cost I need help with this assignment A nurse assesses a patient's heel and finds a shallow open area with a pink wound bed. How should the nurse document this finding? A. Arterial ulcer B. Unstageable C. Stage I pressure injury D. Stage Il pressure injury b. what conditions might favor stealing cars instead of robbing banks? (2 pts) What do you think we should do to make sure we have the right job posting?A. It will save time if we just use the job posting that was used to hire me. B. I'll do a personal job analysis and use that to craft a job description. C. I'll ask the VP what she thinks we should do first to make sure we're heading in the right direction. D. I'll do a personal job analysis and use that to craft a job description. A hospitalized 8 month-old infant is receiving gentamicin. While monitoring the infant for drug toxicity, the nurse should focus on which laboratory result?Platelet countsSerum creatinineThyroxin levelsGrowth hormone levels