Answer:
a. Discrete
b. Continuous
c. Continuous
d. Discrete
e. Discrete
f. Continuous
g. Discrete
h. Continuous
i. Continuous
j. Discrete
Step-by-step explanation:
a. The number of fence posts in a garden is a discrete data because it is a countable quantity and cannot be measured or subdivided. It can only take on integer values.
b. The length, in meters, of each car in a car park is a continuous data because it can take on any value within a certain range. It can be measured more accurately and can be subdivided into smaller units.
c. The weights of pineapples in a box is continuous data because it can take on any value within a certain range. It can be measured more accurately and can be subdivided into smaller units.
d. The number of pineapples in a box is discrete data because it is a countable quantity and cannot be measured or subdivided. It can only take on integer values.
e. The number of chairs in a classroom is discrete data because it is a countable quantity and cannot be measured or subdivided. It can only take on integer values.
f. The heights of the students in a classroom is continuous data because it can take on any value within a certain range. It can be measured more accurately and can be subdivided into smaller units.
g. The number of mobile phones sold in one day is discrete data because it is a countable quantity and cannot be measured or subdivided. It can only take on integer values.
h. The time it takes to complete a crossword puzzle is continuous data because it can take on any value within a certain range. It can be measured more accurately and can be subdivided into smaller units.
i. The waist sizes of trousers sold in a shop is continuous data because it can take on any value within a certain range. It can be measured more accurately and can be subdivided into smaller units.
j. The number of pairs of trousers sold in a shop is discrete data because it is a countable quantity and cannot be measured or subdivided. It can only take on integer values.
find the requested higher-order derivative for the given function. d 2^y/dx^2 of y = 3 sin(x)+ x^2 cos(x)
The second derivative of y = 3sin(x) + [tex]x^{2 cosx}[/tex] is [tex]d^{2y}[/tex]/dx^2 = -3sin(x) - x²cos(x) + 2cos(x) - 2xsin(x).
How to find the second derivative of y = 3 sin(x) + x² cos(x)?To find the second derivative of y = 3 sin(x) + x² cos(x), we need to take the derivative of the first derivative of y with respect to x.
First, let's find the first derivative of y:
dy/dx = 3cos(x) - [tex]x^{2sin(x)}[/tex] + 2xcos(x)
Now, let's take the derivative of this expression with respect to x to find the second derivative:
[tex]d^{2y}[/tex]/dx² = -3sin(x) - x²cos(x) + 2cos(x) - 2xsin(x)
Therefore, the second derivative of y = 3sin(x) + [tex]x^{2 cosx}[/tex] is [tex]d^{2y}[/tex]/dx^2 = -3sin(x) - x²cos(x) + 2cos(x) - 2xsin(x).
Learn more about second derivative
brainly.com/question/29090070
#SPJ11
5. What is the volume of the rectangular prism shown below?”hight 4 1/4 ft””width 1 1/2 ft” “length 2 ft”
A. 7 3/4cubic feet
B. 8 1/8 cubic feet
C. 12 3/4 cubic feet
D. 13 1/2 cubic feet
The volume of the rectangular prism shown is 12 3/4 cubic feet. The correct option is (C).
Showing how to calculate Volume of a rectangular prismThe volume of a rectangular prism is given by:
V = length x width x height
Given
height (h) = 4 1/4 ft = 17/4
width (w) 1 1/2 ft = 3/2
length (l) = 2 ft.
Substitute the values:
Volume = length x width x height
= 2 ft x 3/2 ft x 17/4 ft
= 51/4 cubic feet
= 12 3/4 cubic feet
Therefore, the volume of the rectangular prism is 12 3/4 cubic feet.
Learn more about rectangular prism here:
https://brainly.com/question/23963432
#SPJ1
Consider a capital budgeting example with five projects from which to select. Let xi = 1 if project i is selected, 0 if not, for i = 1,...,5. Write the appropriate constraint(s) for each condition. Conditions are independent.
a.
Choose no fewer than three projects.
b.
If project 3 is chosen, project 4 must be chosen.
c.
If project 1 is chosen, project 5 must not be chosen.
d.
Projects cost 100, 200, 150, 75, and 300 respectively. The budget is 450.
e.
No more than two of projects 1, 2, and 3 can be chosen.
Note that if x1 = x2 = x3 = 0, then the constraint is satisfied regardless of the values of x4 and x5.
a. The constraint for choosing no fewer than three projects can be written as:
x1 + x2 + x3 + x4 + x5 ≥ 3
b. The constraint for selecting project 4, if project 3 is chosen, can be written as:
x3 ≤ x4
Note that if x3 = 0, then the constraint is satisfied regardless of the value of x4.
c. The constraint for not selecting Project 5 if Project 1 is chosen can be written as:
x1 + x5 ≤ 1
Note that if x1 = 0, then the constraint is satisfied regardless of the value of x5.
d. The constraint for staying within the budget can be written as:
100x1 + 200x2 + 150x3 + 75x4 + 300x5 ≤ 450
e. The constraint for selecting no more than two of projects 1, 2, and 3 can be written as:
x1 + x2 + x3 ≤ 2
To know more about constraints refer to
https://brainly.com/question/30409671
#SPJ11
K is a field with 4 elements containing Z2 as subfield. Then in addition to 0, 1 from Z2, the field K has two extra elements; call these α and β.(a) Show that α + 1 = β.(b) Show that\small \alpha ^2= β
a. We have shown that α + 1 = β.
b. We have shown that α² = β.
What are elements?A substance that cannot be broken down into another substance is referred to as an element. Because each element is made up of its own type of atom, each element is distinct and distinct from the others.
Since K is a field with 4 elements, the nonzero elements of K form a cyclic group of order 3 under multiplication. Let us call this group G. Since G is cyclic, it has a unique generator, say g. Then we can write G = {1, g, g²}.
Now, since α and β are both in K but not in Z2, they must be elements of G. Moreover, since K contains Z2 as a sub-field, α and β must be roots of the polynomial x² + x + 1 over Z2. Therefore, we have the following possibilities for α and β:
α = g
β = g²
or
α = g²
β = g
a. Let us first consider the case where α = g and β = g². Then we have:
α + 1 = g + 1
= g² + g + 1 (since g³ = 1)
= β + α + 1 (since β = g² and α = g)
= β
Therefore, we have shown that α + 1 = β.
b. Next, we will show that α² = β. Using the same assumption that α = g and β = g², we have:
α² = g²
= β
Therefore, we have shown that α² = β.
Learn more about polynomials on:
https://brainly.com/question/4142886
#SPJ11
78×45+22×45 using distributive property of multiplication over addition
The equation 78x45 + 22x45 can be simplified using the distributive property of multiplication over addition as follows:
The distributive property of multiplication over addition is a mathematical property that allows us to break down a multiplication problem involving the sum of two or more numbers.
The distributive property states that multiplying a number by a sum of two or more numbers is the same as doing each multiplication separately, then adding the products.
78x45 + 22x45
= (78 + 22) x 45
= 100 x 45
= 4500
Therefore, 78x45 + 22x45 = 4500.
For more details regarding distributive property, visit:
https://brainly.com/question/5637942
#SPJ1
The equation 78x45 + 22x45 can be simplified using the distributive property of multiplication over addition as follows:
The distributive property of multiplication over addition is a mathematical property that allows us to break down a multiplication problem involving the sum of two or more numbers.
The distributive property states that multiplying a number by a sum of two or more numbers is the same as doing each multiplication separately, then adding the products.
78x45 + 22x45
= (78 + 22) x 45
= 100 x 45
= 4500
Therefore, 78x45 + 22x45 = 4500.
For more details regarding distributive property, visit:
https://brainly.com/question/5637942
#SPJ1
let s=∑n=1[infinity]an be an infinite series such that sn=4−4n2. (a) what are the values of ∑n=110an and ∑n=416an? ∑n=110an=
The expression for the nth term an, for the infinite series s=∑n=1[infinity]an is ∑n=4¹⁶an = 468
We know that the sum of the first n terms of the series is given by sn. Therefore, we can find an expression for the nth term an by taking the difference between successive values of sn:
sn - sn-1 = an
(4-4n²) - (4-4(n-1)²) = an
Simplifying this expression, we get:
an = 8n - 4
Now we can use this expression to find the values of ∑n=1¹⁰an and ∑n=4¹⁶an:
∑n=1¹⁰an = a1 + a2 + ... + a10
= (81 - 4) + (82 - 4) + ... + (8*10 - 4)
= 76
Therefore, ∑n=1¹⁰an = 76.
Similarly,
∑n=4¹⁶an = a4 + a5 + ... + a16
= (84 - 4) + (85 - 4) + ... + (8*16 - 4)
= 468
Therefore, ∑n=4¹⁶an = 468.
Know more about expression here:
https://brainly.com/question/14083225
#SPJ11
Find the linear approximation of a rational function and use it to estimate function values Question Find the linear approximation of f(x) = at x = 3 and use the approximation to estimate 29 Submit an exact answer in fractional form. Provide your answer below: L(2.9) = 1
To find the linear approximation of f(x) at x = 3, we need to calculate the derivative f'(x) and then use the formula for the linear approximation: L(x) = f(a) + f'(a)(x-a).
Step 1: Calculate the derivative f'(x) of the given function f(x).
As the function is not provided, I'll assume it's a general rational function, f(x) = P(x)/Q(x), where P(x) and Q(x) are polynomials. To find the derivative, use the quotient rule: f'(x) = (P'(x)Q(x) - P(x)Q'(x))/Q(x)^2.
Step 2: Evaluate f(3) and f'(3).
Once you find f'(x), plug in x=3 to get f(3) and f'(3).
Step 3: Use the linear approximation formula.
L(x) = f(3) + f'(3)(x-3).
Now, estimate L(2.9):
L(2.9) = f(3) + f'(3)(2.9-3) = f(3) - 0.1f'(3).
To provide an exact answer in fractional form, compute the numerical values of f(3) and f'(3) and substitute them in the equation above.
To know more about linear approximation click on below link:
https://brainly.com/question/1621850#
#SPJ11
ANSWER THIS QUESTION QUICKLY PLS!
Bananas, strawberries, peaches, grapes, melon, and kiwi are available to use to make a fruit salad.
How many different fruit salads can you make using up to three different fruits?
The number of different fruit salads that can be made using up to three different fruits is 41
What are Combinations?The number of ways of selecting r objects from n unlike objects is given by combinations
ⁿCₓ = n! / ( ( n - x )! x! )
where
n = total number of objects
x = number of choosing objects from the set
Given data ,
For each possible number of fruits (1, 2, or 3), we can count the number of ways to choose that many fruits from the available options and then sum up the results
To make a fruit salad with one fruit, we can choose any of the six available fruits. There are 6 ways to do this
To make a fruit salad with two fruits, we can choose any two fruits from the six available options. This can be done using the combination formula
C(6,2) = 6! / (2! x (6-2)!) = 15
So, there are 15 ways to make a fruit salad with two fruits
And , To make a fruit salad with three fruits, we can choose any three fruits from the six available options. This can be done using the combination formula:
C(6,3) = 6! / (3! x (6-3)!) = 20
So , the total number of ways A = 6 + 15 + 20
A = 41 ways
Hence , the different fruit salads is A = 41
To learn more about combinations click :
https://brainly.com/question/28065038
#SPJ2
Mark all points (x,y) such that ;
A) y = x + 3,
B) y = - x + 3,
C) y = |x| + 3
Please help ASAP!!
Thanks <3 <3
A) y = x + 3 represents a straight line with a slope of 1 passing through the point (0,3).
B) y = -x + 3 represents a straight line with a slope of -1 passing through the point (0,3).
C) y = |x| + 3 represents two lines; one with a slope of 1 passing through the point (-3,0) and another with a slope of -1 passing through the point (3,0).
How to explain the slopeThe points (x,y) that satisfy all three equations must lie on the lines with slope 1 and -1 passing through the point (0,3).
These lines intersect at the point (1,4) and the set of points that satisfy all three equations is the single point (1,4).
Learn more about slope on
https://brainly.com/question/3493733
#SPJ1
Please help!!! How do I explain this?
Task: Determine whether each statement is always, sometimes, or never true. Explain.
Answer:
The statement "If a and b are integers and a > b, then lal > Ibl" is true.
Explanation:
|a| represents the absolute value of a, which is the distance of a from zero on the number lineSince a is greater than b (a > b), a is further away from zero on the number line than bTherefore, |a| must be greater than |b|This can be written as: |a| > |b|Since a and b are integers, their absolute values will always be positive integersTherefore, we can drop the absolute value signs, and the statement can be written as: |a| > |b| becomes a > bThis means that the magnitude of a (i.e., |a|) is greater than the magnitude of b (i.e., |b|)So, the statement "If a and b are integers and a > b, then lal > Ibl" is trueConsider the following. X = sin(t), y = csct), 0
Eliminate the parameter to find a Cartesian equation of the curve.
The Cartesian equation of the curve is Y = 1/X.
To the parameter and find a Cartesian equation of the curve using the given terms. Consider the following:
X = sin(t), Y = csc(t), and 0 ≤ t ≤ 2π
Step 1: Rewrite Y in terms of sin(t)
Since Y = csc(t), we know that csc(t) = 1/sin(t). Therefore, Y = 1/sin(t).
Step 2: Eliminate the parameter t
We already have X = sin(t), so we can substitute this into the equation for Y:
Y = 1/X
Step 3: Write the Cartesian equation of the curve
Now that we have eliminated the parameter t, the Cartesian equation of the curve is simply:
Y = 1/X
Therefore, the Cartesian equation of the curve is Y = 1/X.
Know more about Cartesian equation here:
https://brainly.com/question/14869452
#SPJ11
Sketch the straight-line Bode plot of the gain only for the following voltage transfer functions: T(S) = 20s/ S2 + 58s + 400
To sketch the straight-line Bode plot of the gain only for the voltage transfer function T(S) = 20s/ S2 + 58s + 400, we first need to break it down into its constituent parts. The numerator is simply a constant gain of 20, while the denominator can be factored into two second-order terms:
T(S) = 20s/ (S+20)(S+20)
Using the standard Bode plot rules for second-order systems, we can plot each term separately and then combine them to get the overall plot. For each term, we need to find the resonant frequency, damping ratio, and gain at low and high frequencies.
For the first term (S+20), the resonant frequency is 20, the damping ratio is 1/2, and the low-frequency gain is 0 dB. At high frequencies, the gain rolls off at a rate of -20 dB/decade.
For the second term (S+20), the resonant frequency is also 20, the damping ratio is 1/2, and the low-frequency gain is 0 dB. However, at high frequencies, the gain rolls off at a rate of -40 dB/decade due to the double pole.
To combine these two plots, we simply add the gains at each frequency and use the steeper roll-off rate for the second term. The result is a straight-line Bode plot with a gain of 20 dB at low frequencies, a resonant peak at 20 rad/s, and a steep roll-off at high frequencies.
The plot will cross the 0 dB line at two points, one before and one after the resonant peak, due to the double pole in the transfer function.
To know more about bode plot refer here:
https://brainly.com/question/31494988?#
#SPJ11
Use the method of undetermined cool mined coeffi- cients to find a particular solution to the given higher-order equation.
a. y" - y" + y = sint 34.
b. 2y" + 3y" + y' - 4y = e*
c. y" + y" - 2y = te
d. y(4) – 3y" – 8y = sint
A particular solution is y_p(t) = -1/2sin(t) + 1/2cos(t), and the general solution is: y(t) = y_h(t) + y_p(t) = c1e^(t/2)cos(√3t/2) + c2e^(t/2)sin(√3t/2) - 1/2sin(t) + 1/2cos(t).
a. For the equation y'' - y' + y = sin(t), the characteristic equation is r^2 - r + 1 = 0, which has complex roots r = (1 ± i√3)/2. Therefore, the homogeneous solution is y_h(t) = c1e^(t/2)cos(√3t/2) + c2e^(t/2)sin(√3t/2).
To find a particular solution, we assume it has the form y_p(t) = Asin(t) + Bcos(t), where A and B are unknown constants. Taking the derivatives, we get y_p'(t) = Acos(t) - Bsin(t) and y_p''(t) = -Asin(t) - Bcos(t). Substituting these into the original equation, we get:
(-Asin(t) - Bcos(t)) - (Acos(t) - Bsin(t)) + Asin(t) + Bcos(t) = sin(t)
Simplifying, we get:
2B = 1
Therefore, B = 1/2. Substituting this into the equation above, we get:
-Acos(t) + 1/2sin(t) + Acos(t) - 1/2sin(t) = sin(t)
Simplifying, we get:
A = -1/2
Therefore, a particular solution is y_p(t) = -1/2sin(t) + 1/2cos(t), and the general solution is:
y(t) = y_h(t) + y_p(t) = c1e^(t/2)cos(√3t/2) + c2e^(t/2)sin(√3t/2) - 1/2sin(t) + 1/2cos(t).
To know more about particular solution refer here:
https://brainly.com/question/20372952#
#SPJ11
Three of the vertices of a rectangle are located at (5, 2), (8, 2), (5, -5). Find the coordinates of the 4th vertex and then find the area of the rectangle. 4th Vertex (
Question Blank 1 of 2
2,-5
)
Area
Question Blank 2 of 2
type your answer. Units2
Thus, the 4th coordinate of the rectangle with the given coordinates is found as : D(8, -5). Area of the rectangle ABCD = 21 sq. units.
Explain about the distance formula:The Pythagorean theorem serves as the foundation for the distance formula. A line connecting two sites of interest is the hypotenuse of a right triangle, and this particular line connects the two points of interest.
The neighbouring side is obtained by joining the x-coordinates of a two points in a horizontal line, whereas the opposing side is obtained by joining the y-coordinates.
d=√((x2 - x1)²+(y2 - y1)²)
Given data:
vertices of a rectangle ABCD -
A(5, 2), B(8, 2), C(5, -5)
Let the 4 the vertex be D(x,y).
Plot the coordinates on the graph.
Now, we know that - opposite sides of the rectangle are equal.
Thus,
AB = CD
From graph,D(x,y).
x - (5 + 3) = 8
y - (2 - 7) = -5
Thus, the 4th coordinate of the rectangle with the given coordinates is found as : D(8, -5).
Area of the rectangle ABCD = length x breadth
length = 2 + 5 = 7 units
width = 8 - 5 = 3 units
Area of the rectangle ABCD = 7 x 3
Area of the rectangle ABCD = 21 sq. units.
know more about the distance formula:
https://brainly.com/question/13256731
#SPJ1
Let g and h be the functions defined by g(x) = sin ( +2)) +3 and h(z) = - - - 2+3. ff is a function that satisfies (2) S (2) Sh() for 2 <= 0, what is lim (3) D) The limit cannot be determined from the information given
The answer is (D) The limit cannot be determined from the information given.
To start, we need to simplify the given equation:
f(2) = g(2) + h(2)
Substituting 2 into g(x), we get:
g(2) = sin(2π/3 + 2) + 3
Using the unit circle, we can see that sin(2π/3 + 2) = sin(2π/3 - 1) = √3/2 * cos(1) - 1/2 * sin(1)
So, g(2) = √3/2 * cos(1) - 1/2 * sin(1) + 3
Now, substituting 2 into h(z), we get:
h(2) = -2/(2+3)
Simplifying, we get h(2) = -2/5
Therefore, f(2) = g(2) + h(2) = √3/2 * cos(1) - 1/2 * sin(1) + 3 - 2/5
Now, to find the limit as x approaches 3, we need to evaluate:
lim (x→3) f(x)
However, since we only have information for f(2), we cannot determine the limit as x approaches 3.
Therefore, the answer is (D) The limit cannot be determined from the information given.
Learn more about trigonometric functions here: brainly.com/question/6904750
#SPJ11
Please awnser and illl give u crown!
Sarah's profit-maximizing amount of output is 200 Sandwiches per day.
What is the profit-maximizing point ?
At the intersection of marginal cost (MC) and the demand curve, a firm will be producing the level of output where it maximizes its profit. This point is also known as the profit-maximizing point or the point of allocative efficiency.
For the given diagram or graph, Sarah's profit-maximizing amount of output will occur at the intersection of the marginal cost curve and the demand curve.
This point = $8 and 200 Sandwiches per day.
Learn more about profit-maximizing point here: https://brainly.com/question/28253283
#SPJ1
9. Ms. Green writes a function e(h) that can be used to predict the number of eggs that will be laid daily
by 1,000 chickens when exposed to h hours of light per day.
What is the domain of e(h)?
A. the integers from 0 to 24
B. the integers from 0 to 1,000
C. the real numbers from 0 to 24
D. the real numbers from 0 to 1,000
The domain of e(h) is given as C. the real numbers from 0 to 24
How to solveThe domain of e(h) should be the set of values that h can take on. Since h represents the number of hours of light per day that the chickens are exposed.,
Therefore, the domain would be the real numbers from 0 to 24. So, the correct answer is: C. the real numbers from 0 to 24
With this in mind, it can be seen that the correct answer is option C
Real numbers encompass all logical and irrational figures, visible on a numerical graph with three values: positive, negative, or zero.
These numbers offer pertinent traits as they allow their arithmetic to undergo operations like adding, subtracting, multiplying, and dividing without loss of significance.
Read more about domain here:
https://brainly.com/question/26098895
#SPJ1
The gas tank in Orlando’s car holds 16 gallons. What is the capacity of the gas tank in liters? Round to the nearest tenth.
Answer:
To convert gallons to liters, we need to multiply the number of gallons by 3.78541, which is the conversion factor.
Capacity in liters = 16 gallons * 3.78541 liters/gallon
Capacity in liters = 60.56 liters (rounded to the nearest tenth)
Therefore, the capacity of the gas tank in liters is approximately 60.6 liters.
Answer:
60.6
Step-by-step explanation:
First, we find how many liters there are in a gallon. We find there are 3.78541178 liters in a gallon. 16*3.78541178 =60.5665885 Rounding to the nearest tenth, we get 60.6 as our answer.
a bank loans Minh $3,000 for a period of 5 years. The simple interest rate of the loan is 9%. what is the total amount of interest that Minh will need to pay the bank at the end of 5 years?
The total amount of interest that Minh will need to pay the bank at the end of 5 years is $1,350 whose principal amount is $3,000
The formula for simple interest is:
I = P × r × t
Where:
I is the amount of interest
P is the principal amount borrowed
r is the interest rate per year
t is the time period in years
In this case, P = $3,000, r = 9% = 0.09 (as a decimal), and t = 5 years. Substituting these values into the formula, we get:
I = 3000 × 0.09 × 5
I = $1,350
Therefore, the total amount of interest that Minh will need to pay the bank at the end of 5 years is $1,350.
To learn more on Percentage click:
https://brainly.com/question/24159063
#SPJ1
The total amount of interest that Minh will need to pay the bank at the end of 5 years is $1,350 whose principal amount is $3,000
The formula for simple interest is:
I = P × r × t
Where:
I is the amount of interest
P is the principal amount borrowed
r is the interest rate per year
t is the time period in years
In this case, P = $3,000, r = 9% = 0.09 (as a decimal), and t = 5 years. Substituting these values into the formula, we get:
I = 3000 × 0.09 × 5
I = $1,350
Therefore, the total amount of interest that Minh will need to pay the bank at the end of 5 years is $1,350.
To learn more on Percentage click:
https://brainly.com/question/24159063
#SPJ1
PLEASE HELP
Use technology or a z-distribution table to find the indicated area.
The weights of tomatoes in a bin are normally distributed with a mean of 95 grams
and a standard deviation of 3.6 grams.
Approximately
25% of the tomatoes weigh less than which amount?
93 g
96g
92g
90 g
Approximately 25% of the tomatoes weigh less than, given the standard deviation and mean, A. 93 g.
How to find the approximate amount ?25 % of tomatoes is the value that we are looking for. On the z - distribution table, the closest to this amount is 0.2486, and this has a z - score of - 0. 674.
With this z - score, we can use the z - score formula to find the amount that the 25 % of tomatoes weigh:
z = (x - μ) / σ
-0. 674 = (x - 95 ) / 3.6
x - 95 = -0. 674 x 3. 6
x = 95 - 2. 4264
x = 92. 5736
x = 93 grams
Find out more on the z - distribution table at https://brainly.com/question/24213960
#SPJ1
The length of the shorter leg?
The length of the longer leg?
The lengths of the legs of the right triangle are given as follows:
2.39 feet and 4.39 feet.
What is the Pythagorean Theorem?The Pythagorean Theorem states that in a right-angled triangle, the square of the length of the hypotenuse (the longest side) is equal to the sum of the squares of the lengths of the other two sides.
The theorem is expressed as follows:
c² = a² + b².
In which:
c is the length of the hypotenuse.
a and b are the lengths of the other two sides (the legs) of the right-angled triangle.
The parameters for this problem are given as follows:
Legs of x and x + 2.Hypotenuse of 5.Hence the value of x is obtained as follows:
x² + (x + 2)² = 5²
x² + x² + 4x + 4 = 25
2x² + 4x - 21 = 0.
Using a calculator, the positive solution for x is given as follows:
2.39.
Hence the legs are:
2.39 feet and 4.39 feet.
More can be learned about the Pythagorean Theorem at brainly.com/question/30203256
#SPJ1
A marketing firm is considering making up to three new hires. Given its specific needs, the firm feels that there is a 60% chance of hiring at least two candidates. There is only a 5% chance that it will not make any hires and a 10% chance that it will make all three hires. A. What is the probability that the firm will make at least one hire? b. Find the expected value and the standard deviation of the number of hires
For a marketing firm which is considering making up to three new hires.
a) The probability that the firm will make at least one hire is equals to the 0.90.
b) The expected value and the standard deviation of the number of hires are 1.57 and 0.78 respectively.
We have a marketing firm is considering making up to three new hires. Let's consider the a random variable X that represents the hiring of candidates. So, possible values of X = 0, 1, 2,3.. Now, The chances of probability of hiring at least two candidates, P( X ≥ 2) = 60% = 0.60
The chances of probability that hiring of none of them = P( X = 0) = 10% = 0.10
The chances of probability that hiring of all of them = P( X = 3) = 5% = 0.05
We have to determine probability that the firm will make at least one hire, P(X ≥ 1).
By probability law, sum of any possible probability values = 1
=> P( X≥ 1 ) = 1 - P( X = 0)
= 1 - 0.10 = 0.90
b) The expected value, E(X), or we say mean μ of a discrete random variable X, is equals to the sum of resultant of multiply each value of the random variable by its probability. The formula is, E ( X ) = μ = ∑ x P ( x )
So, Probability that hiring of exactly two candidates, P( X= 2). As we know, P( X ≥ 2) = 0.60
=> P ( 3) + P (2) = 0.60
=> P(2) = 0.60 - 0.05 = 0.55
Probability that hiring of exactly one candidates, P( X= 1). From, P( X≥ 1 ) = 0.90
=> P( 1) + P ( 3) + P (2) = 0.90
=> P(1) = 0.30
Hence, excepted value, E(X) = ∑ x P ( x )
= 0 × 0.10 + 1× 0.30 + 2× 0.55 + 3× 0.05
= 1.57
Now, standard deviations, σ =√E(X²) - (E(X))²
E(X²) = ∑ x² P ( x )
= 0² ×0.10 + 1² ×0.30 + 2²× 0.55 + 3²× 0.05
= 3.07
so, the standard deviation of the number of hires = √3.07² - 1.57² = 0.78
Hence, required value is 0.78.
For more information about probability, visit:
https://brainly.com/question/25870256
#SPJ4
consider the function f(x)=cot(x) 10 over the interval [−π,π3]. does the extreme value theorem guarantee the existence of an absolute maximum and minimum for f(x) on this interval?
The Extreme Value Theorem does not guarantee the existence of an absolute maximum and minimum for f(x) on this interval.
The extreme value theorem states that if a function is continuous over a closed interval, then it must have at least one absolute maximum and one absolute minimum on that interval. In the case of f(x) = cot(x) 10 over the interval [−π,π3], this function is continuous over the interval since it is the composition of two continuous functions (cot(x) and 10). Therefore, the extreme value theorem guarantees that there must be at least one absolute maximum and one absolute minimum for f(x) on this interval.
The Extreme Value Theorem states that if a function is continuous on a closed interval, then it has an absolute maximum and minimum on that interval. The function f(x) = cot(x) is not continuous over the interval [-π, π/3] due to the presence of vertical asymptotes, where the function is undefined. Therefore, the Extreme Value Theorem does not guarantee the existence of an absolute maximum and minimum for f(x) on this interval.
To learn more about Extreme Value Theorem, click here:
brainly.com/question/30760554
#SPJ11
If Bitcoin's share price crashed, from $60,000 to $19,500...what was the percent of decrease?
Answer:
67.5%
Step-by-step explanation:
To calculate the percentage decrease in the share price of Bitcoin, we can use the following formula:
Percentage decrease = ((original value - new value) / original value) x 100%
Here, the original value is the share price before the crash, which is $60,000, and the new value is the share price after the crash, which is $19,500.
Substituting these values into the formula, we get:
Percentage decrease = ((60,000 - 19,500) / 60,000) x 100%
= 40,500 / 60,000 x 100%
= 67.5%
Therefore, the percentage decrease in the share price of Bitcoin is 67.5%.
Need help with logic puzzle ASAP
The above is a logic puzzle. Logic puzzles challenge the mind and enhance critical thinking.
The findings based on the clues givenAccording to the clues given, Jane was seen checking out an action book after leaving either a Biology or History class. It was also determined that Jayson is enrolled in Biology and the student who checked out a fantasy book, Jose, has an English class immediately following Jenny's.
Furthermore, we were able to deduce that the individual who left a History class was the same person who checked out a mystery novel while the student studying French must have been present during 1st period.
Jaden, who is currently enrolled in Algebra class, is observed browsing through a Manga novel. It can be noted that while studying for academic subjects like Math, the temptation to deviate towards leisure reading material can often pose as a distraction.
Learn more Logic Puzzles:
https://brainly.com/question/31149956
#SPJ1
In an examination, Tarang got 25% marks and failed by 64 marks. If he had got 40% marks he would have secured 32 marks more than the pass marks. Find the percentage of marks required to pass..
Answer:
224
Step-by-step explanation:
Total marks = x
x * 25% + 64 = x * 40% - 32
x * 15% = 96
x = 640
Maximum Marks = 640..
Marks Scored = 25% of 640
= 160
Marks Required to pass = 160 + 64
= 224
Carson has $50 in the bank to put towards a new e-bike. If every three
months afterwards he saves $20 additional dollars to put towards the
bike, how much will he have saved up for it after three years?
When the algebraic signs on the net cash flows change more than once, the cash flow sequence is called ____________. Open choices for matching
The answer is non-conventional cash flow .
Cash flow refers to the movement of money in and out of a business or individual's financial accounts over a specific period of time. It represents the inflow and outflow of actual cash, as opposed to accounting profit or loss, which may include non-cash items such as depreciation or accruals .
When the algebraic signs on the net cash flows change more than once, the cash flow sequence is called non-conventional cash flow .
Learn more about : Cash flow - https://brainly.com/question/31499701
#SPJ11
if dy/dx=x cos x^2, and y=-3, when x=0, when x=pi y=
A. −3.215
B. sqrt(2)
C. 1.647
D. 6
E. 3pi
The differentiation of dy/dx is (A) -3.215.
What is differentiation?A function's derivative with respect to an independent variable can be used to define differentiation. Calculus differentiates to measure the function per unit change in the independent variable.
To solve the differential equation dy/dx=x*cos(x²), we need to integrate both sides with respect to x.
Integrating the right-hand side involves the substitution u = x², du/dx = 2x, so that cos(x²) dx = (1/2)cos(u) du.
Substituting u = x² and cos(u) = cos(x²) in the integral we have:
dy/dx = x*cos(x²)
=> dy = x*cos(x²)dx
=> ∫ dy = ∫ x*cos(x²)dx
=> y = (1/2) sin(x²) + C
where C is a constant of integration.
To determine the value of C, we use the initial condition y=-3 when x=0:
y = (1/2)sin(x²) + C
=> -3 = (1/2)sin(0) + C
=> C = -3
Using a calculator or a table of values for sine, we have sin(π²) ≈ 0.0247, so:
y = (1/2)sin(π²) - 3
=> y ≈ -2.9876
Therefore, the answer is closest to option A, -3.215.
Learn more about differentiation on:
https://brainly.com/question/954654
#SPJ1
The expression 15a + 12c is the cost (in dollars) for a adults and c students to enter a museum. Find the total cost for 6 adults and 38 students.
Answer:
$546
Step-by-step explanation:
It is given that the variables:
a = adults
c = students.
There are 6 adults, and 38 students. Plug in 6 for a, and 38 for c in the given expression:
[tex]15a + 12c\\15(6) + 12(38)[/tex]
Simplify. Remember to follow PEMDAS. PEMDAS is the order of operations, and stands for:
Parenthesis
Exponents (& Roots)
Multiplications
Divisions
Additions
Subtractions
~
First, multiply 15 & 6, and 12 & 38 together:
[tex](15 * 6) + (12 * 38)\\(90) + (456)[/tex]
Next, simplify by adding:
[tex]90 + 456 = 546[/tex]
$546 is your total cost.
~
Learn more about solving order of operations, here:
https://brainly.com/question/15840745