Answer: Option D 9(3)^x
Step-by-step explanation:
3^x+2 = 9(3)^x
9= 3^2
whenever there are same 2 numbers in multiplication, there powers are added.
Therefore, 3^2(3^x) = 3^(x+2)
Find the sum of the series.
[infinity] (−1)^n π^2n
n =0 6^2n(2n)!
The sum of the given series is 72 / (72 + π^2).
We can use the formula for the sum of an infinite geometric series:
S = a / (1 - r)
where S is the sum, a is the first term, and r is the common ratio. In this case, the first term is (-1)^0 π^0 / (6^0 (2*0)!), which simplifies to 1, and the common ratio is (-1) π^2 / (6^2 (2*1)!), which simplifies to -π^2 / 72. Thus, we have:
S = 1 / (1 + π^2 / 72)
Now, we can simplify the denominator by multiplying the numerator and denominator by 72:
S = 72 / (72 + π^2)
Therefore, the sum of the given series is 72 / (72 + π^2).
Visit to know more about Sum:-
brainly.com/question/24205483
#SPJ11
(b) group the following numbers according to congruence mod 13. that is, put two numbers in the same group if they are equivalent mod 13. {−63, -54, -41, 11, 13, 76, 80, 130, 132, 137}
When grouping the given numbers according to congruence mod 13, we find the following groups:
Group 1: {-63}(equivalent to -11 mod 13)
Group 2: {-54, -41}(equivalent to -2 mod 13)
Group 3: {11, 76}(equivalent to 11 mod 13)
Group 4: {13,130}(equivalent to 0 mod 13
Group 5: {80,132}(equivalent to 2 mod 13)
Group 6: {137}(equivalent to 7 mod 13)
Here, we have,
To group the given numbers according to congruence mod 13, we need to find the remainders of each number when divided by 13.
We can find the remainder of a number when divided by 13 by using the modulo operator (%). For example, the remainder of 17 when divided by 13 is 4 (17 % 13 = 4).
Using this method, we can find the remainders of all the given numbers as follows:
=> (-63) % 13= -11
=> -54 % 13 = -2
=> -41 % 13 = -2
=> 11 % 13 = 11
=> 13 %13 = 0
=> (76) % 13 = 11
=> (80) % 13 = 2
=>130 % 13 = 0
=>132 %13 = 2
=>137 % 13 = 7
Now, we can group the numbers according to their remainders as follows:
Group 1: {-63}(equivalent to -11 mod 13)
Group 2: {-54, -41}(equivalent to -2 mod 13)
Group 3: {11, 76}(equivalent to 11 mod 13)
Group 4: {13,130}(equivalent to 0 mod 13
Group 5: {80,132}(equivalent to 2 mod 13)
Group 6: {137}(equivalent to 7 mod 13)
The given numbers have been grouped according to congruence mod 13. Numbers in the same group are equivalent mod 13, i.e., they have the same remainder when divided by 13.
To learn more about congruence, visit:
brainly.com/question/31430417
#SPJ12
state whether the sequence an=8n 19n−1 converges and, if it does, find the limit.
The sequence an = (8n)/(19n-1) converges, and its limit is 8/19.
How to determine whether the sequence converges?Hi! To determine whether the sequence an = (8n)/(19n-1) converges and find its limit, we can follow these steps:
Step 1: Identify the given sequence.
The given sequence is an = (8n)/(19n-1).
Step 2: Analyze the sequence for convergence.
To analyze the convergence of the sequence, we can look at the behavior of the sequence as n approaches infinity.
Step 3: Find the limit of the sequence as n approaches infinity.
To find the limit of the sequence as n approaches infinity, we can use the fact that the highest power of n in the numerator and denominator is the same (n). Therefore, we can divide both the numerator and the denominator by n to simplify the expression:
lim (n→∞) (8n)/(19n-1) = lim (n→∞) (8n/n) / (19n/n - 1/n)
Step 4: Simplify the expression.
After dividing by n, we get:
lim (n→∞) (8) / (19 - 1/n)
Step 5: Evaluate the limit as n approaches infinity.
As n approaches infinity, the term 1/n approaches 0. Therefore, the limit of the sequence is:
lim (n→∞) (8) / (19 - 0) = 8/19
So, the sequence an = (8n)/(19n-1) converges, and its limit is 8/19.
Learn more about sequences and series
brainly.com/question/31463410
#SPJ11
a):Proofs by contradiction.
For all integers x and y, x2−4y≠2.
You can use the following fact in your proof: If n2 is an even integer, then n is also an even integer.
1(b): Computing exponents mod m.
Compute each quantity below using the methods outlined in this section. Show your steps, and remember that you should not use a calculator.
(a) 4610 mod 7
(b) 345 mod 9
a) Our assumption that there exist integers x and y such that x² - 4y = 2 is false, and we can conclude that for all integers x and y, x² - 4y ≠ 2.
b) 46¹⁰ ≡ 1 (mod 7).
345 mod 9 ≡ 1 (mod 9).
How evaluate each part of the question?(a) Proof by contradiction:
Assume that there exist integers x and y such that x² - 4y = 2.
Then x² = 2 + 4y.
Since 2 is an even integer, 4y must also be an even integer, which means that y is an even integer.
Let y = 2k, where k is an integer.
Then x² = 2 + 8k.
If x² is an even integer, then x must also be an even integer (by the given fact).
Let x = 2m, where m is an integer.
Then (2m)² = 2 + 8k.
Simplifying this equation, we get:
4m² = 1 + 4k.
This equation implies that 4m² is an odd integer, which is a contradiction.
Therefore, our assumption that there exist integers x and y such that x² - 4y = 2 is false, and we can conclude that for all integers x and y, x² - 4y ≠ 2.
(b)
(i) 46¹⁰ mod 7:
We can use the property that [tex]a^{b+c} = (a^b)*(a^c)[/tex] to simplify the exponent:
46¹⁰ = (46⁵)²
To find 46⁵ mod 7, we can reduce the base modulo 7:
46 ≡ 4 (mod 7)
Then, we can use the property that (a*b) mod m = ((a mod m) * (b mod m)) mod m:
46⁵ ≡ 4⁵ (mod 7)
≡ (44444) mod 7
≡ (-1)(-1)(-1)(-1)(-1) mod 7
≡ -1 mod 7
≡ 6 (mod 7)
Substituting this value back into the original expression:
46¹⁰ ≡ (46⁵)²
≡ 6² (mod 7)
≡ 36 (mod 7)
≡ 1 (mod 7)
Therefore, 46¹⁰ ≡ 1 (mod 7).
(ii) 345 mod 9:
We can use the property that [tex]a^{b+c} = (a^b)*(a^c)[/tex] to simplify the exponent:
345 = (3100 + 410 + 5)
Therefore, we can break down 345 into its digits and calculate each digit modulo 9:
3100 mod 9 ≡ 0 (mod 9)
410 mod 9 ≡ 5 (mod 9)
5 mod 9 ≡ 5 (mod 9)
Then, we can use the property that (a+b) mod m = ((a mod m) + (b mod m)) mod m:
345 mod 9 ≡ (0 + 5 + 5) mod 9
≡ 10 mod 9
≡ 1 (mod 9)
Therefore, 345 mod 9 ≡ 1 (mod 9).
Learn more about integers.
brainly.com/question/15276410
#SPJ11
In the diagram below of right triangle ABC, CD is
the altitude to hypotenuse AB, CB = 6, and AD = 5.
C
A
5
What is the length of BD?
1) 5
2) 9
3) 3
4) 4
The volume of the prism is determined as 120 in³.
What is the volume of the triangular prism?The volume of the triangular prism is calculated by applying the following formula as shown below;
V = ¹/₂bhl
where;
b is the base of the prismh is the height of the priml is the length of the prismThe volume of the prism is calculated as follows;
V = ¹/₂ x 6 in x 4 in x 10 in
V = 120 in³
,
Thus, the volume of the prism is a function of its base, height and length.
Learn more about volume of prism here: https://brainly.com/question/28795033
#SPJ1
Rectangle TUVW is on a coordinate plane at T (a, b), U (a + 2, b + 2), V (a + 5, b − 1), and W (a + 3, b − 3). What is the slope of the line that is parallel to the line that contains side UV?
a. −2
b. 2
c. −1
d. 1
Answer:
c. -1
Step-by-step explanation:
You want the slope of the line parallel to UV, where U=(a +2, b +2) and V = (a +5, b -1).
SlopeThe slope of UV is given by ...
m = (y2 -y1)/(x2 -x1)
m = ((b -1) -(b +2))/((a +5) -(a +2)) = -3/3 = -1
The parallel line will have the same slope.
The slope of the line parallel to UV is -1, choice C.
<95141404393>
Determine the Longest Common Subsequence and the Longest Common Substring for the following strings: A=(a, c, t, g, a, t, t) and B= (c, g, a, t, g, a). (15+15=30)
The Longest Common Subsequence (LCS) for strings A=(a, c, t, g, a, t, t) and B=(c, g, a, t, g, a) is (c, t, g, a, t) and the Longest Common Substring (LCSb) is (t, g, a).
1. Create a matrix of size (m+1)x(n+1) where m and n are the lengths of A and B respectively.
2. Initialize the first row and column of the matrix with 0.
3. Iterate through the matrix, comparing characters from A and B.
4. If characters match, update the matrix value as matrix[i-1][j-1] + 1.
5. If characters don't match, update the matrix value as the max(matrix[i-1][j], matrix[i][j-1]).
6. The LCS can be reconstructed by backtracking from the bottom-right corner of the matrix.
7. For LCSb, find the maximum value in the matrix and its position, then backtrack to construct the substring.
This provides the LCS and LCSb as defined above.
To know more about Longest Common Subsequence click on below link:
https://brainly.com/question/29809157#
#SPJ11
solve the equation. give your answer correct to 3 decimal places. 25,000 = 10,000(1.05)5x
The solution to the equation 25,000 = 10,000(1.05)5x correct to 3 decimal places is x = 4.017.
To solve this equation, we can first divide both sides by 10,000 to get:
2.5 = 1.05^(5x)
Next, we can take the natural logarithm of both sides:
ln(2.5) = ln(1.05^(5x))
Using the logarithmic identity ln(a^b) = b*ln(a), we can simplify the right side of the equation:
ln(2.5) = 5x*ln(1.05)
Finally, we can solve for x by dividing both sides by 5ln(1.05) and rounding to 3 decimal places:
x = ln(2.5) / (5*ln(1.05)) = 4.017
Therefore, the solution to the equation is x = 4.017, correct to 3 decimal places. This means that after 5 years of an initial investment of $10,000 at an annual interest rate of 5%, the investment will be worth $25,000.
To learn more about logarithms, visit:
https://brainly.com/question/13473114
#SPJ11
103n+26n=131n find n
Answer:
n = 0
Step-by-step explanation:
103n+26n=131n find n
103n + 26n = 131n
103n + 26n - 131n = 0
-2n = 0
n = 0
--------------------------------------
check
103 × 0 + 26 × 0 = 131 × 0
0 = 0
evaluate the integral. (use c for the constant of integration.) 7x 1 − x4 dx
To evaluate the integral ∫7x/(1 − x^4) dx, we first need to perform partial fraction decomposition to separate it into simpler fractions. Using algebraic manipulation.
we can rewrite the integrand as: 7x/(1 − x^4) = A/(1 + x) + B/(1 − x) + C/(1 + x^2) + D/(1 − x^2), where A, B, C, and D are constants to be determined. Then, we can multiply both sides by the common denominator (1 − x^4) and solve for the constants by equating coefficients of like terms.
After performing partial fraction decomposition, we get: ∫7x/(1 − x^4) dx = ∫A/(1 + x) dx + ∫B/(1 − x) dx + ∫C/(1 + x^2) dx + ∫D/(1 − x^2) dx, Integrating each of these simpler fractions individually, we get: ∫A/(1 + x) dx = A ln|1 + x| + c1
∫B/(1 − x) dx = −B ln|1 − x| + c2
∫C/(1 + x^2) dx = C arctan(x) + c3
∫D/(1 − x^2) dx = D ln|(1 + x)/(1 − x)| + c4.
where c1, c2, c3, and c4 are constants of integration, Therefore, the final answer to the given integral is: ∫7x/(1 − x^4) dx = A ln|1 + x| − B ln|1 − x| + C arctan(x) + D ln|(1 + x)/(1 − x)| + C, where A, B, C, and D are the constants obtained from partial fraction decomposition, and C is the constant of integration.
To know more about term click here
brainly.com/question/19774850
#SPJ11
Find a formula for Sn, n>=1 if Sn is given by: 2/5, 3/9, 4/13, 5/17, 6/21....
Is this supposed to be some kind of geometric series? Not really sure what to do here...
The given series is not a geometric series as the ratio between consecutive terms is not constant. However, it is an arithmetic series with a common difference of 4 in the denominator and 1 in the numerator.
To find a formula for Sn, we need to first find a general term for the series. We can see that the numerator of each term is increasing by 1, starting from 2. Therefore, the nth term of the numerator is n + 1.
For the denominator, we can see that it is increasing by 4, starting from 5. Therefore, the nth term of the denominator is 4n + 1.
Hence, the general term of the series can be written as (n + 1)/(4n + 1).
To find the formula for Sn, we can use the formula for the sum of an arithmetic series:
Sn = n/2[2a + (n-1)d]
where a is the first term, d is a common difference, and n is the number of terms.
In our case, a = 2/5, d = 4/9, and n is not given. However, we can use the formula for the nth term of an arithmetic series to find n:
(n + 1)/(4n + 1) = 6/21
Solving for n, we get n = 5.
Plugging in the values, we get:
S5 = 5/2[2(2/5) + 4/9(5-1)] = 1.23
Therefore, the formula for Sn is Sn = (n + 1)/(4n + 1) and the sum of the first 5 terms is 1.23.
To learn more about the Geometric series, visit:
https://brainly.com/question/23198722
#SPJ11
Which expression is equivalent to x^5 × x^2?
Answer:
no choices given but it is x^
Step-by-step explanation:
when the bases are the same and you are multiplying, add the powers.
The amount of snowfall in feet in a remote region of Alaska in the month of January is a continuous random variable with probability density function
f(x)= 6/125 (5x−x^2); (0≤ x ≤ 5)
Find the amount of snowfall one can expect in any given month of January in Alaska.
one can expect about 16.67 feet of snowfall in any given month of January in this remote region of Alaska.
To find the expected amount of snowfall in any given month of January in Alaska, you need to calculate the expected value (E) of the continuous random variable with the given probability density function f(x) = 6/125(5x - x^2), where 0 ≤ x ≤ 5.
The expected value (E) is found using the following formula:
E(X) = ∫[x * f(x)]dx, with integration limits from 0 to 5.
For this problem, we need to evaluate:
E(X) = ∫[x * (6/125)(5x - x^2)]dx from 0 to 5.
Upon integrating, you get:
E(X) = (6/125) * [5/3 * x^3 - x^4/4] evaluated from 0 to 5.
Now, substitute the limits:
E(X) = (6/125) * [5/3 * (5^3) - (5^4)/4 - (0)]
E(X) = (6/125) * [5/3 * 125 - 625/4]
E(X) = (6/125) * [625/3 - 625/4]
E(X) = (6/125) * (625/12)
E(X) = 50/3 ≈ 16.67 feet
So, one can expect about 16.67 feet of snowfall in any given month of January in this remote region of Alaska.
Visit here to learn more about probability : https://brainly.com/question/11234923
#SPJ11
(1 point) find the area lying outside =6sin and inside =3 3sin. area =
The area lying outside the circle r=6sin and inside the circle r=3+3sin is approximately 21.205 square units.
To solve this problem, we need to first understand what the equations =6sin and =3 3sin represent. These are actually equations of circles in polar coordinates, where r=6sin represents a circle with radius 6 units and centered at the origin, and r=3+3sin represents a circle with radius 3 units and centered at (-3,0) in Cartesian coordinates.
The area lying outside the circle r=6sin and inside the circle r=3+3sin can be found by integrating the equation for the area of a polar region, which is:
A = 1/2 ∫ [f(θ)]^2 - [g(θ)]^2 dθ
where f(θ) and g(θ) are the equations for the outer and inner boundaries of the region, respectively.
In this case, we have:
A = 1/2 ∫ (6sin)^2 - (3+3sin)^2 dθ
A = 1/2 ∫ 36sin^2 - (9+18sin+9sin^2) dθ
A = 1/2 ∫ 27sin^2 - 18sin - 9 dθ
To solve this integral, we can use the half-angle identity for sine, which is:
sin^2 (θ/2) = (1-cos θ)/2
Substituting this identity into our integral, we get:
A = 1/2 ∫ [27(1-cos θ)/2] - 18sin - 9 dθ
A = 1/2 ∫ (13.5-13.5cos θ) - 18sin - 9 dθ
A = 1/2 ∫ -18sin - 22.5cos θ - 9 dθ
Integrating each term separately, we get:
A = -9sin θ - 22.5sin θ - 9θ + C
where C is the constant of integration. To find the bounds of integration, we need to find the values of θ where the two circles intersect. Setting the equations equal to each other, we get:
6sin = 3+3sin
3sin = 3
sin θ = 1
θ = π/2
So the bounds of integration are 0 and π/2. Substituting these values into the equation for the area, we get:
A = -9sin(π/2) - 22.5sin(π/2) - 9(π/2) + C - (-9sin 0 - 22.5sin 0 - 9(0) + C)
A = -13.5π/2
Therefore, the area lying outside the circle r=6sin and inside the circle r=3+3sin is approximately 21.205 square units.
To learn more about equation visit;
brainly.com/question/29538993
#SPJ11
the sum of two consecutive odd numbers is 56. find the numbers
Answer: 27, 29
Step-by-step explanation:
Let's say that the 2 numbers are x and x+2
That means that: x+x+2=56
Simplify: 2x+2=56
Solve: 2x=54
x=27
27,29 are the 2 numbers
A sample of 830 Americans was randomly selected on the population of all American adults. Among other questions, the sample was asked if they believe that the United States will land a human on Mars by 2050. Of those sampled, 544 stated that they believe this will happen.
a. Calculate the sample proportion of Americans who believe the US will land a human on Mars by 2050. Round this value to four decimal places.
b) Write one sentence each to check the three conditions of the Central Limit Theorem. Show your work for the mathematical check needed to show a large sample size was taken.
The sample proportion of Americans who believe the US will land a human on Mars by 2050 is 0.6554.
a) To calculate the sample proportion, divide the number of positive responses (544) by the total sample size (830):
544 / 830 = 0.65542168675 ≈ 0.6554 (rounded to four decimal places)
b) Central Limit Theorem conditions:
1. Randomness: The sample was randomly selected from the population of all American adults.
2. Independence: Since the sample size (830) is less than 10% of the population of all American adults, it is reasonable to assume that the responses are independent.
3. Large sample size: For the CLT to apply, the sample size should be large enough such that np ≥ 10 and n(1-p) ≥ 10. In this case, n = 830 and p = 0.6554, so np = 830 * 0.6554 ≈ 543.48, and n(1-p) = 830 * (1 - 0.6554) ≈ 286.52. Both values are greater than 10, meeting the large sample size condition.
To know more about Central Limit Theorem click on below link:
https://brainly.com/question/18403552#
#SPJ11
iii) Find the values of x
when y = 1
0.5
+
Please post the full question by replying to my answer
(maybe you can like it so that I'll know you have updated the question)
I NEED HELP ON THIS ASAP!!!!
Each point (x, y) on the graph of h(x) becomes the point (x - 3, y - 3) on v(x).
Each point (x, y) on the graph of h(x) becomes the point (x + 3, y + 3) on w(x).
What is a translation?In Mathematics and Geometry, the translation a geometric figure or graph to the left simply means subtracting a digit from the value on the x-coordinate of the pre-image;
g(x) = f(x + N)
On the other hand, the translation a geometric figure to the right simply means adding a digit to the value on the x-coordinate (x-axis) of the pre-image;
g(x) = f(x - N)
Since the parent function is v(x) = h(x + 3), it ultimately implies that the coordinates of the image would created by translating the parent function to the left by 3 units.
Read more on function and translation here: brainly.com/question/31559256
#SPJ1
measurements from a sample are called:
statistics.
inferences.
parameters.
variables.
A population has 75 observations. One class interval has a frequency of 15 observations. The relative frequency in this category is:
0.20.
0.10.
0.15.
0.75.
The relative frequency in the class interval with 15 observations is 0.20 or 20%.
The correct answers are: Measurements from a sample are called: statistics. The relative frequency in the class interval with 15 observations is: 0.20.
Statistics are measurements or data collected from a sample of a larger population. They are used to make inferences about the population.
To find the relative frequency of a class interval, you divide the frequency of that interval by the total number of observations. In this case, the relative frequency is:
relative frequency = frequency of interval / total number of observations
relative frequency = 15 / 75
relative frequency = 0.20
Therefore, the relative frequency in the class interval with 15 observations is 0.20 or 20%.
Learn more about relative frequency
https://brainly.com/question/29739263
#SPJ4
find the eqautions of the line that passes through points A and B
What points are you describing?
What is the approximate probability of exactly two people in a group of seven having a birthday on April 15? (A) 1.2 x 10^-18 (B) 2.4 x 10^-17 (C) 7.4 x 10^-6 (D) 1.6 x 10^-4
The approximate probability of exactly two people in a group of seven having a birthday on April 15 is (C) [tex]7.4 x 10^-^6[/tex]
How we get the approximate probability?To calculate the probability of exactly two people in a group of seven having a birthday on April 15, we can use the binomial distribution formula:
[tex]P(X = k) = C(n, k) * p^k * (1 - p)^(^n^-^k^)[/tex]
Where:
P(X = k) is the probability of exactly k successes (in this case, k = 2)n is the number of trials (in this case, n = 7)p is the probability of success in a single trial (in this case, p = 1/365, assuming that all days of the year are equally likely for a birthday)C(n, k) is the binomial coefficient, which represents the number of ways to choose k items from a set of n items (in this case, C(7, 2) = 21)So, plugging in the values, we get:
[tex]P(X = 2) = C(7, 2) * (1/365)^2 * (1 - 1/365)^(7 - 2)[/tex]
[tex]= 21 * (1/365)^2 * (364/365)^5[/tex]
[tex]= 2.38 x 10^-5[/tex]
The probability of exactly two people in a group of seven having a birthday on April 15 can be calculated using the binomial distribution formula.
The formula takes into account the number of trials, the probability of success in a single trial, and the number of successes desired.
In this case, we want to find the probability that exactly two people in a group of seven have a birthday on April 15, assuming that all days of the year are equally likely for a birthday.
Plugging in the values into the formula gives us an approximate probability of [tex]7.4 x 10^-^6[/tex], which is the answer (C).
Learn more about Approximate probability
brainly.com/question/15696262
#SPJ11
use the laplace transform to solve the given initial-value problem. y' − y = 2 cos(6t), y(0) = 0
3 simple math questions for 50 points Please help i have no time for trolls
Thank you!
The surface area of the sphere, is approximately 172 square inches.
How to calculate the valueIt should be noted that the Volume of a sphere = (4/3)πr^3
where r is the radius of the sphere.
Setting Volume of sphere equal to Volume of prism, we get:
(4/3)πr^3 = lwh
Plugging in the given value of r = 3.7 in, we can solve for lwh:
(4/3)π(3.7)^3 = lwh
lwh ≈ 209.7 cubic inches
A = 4πr^2
A = 4π(3.7)^2
A ≈ 171.9 square inches
Rounding this to the nearest square inch, we get:
A ≈ 172 square inches
Therefore, the surface area of the sphere, is approximately 172 square inches.
Learn more about volume on
https://brainly.com/question/27710307
SPJ1
Are the following statements true or false? 1. For any scalar c, u^T (cv) = c(u^Tv) 2. Let u and be non zero vectors: If the distance from u to is equal to the distance from U to -V, then U and v are orthogonal: 3. For square matrix A_ vectors in R(A) are orthogonal to vectors in N(A): 4. v^Tv = Ilvll^2. 5. If vectors V1,....,vp, Yp span subspace W and If x is orthogonal to each vj for j = 1,.....,P then X is in W^⊥
Hence, x is orthogonal to any vector in W, and hence x is in W^⊥
For any scalar c, u^T (cv) = c(u^Tv)
True. This follows from the distributive property of matrix multiplication and the fact that scalar multiplication is commutative.
Let u and v be non-zero vectors: If the distance from u to v is equal to the distance from u to -v, then u and v are orthogonal.
True. This statement can be restated as saying that u lies on the perpendicular bisector of the line segment connecting v and -v. Since the perpendicular bisector is a line perpendicular to this line segment, it follows that u is orthogonal to both v and -v, and hence orthogonal to their sum, which is the zero vector.
For square matrix A, vectors in R(A) are orthogonal to vectors in N(A).
True. The range of a matrix A consists of all vectors b that can be expressed as b = Ax for some vector x, whereas the null space of A consists of all vectors x such that Ax = 0. If v is in R(A) and w is in N(A), then v = Ax for some x, and we have w^T v = w^T Ax = (A^T w)^T x = 0, since A^T w is in N(A) by the definition of the null space. Hence, v is orthogonal to w.
v^Tv = Ilvll^2.
True. This follows from the definition of the Euclidean norm, which is given by ||v|| = sqrt(v^T v). Hence, ||v||^2 = v^T v.
If vectors v1,....,vp span subspace W and if x is orthogonal to each vj for j = 1,.....,p, then x is in W^⊥.
True. Let v1,....,vp be a basis for W, and let x be orthogonal to each vj. Then, any vector w in W can be expressed as w = c1v1 + ... + cpvp for some scalars c1,....,cp. Since x is orthogonal to each vj, we have x^T w = c1 x^T v1 + ... + cp x^T vp = 0. Hence, x is orthogonal to any vector in W, and hence x is in W^⊥.
To learn more about perpendicular visit:
https://brainly.com/question/29268451
#SPJ11
Help please!!
Anything would be much appreciated
Answer:
a) kinda but not really b) no c) yes
Step-by-step explanation:
a) It's somewhat possible. The mean is the numbers added together divided but the amount so it would be (3(purple)+2(blue)+2(red)+green)/8. It doesn't completely work because they are not numbers.
b)Their median is not possible. It needs to be in order from largest to greatest and that's not possible with words
c) The mode is the most common thing in a set of data. Since this can be applied to words, purple would be the mode.
Which of the following are correct statements? Check all that apply.
A. A segment can be named only one way.
B. A segment can be named in more than one way.
C. A segment has two endpoints.
D. A segment has only one endpoint.
OE. A segment does not continue forever.
Which one is the correct answer?
Answer:
its 6/6
Step-by-step explanation:
Answer: C
Step-by-step explanation:
Because all of the numbers are lower than 7 on a 1 to 6 dice.
Find the y-intercept of the line y=
5/6 x +5
Answer: ( 0,-5)
Step-by-step explanation:
y-intercept The value of y at the point where a curve crosses the y-axis.
Find a unit normal vector for the following function at the point P(-3,-1,27) f(x,y)=x^3 comp wants answer says z component should be negative
The final answer for the unit normal vector at point P(-3,-1,27) for the function f(x,y)=x^3 is N = <-1, 0, 0>.
To find the unit normal vector for the function f(x,y)=x^3 at the point P(-3,-1,27), we need to first calculate the gradient vector at that point. The gradient vector is given by the partial derivatives of the function with respect to x, y, and z. So,For more such question on vector
https://brainly.com/question/30394406
#SPJ11
38. what conditions must be satisfied by b1, b2, b3, b4, and b5 for the overdetermined linear systemx1-x2 =b1x1-3x2 =b2x1+ x2 = b3x1 - 5x2 = b4x1 + 6x2 = b5to be consistent?a) b1 = 10/11r + 1/11s, b2 = 9/11r + 2/11s, b3 = 5/11r + 6/11s, b4=r, b5 = sb) b1 = 10/11r + 1/11s, b2 = 9/11r + 2/11s, b3 = 5/11r + 6/11s, b4=s, b5 = rc) b1 = 9/11r + 2/11s, b2 = 10/11r + 1/11s, b3 = 5/11r + 6/11s, b4=r, b5 = sd) b1 = 5/11r + 6/11s, b2 = 10/10r + 1/11s, b3 = 9/11r + 2/11s, b4=r, b5 = se) b1 = 10/11r + 1/11s, b2 = 2/10r + 9/11s, b3 = 5/11r + 6/11s, b4=r, b5 = s
The conditions that must be satisfied by b1, b2, b3, b4, and b5 for the overdetermined linear system to be consistent are b1 = 10/11r + 1/11s, b2 = 9/11r + 2/11s, b3 = 5/11r + 6/11s, b4 = r, and b5 = s.
For the system to be consistent, there must be a solution that satisfies all the equations in the system. In an overdetermined system, there are more equations than variables, so not all solutions will satisfy all the equations. Therefore, the system will only be consistent if the equations are not contradictory, meaning there is a common solution to all of them.
In this system, there are two variables, x1 and x2, and five equations. We can write the system in matrix form as Ax = b, where A is the coefficient matrix, x is the variable vector, and b is the constant vector.
⎡1 -1⎤ ⎡x1⎤ ⎡b1⎤
⎢-3 1⎥ x ⎢x2⎥ = ⎢b2⎥
⎢1 -5⎥ ⎣ ⎦ ⎢b3⎥
⎣1 6 ⎦ ⎣b4⎦
⎣b5⎦
To check the consistency of the system, we can use row reduction to determine the echelon form of the augmented matrix [A|b]. If the echelon form has a row of zeros with a non-zero constant on the right-hand side, then the system is inconsistent. Otherwise, the system is consistent.
Performing row reduction on [A|b], we get:
⎡1 0 0 0 10/11r+1/11s⎤
⎢0 1 0 0 9/11r+2/11s ⎥
⎢0 0 1 0 5/11r+6/11s ⎥
⎣0 0 0 1 r ⎦
Since the echelon form does not have a row of zeros with a non-zero constant on the right-hand side, the system is consistent. Therefore, the conditions that must be satisfied by b1, b2, b3, b4, and b5 for the system to be consistent are b1 = 10/11r + 1/11s, b2 = 9/11r + 2/11s, b3 = 5/11r + 6/11s, b4 = r, and b5 = s.
For more questions like Matrix click the link below:
https://brainly.com/question/28180105
#SPJ11