use two-point forward-difference formulas and backward-difference formulas as appropriate to determine each f'(x)

Answers

Answer 1

The forward-difference formula estimates the slope of the tangent line at x using f(x+h) and f(x), while the backward-difference formula uses f(x) and f(x-h).

The two-point forward-difference formula for approximating the derivative of a function f(x) at a point x is:

f'(x) = (f(x+h) - f(x))/h

where h is a small positive number. This formula estimates the slope of the tangent line to the function f(x) at x by taking the slope of the secant line between f(x) and f(x+h).

The two-point backward-difference formula for approximating the derivative of a function f(x) at a point x is:

f'(x) = (f(x) - f(x-h))/h

where h is a small positive number. This formula estimates the slope of the tangent line to the function f(x) at x by taking the slope of the secant line between f(x) and f(x-h).

To determine f'(x) using these formulas, we need to know the value of f(x) and the value(s) of f(x ± h), depending on which formula we are using. We can then plug these values into the appropriate formula and calculate an approximation of f'(x). These formulas are first-order approximations and the error in the approximation is proportional to h. Using smaller values of h will generally give more accurate approximations, but may also lead to numerical instability or round-off error.

To know more about the Difference, here

https://brainly.com/question/31013305

#SPJ4


Related Questions

In the equation y = ab(x-h)+ k how does the value of a affect the graph? ​

Answers

The answer of the given question based on the graph is the value of 'a' affects the graph by determining the steepness of the curve.

What is Slope?

Slope is a measure of the steepness of a line or a curve. It is defined as  ratio of vertical change (rise) between two points to  horizontal change (run) between  same two points. The slope of a line is constant, while the slope of a curve may change from point to point.

In the equation y = ab(x-h)+k, the value of 'a' affects the graph by determining the steepness of the curve.

If 'a' is positive, the graph will slope upwards as 'x' increases. The larger the value of 'a', the steeper the slope of the curve will be. On the other hand, if 'a' is negative, the graph will slope downwards as 'x' increases. Again, the larger the absolute value of 'a', the steeper the slope of the curve will be.

In general, the value of 'a' controls the vertical scaling of the curve, while the value of 'b' controls the horizontal scaling, and 'h' and 'k' control the horizontal and vertical translations of the curve, respectively. Changing the value of 'a' will stretch or compress the curve vertically, but will not affect the position of the curve on the x-axis.

To know more about Absolute value visit:

https://brainly.com/question/10657665

#SPJ1

how many different ways can be people be chosen as president, vice president, and secretary from a class of 40 students?

Answers

By using the Concept of Permutations,There are 59,280 different ways to choose the president, vice president, and secretary from a class of 40 students.

To determine the number of different ways people can be chosen as president, vice president, and secretary from a class of 40 students:

You can use the concept of permutations.

Step 1: Choose the president. There are 40 students in the class, so there are 40 choices for the president position.

Step 2: Choose the vice president. Since the president has been chosen, there are now 39 remaining students to choose from for the vice president position.

Step 3: Choose the secretary. After selecting the president and vice president, there are 38 remaining students to choose from for the secretary position.

Now, multiply the number of choices for each position:

40 (president) x 39 (vice president) x 38 (secretary) = 59,280 different ways to choose the president, vice president, and secretary from a class of 40 students.

To know more about Concept of Permutations:

https://brainly.com/question/30649574

#SPJ11

Colin, Dave and Emma share some money.
Colin gets 3⁄10 of the money.
Emma and Dave share the rest of the money in the ratio 3 : 2 What is Dave's share of the money

Answers

Make the amount of money they have £100 because this makes the question easier.

Colin gets 3/10 of the money, so Colin will get £30.

After Colin has taken his share £70 will be left over.

The ratio give is 3 : 2. So 3 + 2 is equal to 5.

The amount of money left over is then divided by the ratio added in this case its 70/5.

70/5 gives us an answer of 14 .

This means that each share is equal to £14.

Emma gets the ratio of 3 so we do 3 x 14 which gives us he answer of  £42.

And if we do 3 x 2 we get the answer of £28.

We then know Dave gets £26 pounds from the £100 at the start.

26/100 converted to a percentage is 26%.

Complete the inductive step, identifying where you use the inductive hypothesis. (You must provide an answer before moving to the next part.) Multiple Choice O Replacing the quantity in brackets on the left-hand side of part (c) by what it equals by virtue of the Inductive hypothesis, we have (kok+") + (x + 1)2 = (x + 1)2 +68+4)* (+1)(x+2) as desired. O Replacing the quantity in brackets on the left-hand side of part (c) by what It equals by virtue of the inductive hypothesis, we have (k++) + (x + 1)2 = (x + 1)2 *****!) -(+1Xk+2) * as desired. O Replacing the quantity in brackets on the left-hand side of part (c) by what it equals by virtue of the inductive hypothesis, we have ( kk+) + (k+ 1)2 = (x + 1)2( 344x+2) = (x+1}+2) as desired. O Replacing the quantity in brackets on the left-hand side of part (c) by what it equals by virtue of the inductive hypothesis, we have (64 + (k+ 1)2 = (k+ 1)2 (+4x+1) = (+1}x+2) as desired.

Answers

Completing the inductive step and identifying where the inductive hypothesis is used, the correct multiple choice answer is: Replacing the quantity in brackets on the left-hand side of part (c) by what it equals by virtue of the Inductive hypothesis, we have (kok+") + (x + 1)² = (x + 1)² +68+4)* (+1)(x+2) as desired.

In an induction proof, the inductive step involves assuming a statement is true for some arbitrary value, say k, and then proving it's true for the next value, k+1.

Here, the inductive hypothesis corresponds to the term (kok+"). By replacing this term on the left-hand side of part (c) with its equivalent based on the inductive hypothesis, we can show that the equation holds for the (k+1) case as well. This is crucial for proving the statement using induction, as it establishes the necessary pattern for all cases.

To know more about inductive hypothesis click on below link:

https://brainly.com/question/31099433#

#SPJ11

Help please, i don't get it i need it done asap

Answers

The number of boxes that can fit into the crate is 7 boxes.

What is the shape of a cuboid?

A cuboid has a hexahedron six-faced solid shape and the volume is determined by multiplying the length by width by height. Here; the volume of the crate is determined by finding the volume of the cuboid.

Volume of the cuboid is: 2.4 m × 1.8 m × 1.1 m

Volume of the cuboid  = 4.752 m³

To cm, volume of the cuboid  = 475.2 cm³

Now, since the cube has a length of 60 cm, then the number of boxes that will fit into the crate can be estimated by dividing the volume of the cuboid shape by the length of the cube.

Thus, the number of boxes that can fit into the crate is:

= 475.2 cm/ 60 cm

= 7. 92

Learn more about finding the volume of the cuboid here:

https://brainly.com/question/46030

#SPJ1

S
1
.
2
3
Which translation maps the graph of the function f(x) = x² onto the function g(x) = x² − 6x + 6?
Oleft 3 units, down 3 units
Oright 3 units, down 3 units
Oleft 6 units, down 1 unit
Oright 6 units, down 1 unit

Answers

Answer:

right 3 units, down 3 units

Step-by-step explanation:

You want the translation that maps f(x) = x² to g(x) = x² -6x +6.

Graph

A graph of the two functions shows g(x) is right 3 units and down 3 units from f(x).

Vertex form

We know the vertex of f(x) = x² is the origin (0, 0). The vertex of g(x) will tell us the translation. Putting that function in vertex form, we have ...

  g(x) = x² -6x +6

  g(x) = (x² -6x) +6

  g(x) = (x² -6x +9) +6 -9 . . . . . add and subtract 9 to complete the square

  g(x) = (x -3)² -3

Compare this to ...

  y = (x -h)² +k . . . . . . has vertex (h, k)

We see that (h, k) = (3, -3).

g(x) is translated right 3 units and down 3 units.

Help ASAP! I need this badly, my last question!

Answers

Answer:

Step-by-step explanation:

...... The problem is glitched re send the image/

find the x-coordinates of the inflection points for the polynomial p(x)= x^5/20

Answers

The inflection point of the polynomial p(x) = [tex]x^5/20[/tex] is at x = 0. This is the only one inflection point.


To find the x-coordinates of the inflection points for the polynomial p(x) = [tex]x^5/20[/tex], we'll need to follow these steps:

1. Find the first derivative, p'(x), to determine the slope of the function.
2. Find the second derivative, p''(x), to determine the concavity of the function.
3. Set p''(x) equal to zero and solve for x to find the inflection points.

Step 1: Find the first derivative, p'(x):
p'(x) = [tex]d(x^5/20)/dx = (5x^4)/20 = x^4/4[/tex]

Step 2: Find the second derivative, p''(x):
p''(x) = [tex]d(x^4/4)/dx = (4x^3)/4 = x^3[/tex]


Step 3: Set p''(x) equal to zero and solve for x:
[tex]x^3[/tex] = 0
x = 0

There is only one inflection point, and its x-coordinate is 0.

For more such questions on Inflection points.

https://brainly.com/question/31484498#

#SPJ11

what are the values of these sums? a) ∑ 5 k =1 (k 1) b) ∑4 j=0 (−2)j c) ∑ 10 i=1 3 d) ∑ 8 j=0 (2j 1 − 2j )

Answers

The values for the sums are: a) 20, b) 11, c) 30, and d) -430.

Here are the values for each:

a) ∑_(k=1)^5 (k+1) = (1+1) + (2+1) + (3+1) + (4+1) + (5+1) = 2 + 3 + 4 + 5 + 6 = 20

b) ∑_(j=0)^4 (-2)^j = (-2)^0 + (-2)^1 + (-2)^2 + (-2)^3 + (-2)^4 = 1 - 2 + 4 - 8 + 16 = 11

c) ∑_(i=1)^10 3 = 3 + 3 + 3 + 3 + 3 + 3 + 3 + 3 + 3 + 3 = 30 (since there are 10 terms, each with a value of 3)

d) ∑_(j=0)^8 (2j+1 - 2^j) = ∑_(j=0)^8 (2j+1) - ∑_(j=0)^8 (2^j)
First, find the two separate sums:
∑_(j=0)^8 (2j+1) = 1 + 3 + 5 + 7 + 9 + 11 + 13 + 15 + 17 = 81
∑_(j=0)^8 (2^j) = 1 + 2 + 4 + 8 + 16 + 32 + 64 + 128 + 256 = 511
Now subtract the two sums: 81 - 511 = -430

Learn more about mathematical operations here: brainly.com/question/20628271

#SPJ11

Suppose you have a regression model with an interaction term and a dummy variable. In this case, we can have a only one slope and only one intercept b.only one slope, but more than one intercept. c. more than one slope, but only one intercept d. more than one slope and more than one intercept.

Answers

When a regression model has an interaction term and a dummy variable in statistics and probability, there will be more than one slope and more than one intercept (D)

When there is an interaction term and a dummy variable in a regression model, we can have more than one slope and more than one intercept. The interaction term allows for different slopes for different levels of the dummy variable, while the intercepts represent the expected value of the dependent variable when the dummy variable is equal to zero for each level of the interaction term.

When a regression model has an interaction term and a dummy variable, it means that the effect of one independent variable on the dependent variable varies depending on the value of the other independent variable. In other words, the slope and intercept of the regression line will change depending on the value of the dummy variable.

More specifically, the model will have one intercept and two slopes: one for the dummy variable and one for the interaction term. As a result, the relationship between the dependent variable and the independent variables will vary depending on the value of the dummy variable, which will result in different slopes and intercepts.

Therefore, the correct answer is (d): more than one slope and more than one intercept.

Learn more about statistics and probability here:

https://brainly.com/question/30448884

#SPJ11

if x(t) = 2·tri(t/4)*δ(t – 2), find the values of a. x(1) b. x(–1)

Answers

The values for x(1) and x(-1) are both 0.

To find the values of x(1) and x(-1) given that x(t) = 2·tri(t/4)*δ(t – 2), we will evaluate the function at these points.

a. x(1):
To find the value of x(1), we need to substitute t = 1 into the function:
x(1) = 2·tri(1/4)*δ(1 - 2)

Since δ(1 - 2) is the Dirac delta function at a point different from zero (specifically, -1), its value is 0.

Therefore,
x(1) = 2·tri(1/4) * 0 = 0

b. x(-1):
To find the value of x(-1), we need to substitute t = -1 into the function:
x(-1) = 2·tri(-1/4)*δ(-1 - 2)

Again, since δ(-1 - 2) is the Dirac delta function at a point different from zero (specifically, -3), its value is 0.

Therefore,
x(-1) = 2·tri(-1/4) * 0 = 0

Learn more about Dirac delta function:

https://brainly.com/question/30917153

#SPJ11

The graph shows the height y in feet of a gymnast jumping off of a vault after x seconds.




a) How long does the gymnast stay in the air?
b) What is the maximum height that the gymnast reaches?
c) In how many seconds does it take for the gymnast to start descending?
d) What is the quadratic function that models this situation?

Answers

Using the graph, we can find the following:

a) The gymnast stays 4 seconds in the air.

b) The maximum height that the gymnast reaches is 10 ft.

c) After 2 seconds the gymnast starts to descend.

d) The quadratic function that models this situation is:

y = mx + c

Define graphs?

Quantitative data can be represented and analysed graphically. In a graph, variables representing data are drawn over a coordinate plane. Analysing the magnitude of one variable's change in light of other variables' changes became simple.

Here in the question,

a. We can see from the graph that the curve above x-axis starts from the origin (0,0) and ends at (4,0) on the x-axis.

So, the gymnast stays 4 seconds in the air.

b. As we can see from the graph that it rises and then at point (2,10) it starts to descend.

So, the maximum height that the gymnast reaches is 10 ft.

c. As we can see from the graph that it rises and then at point (2,10) it starts to descend.

So, after 2 seconds the gymnast starts to descend.

d. The quadratic function that models this situation is:

y = mx + c

To know more about graphs, visit:

https://brainly.com/question/17267403

#SPJ1

Which equations represent circles that have a diameter of 12 units and a center that lies on the y-axis? Select two options. x2 + (y – 3)2 = 36 x2 + (y – 5)2 = 6 (x – 4)² + y² = 36 (x + 6)² + y² = 144 x2 + (y + 8)2 = 36

Answers

The equations that represent the circle with diameter 12 are x² + (y - 6)² = 36 and x² + (y + 6)² = 36.

What is equation of circle?

A circle can be represented in polar coordinates by the equation r = a, where an is the circle's radius. In polar coordinates, the circle's centre is found at the origin (0, 0).

We use the links between polar and rectangular coordinates to translate this equation to rectangular coordinates:

X=r cos(theta) and Y=r sin (theta)

When we add r = a to these equations, we obtain:

X = cos(theta) and Y = sin (theta)

Hence, the equation of a circle in rectangular coordinates with radius "a" and origin-based centre.

The standard form of the equation of circle is given as:

(x - h)² + (y - k)² = r²

Here, (h , k) are the center and r is the radius.

For diameter = 12 we have radius = 6. Thus, the square of the radius is 36.

The equations representing this radius are:

x² + (y - 6)² = 36 and x² + (y + 6)² = 36

Hence, the equations that represent the circle with diameter 12 are x² + (y - 6)² = 36 and x² + (y + 6)² = 36.

Learn more about equation of circle here:

https://brainly.com/question/29288238

#SPJ1

Three factories produce the same tool and supply it to the market. Factory A produces 30% of the tools for the market and the remaining 70% of the tools are produced in factories B and C. 98% of the tools produced in factory A, 95% of the tools produced in factory B and 97% of the tools produced in factory C are not defective. What percent of tools should be produced by factories B and C so that a tool picked at random in the market will have a probability of being non defective equal to 96%?

Answers

The percent of tools should be produced by factories B and C so that a tool picked at random in the market will have a probability of being non defective equal to 96% = 0.96 are 5% and 95% respectively.

We have three factories produce the same tool and supply it to the market. Let's consider three events defined as, A = event for tools produced by factory A

B = event for tools produced by factory B

C = event for tools produced by factory C and N be the count that tools produced by all factories is not defective.

The probability that the tools produced by factory A for the market, P( A) = 30%

= 0.30

The probability that the tools produced by factories B and C for the market, P( B and C) = 70% = 0.70

The Probability that tools are non- defective and that are produced in factory A, P( N/A) = 98%

= 0.98

The Probability that tools are non- defective and that are produced in factory B, P( N/B) = 95%

= 0.95

The Probability that tools are non- defective and that are produced in factory C, P( N/C) = 97% = 0.97

Now, since only three factories supply to the whole market, then by probability law, P(A) + P(B) + P( C) = 1

=> 0.3 + P(B) + P( C) = 1

=> P(B) = 0.7 - P(C) --(1)

We have to determine percent of tools should be produced by factories B and C that is P(C) and P(B) when probability of non defective, P(N) is 96% = 0.96. From the law of total probability law, P(N) is written by, P( N) = P( N/A) P(A) + P( N/B) P(B) + P( N/C) P( C)

=> 0.96 = 0.98 × 0.3 + 0.95 × ( 0.7 - P(C) ) + 0.97 × P(C)

=> 0.96 = 0.98 × 0.3 + 0.95 × 0.7 - 0.95 P(C) + 0.97 × P(C)

=> 0.96 = 0.98 × 0.3 + 0.95 × 0.7 - 0.95 P(C) + 0.97 × P(C)

=> 0.96 = 0.294 + 0.665 + 0.02 × P(C)

=> 0.96 = 0.959 + 0.02 × P(C)

=> 0.02 × P(C) = 0.96 - 0.959

=> 0.02 × P(C) = 0.001

=> P(C) = 0.05 = 5%

from equation (1), P(B) = 1 - P(C)

=> P( B) = 1 - 0.05 = 0.95

Hence, required percentage is 95%.

For more information about probability, refer:

https://brainly.com/question/25870256

#SPJ4

Test the series for convergence or divergence. [infinity]
Σ (-1)^n+1/3n^4 . n=1 - converges
- diverges

Answers

The answer is: Test the series for convergence or divergence. [infinity] Σ (-1)n+1/3n² - converges.

To test the series Σ (-1)n+1/3n² for convergence or divergence, we can use the alternating series test. This test states that if a series alternates in sign and the absolute value of its terms decreases monotonically to zero, then the series converges.

In this case, the series Σ (-1)n+1/3n² alternates in sign and the absolute value of its terms is given by 1/3n², which decreases monotonically to zero as n increases. Therefore, we can apply the alternating series test and conclude that the series converges.

Know more about convergence here;

https://brainly.com/question/15415793

#SPJ11

Find the GLB of the set: {x:|x - 4|<1}. a. -1 b. 1 c. -3 d. 3 e. 0

Answers

The GLB of the set {x : |x - 4| < 1}  is option (d) 3

The set {x : |x - 4| < 1} can be written as the open interval (3, 5), which contains all values of x that satisfy the inequality |x - 4| < 1.

The greatest lower bound (GLB), also known as the infimum, is a concept in mathematics that applies to sets of numbers or other mathematical objects that are partially ordered.

To find the GLB (greatest lower bound) of this interval, we need to look for the greatest value that is less than or equal to every element in the interval.

Since the interval contains all real numbers greater than 3 and less than 5, its GLB is 3. Therefore, the answer is option (d) 3.

Learn more about greatest lower bound here

brainly.com/question/30430081

#SPJ4

solve each system of inequalities and indicate all the integers that are in the solution set. 2-6y<14 and 1<21-5y

Answers

Answer:

{-1, 0, 1, 2, 3}

Step-by-step explanation:

. 2-6y<14

-6y < 12

y > 12/-6

y > -2.

1<21-5y

-5y > -20

y < 4.

So -2 < y < 4

and the solution set of integers is

{-1, 0, 1, 2, 3}

Special right triangle

Answers

Answer:

s = 5[tex]\sqrt{6}[/tex]

Step-by-step explanation:

using the cosine ratio in the right triangle and the exact value

cos30° = [tex]\frac{\sqrt{3} }{2}[/tex] , then

cos30° = [tex]\frac{adjacent}{hypotenuse}[/tex] = [tex]\frac{s}{10\sqrt{2} }[/tex] = [tex]\frac{\sqrt{3} }{2}[/tex] ( cross- multiply )

2s = 10[tex]\sqrt{2}[/tex] × [tex]\sqrt{3}[/tex] = 10[tex]\sqrt{6}[/tex] ( divide both sides by 2 )

s = 5[tex]\sqrt{6}[/tex]

A sample of size n=150 showed a skewness coefficient of −0.45 and a kurtosis coefficient of +0.85. What is the distribution's shape? Multiple Choice
A. The distribution is normal.
B. The distribution is skewed left and leptokurtic.
C. The distribution is skewed right.

Answers

The distribution is skewed left and leptokurtic is the correct shape of distribution. The correct answer is option B.

Based on the given information, the sample of size n=150 showed a skewness coefficient of -0.45 and a kurtosis coefficient of +0.85. Skewness refers to the degree of asymmetry in a distribution, while kurtosis measures the degree of peakedness or flatness in a distribution. A skewness coefficient of -0.45 indicates that the distribution is skewed to the left. This means that the tail of the distribution is longer on the left side, and the peak of the distribution is shifted to the right. On the other hand, a kurtosis coefficient of +0.85 indicates that the distribution is leptokurtic. This means that the distribution has a sharper peak and heavier tails than a normal distribution.Combining these two pieces of information, we can conclude that the distribution is skewed left and leptokurtic. Therefore, the correct answer is option B: The distribution is skewed left and leptokurtic. It is important to note that the skewness and kurtosis coefficients alone do not provide a complete picture of the distribution's shape. Other factors such as the range, outliers, and the overall pattern of the data should also be taken into consideration when interpreting the shape of a distribution.

For more such question on distribution

https://brainly.com/question/30049535

#SPJ11

(c) immediately after the switch is open (after being closed a long time)... ...the current through the inductor is = 20.4 correct: your answer is correct. ma ...the current through r2

Answers

The current through R2 will depend on the values of the components in the circuit and the initial current through the inductor. Without more information, it is not possible to determine the current through R2.

After the switch is open, the current through the inductor will continue to flow in the same direction but will gradually decrease over time. The current through R2 will depend on the values of the components in the circuit and the initial current through the inductor. Without more information, it is not possible to determine the current through R2.
We want to know the current through resistor R2 immediately after the switch is opened, given that the current through the inductor is 20.4 mA. To provide an accurate answer, I would need more information about the circuit, such as the values of the resistors, inductor, and any voltage sources. However, I will explain the concept behind the problem.
When the switch is opened after being closed for a long time, the inductor behaves like a current source due to its stored energy. Since the current through the inductor is given as 20.4 mA, the current flowing through R2 will be the same (20.4 mA) immediately after the switch is opened, assuming there are no other current paths in the circuit.

To learn more about values, click here:

brainly.com/question/24503916

#SPJ11

Evaluate the iterated integral by changing to cylindrical coordinates.∫ ^2_0 ∫ ^√(4 − y^2)_0 ∫ ^(16 − x^2 − y^2)_0 1 dz dx dy

Answers

To convert the integral to cylindrical coordinates, we use the following conversions:

x = r cos(theta)

y = r sin(theta)

z = z

And we also replace dV with r dz dr d(theta).

The limits of integration are:

0 ≤ r ≤ 2 (since the bounds on x and y are from 0 to 2)

0 ≤ theta ≤ 2pi (since we integrate over the entire circle)

0 ≤ z ≤ 16 - r^2 (since the bounds on z are from 0 to 16 - x^2 - y^2, which in cylindrical coordinates is 16 - r^2)

Thus, the integral becomes:

∫^(2pi)_0 ∫^2_0 ∫^(16-r^2)_0 r dz dr d(theta)

Integrating with respect to z, we get:

∫^(2pi)_0 ∫^2_0 (16 - r^2)r dr d(theta)

Integrating with respect to r, we get:

∫^(2pi)_0 [8r^2 - (1/3)r^4]∣_0^2 d(theta)

= ∫^(2pi)_0 (32/3) d(theta)

= (32/3) ∫^(2pi)_0 d(theta)

= (32/3)(2pi)

= (64/3)pi

Therefore, the value of the iterated integral in cylindrical coordinates is (64/3)pi.

21.5 ÷ 5 + (80.6 - 12.5 ÷ 2) 

PEMDAS

Answers

Answer:

78.65

Step-by-step explanation:

78.65. (Remember parenthes, exponents, mult., division, addison, subtraction)

38% adults favor the use of unmanned drones by police agencies. Twelve U.S. adults are randomly selected. Find the probability that the number of U.S. adults who favor the use of unmanned drones by police agencies is​:
(a). exactly three: P(3) =
(b). at least four: P(x\geq4)=
(c). less than eight: P(x<8)=

Answers

The probability that the number of U.S. adults who favor the use of unmanned drones by police agencies is​:

(a) P(3) = 0.2636

(b) P(x≥4) = 0.1814

(c) P(x<8) = 0.9997

(a) To find the probability that exactly three out of twelve U.S. adults favor the use of unmanned drones by police agencies, we can use the binomial probability formula:

P(3) = (12 choose 3) * (0.38)^3 * (1-0.38)^(12-3) = 0.2636

where (12 choose 3) = 12! / (3! * 9!) represents the number of ways to choose 3 out of 12 adults.

(b) To find the probability that at least four out of twelve U.S. adults favor the use of unmanned drones by police agencies, we can use the complement rule and subtract the probability of having three or fewer adults who favor the use of drones from 1:

P(x≥4) = 1 - P(x≤3) = 1 - [(12 choose 0) * (0.38)^0 * (1-0.38)^(12-0) + (12 choose 1) * (0.38)^1 * (1-0.38)^(12-1) + (12 choose 2) * (0.38)^2 * (1-0.38)^(12-2) + (12 choose 3) * (0.38)^3 * (1-0.38)^(12-3)] = 0.1814

(c) To find the probability that less than eight out of twelve U.S. adults favor the use of unmanned drones by police agencies, we can sum up the probabilities of having zero to seven adults who favor the use of drones:

P(x<8) = P(x=0) + P(x=1) + ... + P(x=7) = (12 choose 0) * (0.38)^0 * (1-0.38)^(12-0) + (12 choose 1) * (0.38)^1 * (1-0.38)^(12-1) + ... + (12 choose 7) * (0.38)^7 * (1-0.38)^(12-7) = 0.9997

Note that the probability of having eight or more adults who favor the use of drones is negligible.

For more questions like Probability click the link below:

https://brainly.com/question/30034780

#SPJ11

find a particular solution to ″ 6′ 9=^−3/^3

Answers

The particular solution is [tex]3x^(-1) - 1/27 + 3(9)^(-2)[/tex] based on integration.

To find a particular solution to given equatio we need to integrate twice. First, we integrate with respect to x to get [tex]-3x^(-2)[/tex].

Then, we integrate again with respect to x to get 3x^(-1) + C1, where C1 is a constant of integration.

Next, we use the initial condition 6′ 9 to solve for C1. Taking the derivative of [tex]3x^(-1) + C1[/tex], we get [tex]-3x^(-2)[/tex]. Plugging in x = 9, we get [tex]-3(9)^(-2) = -1/27[/tex].

Therefore, [tex]-1/27 = -3(9)^(-2) + C1[/tex], and solving for C1, we get[tex]C1 = -1/27 + 3(9)^(-2)[/tex].

Thus, the particular solution is [tex]3x^(-1) - 1/27 + 3(9)^(-2)[/tex].
Hi! It seems there might be a typo in your question, making it difficult to understand the exact problem you need help with. However, I will try to address the terms "solution" and "particular."

A "solution" refers to the result or answer obtained when solving an equation, problem, or system of equations. It is the value or values that satisfy the given conditions or equations.

A "particular solution" is a specific instance of a solution, usually when there are multiple solutions or when dealing with differential equations. It is a single example of a valid answer that meets the given criteria.

If you can provide more clarification on your question, I would be happy to help you find the particular solution you're looking for!

Learn more about solution here:

https://brainly.com/question/15127193

#SPJ11

Ashlee purchased a house for $875 000. She made a down payment of 15% of the purchase price and took out a mortgage for the rest. The mortgage has an interest rate of 6.95% compounded monthly, and amortization period of 20 years, and a 5 year term. Calculate Ashley’s monthly payment.

Answers

$5744 is Ashley’s monthly payment.

The amount of the down payment made by Ashlee is 15% of $875,000, which is:

Down payment = 0.15 x $875,000 = $131,250

The amount that Ashlee took out on a mortgage is:

Mortgage amount = Purchase price - Down payment

= $875,000 - $131,250

= $743,750

The monthly payment on a mortgage:

[tex]M = P [ i(1 + i)^n ] / [ (1 + i)^n - 1 ][/tex]

where:

M = monthly payment

P = principal amount (mortgage amount)

i = monthly interest rate (annual interest rate / 12)

n = total number of monthly payments (amortization period x 12)

In this case, the annual interest rate is 6.95% and the term is for 5 years, so we need to first calculate the monthly interest rate and the total number of monthly payments.

Monthly interest rate = 6.95% / 12 = 0.57917%

Total number of monthly payments = 20 years x 12 = 240

Substituting these values into the formula, we get:

M = $743,750 [ 0.0057917 (1 + 0.0057917)^240 ] / [ (1 + 0.0057917)^240 - 1 ]

= $5744.002

Therefore, Ashley's monthly payment on the mortgage is $5744.

Learn more about compound interest here:

https://brainly.com/question/29335425

#SPJ1

Find the value of x.
If necessary, you may learn what the markings on a figure indicate.
to
73°
X =

Answers

The value of the angle is 34 degrees

How to determine the value

To determine the value of the variable, we need to the following;

The sum of triangle theorem states that the sum of the angles in a triangle is 180 degreesAlternate angles are know to be equalAn isosceles triangle has two of its sides equalTwo of its angles are equal

From the information given, we have that the angles are;

73 degrees

73 degrees

x degrees

Equate the angles

73 + 73 +x = 180

collect the like terms

x = 180 - 146

subtract the values

x = 34 degrees

Learn more about angles at: https://brainly.com/question/25716982

#SPJ1

Express the general solution in terms of Bessel functions:
x^2y''+4xy'+(x^2+2)y=0

Answers

The general solution of the given differential equation is expressed in terms of Bessel functions as y(x) = c1 J₀(x) + c2 Y₀(x) - c3 J₁(x) + c4 Y₁(x), where J and Y are Bessel functions of the first and second kind, respectively, and c1, c2, c3, and c4 are constants.

To express the general solution in terms of Bessel functions, we first need to determine the characteristic equation of the given differential equation. We assume the solution has the form y(x) = x^r, then differentiate twice to get

y'(x) = rx^(r-1)

y''(x) = r(r-1)x^(r-2)

Substituting these expressions into the given differential equation, we get

x^2y''+4xy'+(x^2+2)y = x^2[r(r-1)x^(r-2)] + 4x[rx^(r-1)] + (x^2+2)x^r = 0

Dividing through by x^2, we get

r(r-1) + 4r + (1+2/x^2) = 0

Simplifying and multiplying by x^2, we get the Bessel equation

x^2y'' + xy' + (x^2 - 1)y = 0

The general solution to this differential equation can be expressed in terms of Bessel functions of the first kind, Jv(x), and second kind, Yv(x), as follows

y(x) = c1J0(x) + c2Y0(x)

where c1 and c2 are constants of integration. Therefore, the general solution to the original differential equation can be expressed as

y(x) = c1J0(x) + c2Y0(x) + c3J1(x) + c4Y1(x)

where c3 and c4 are constants of integration determined by the initial conditions.

To know more about Bessel functions:

https://brainly.com/question/17248309

#SPJ4

exercise 1.1.10. solve ,dxdt=sin(t2) t, .x(0)=20. it is ok to leave your answer as a definite integral.

Answers

The solution of the differential equation dx/dt = sin(t²)×t with the initial condition x(0) = 20 is [tex]x(t) = 20 + \int_{0}^{t}tsin(t^2) dt[/tex].

In mathematics, a differential equation is an equation that relates one or more unknown functions and their derivatives. In applications, the functions generally represent physical quantities, the derivatives represent their rates of change, and the differential equation defines a relationship between the two.

To solve the given differential equation dx/dt = sin(t²)×t with the initial condition x(0) = 20 and leaving the answer as a definite integral, follow these steps:

1. Identify the given differential equation:

dx/dt = sin(t²)×t.


2. Recognize the initial condition:

x(0) = 20.


3. Integrate both sides of the equation with respect to t:

∫dx = ∫sin(t²)×t dt.


4. Apply the initial condition to determine the constant of integration:

x(0) = 20.


5. Write the final solution:

[tex]x(t) = 20 + \int_{0}^{t}tsin(t^2) dt[/tex].

So, the solution is [tex]x(t) = 20 + \int_{0}^{t}tsin(t^2) dt[/tex].

Learn more about a differential equation:

https://brainly.com/question/1164377

#SPJ11

Find the area of this sector.
Give your answer in terms of
π
.

Answers

Answer:245/36 π

Step-by-step explanation: you do 50/360 times π(7)^2

Kathy can run 4 mi to the beach in the same amount of time Dennis can ride his bike 14 mi to work. Kathy runs 5 mph slower than Dennis rides his bike. Find
their speeds.

Answers

Kathy runs at a speed of 2 mph, and Dennis rides his bike at a speed of 7 mph.

How to find the speeds ?

To find the speed that Kathy is running and that Dennis is riding, the first relationship is:

K = D - 5

Then use the formula for time:

Time for Kathy = Time for Dennis

4 mi / K = 14 mi / D

4 mi / (D - 5) = 14 mi / D

4D = 14(D - 5)

4D = 14D - 70

-10D = -70

D = 7 mph

Then we can find Kathy's speed :

K = 7 - 5

K = 2 mph

Find out more on speed at https://brainly.com/question/4931057

#SPJ1

Other Questions
what is the force that exists between atoms that are in different molecules The probability density function f(x) for a uniform random variable X defined over the interval [2, 10] isa. 4b. 8c. 0.20d. None of these choices. Cheetahs can run at speeds of up to 60 mi per hour. How many seconds does it take a cheetah to run 10 m at this speed? (1 mi 1.609 km) a. 0.37 s b. 56 s c. 0.10 s d. 0.43 s e. 18 s What is the measure of angle A in this triangle?Enter your answer in the box. The demand for a product is q = 2000 - 4p where q is units sold at a price of p dollars. Find the elasticity E if the price is $20. Round your answer to two decimal places For the preparation of the stock solution, 0.01 M HNO3 is used as a diluent rather than deionized water. Explain why. the 2012 National health and nutrition examination survey reports a 95% confidence interval of 99.8 to 102.0 centimeters for the mean waist circumference of adult women in the United State. a) what is captured by the confidence interval? b) Express this confidence interval as a sequence written in the context of this problem c) what is the margin of error for this confidence interval? Express this interval in the format "estimate plus or minus margin of error" d) would a 99% confidence interval based on the same data be larger or smaller? Explain in attribution theory, the construct of stability where something is stable or unstable can also be as known as consistent/inconsistent or permanent or suggest and discussion possible renewable energy that a country could utilise for the purpose of reducing greenhouse gas emissions Surface area of triangular prism It takes the body about _____ hours to get rid of the alcohol in four drinks. What was one of the most valuable services African Americans provided to the Union Army?A) They raised crops and animals.B) They wove cloth for uniforms.C) They acted as spies and scouts, even behind enemy lines.D) They repaired wagons, harnesses and weapons. determine whether a soda can would be chiral or achiral. Predict how each of the following exhibit changes would change the temperature of the exhibit water. Leaves grow on the elm tree in the spotted neck otter exhibits reducing the intensity of light striking the pond's surface by 65% Suppose there are two risky stocks. Stock one has an expected return of 10 % and a return standard deviation of 20 %. Stock 2 has an expected return of 5 % and a return standard deviation of 10 %. The correlation between the returns of the two stocks is .5. There is also a riskless asset with a return of 3 %. (a) Suppose you put a fraction w1 of your wealth in stock 1 and a fraction w2 of your wealth in stock 2, with (1 W1 W2) going to the riskless asset. What is the expected return, return variance, and Sharpe ratio of this portfolio of risky assets? (b) What is the minimum variance portfolio you can form from investing only in stock 1 and stock 2? (c) What portfolio of stocks 1 and 2 has the largest Sharpe ratio? (i.e. is the tangency portfolio) (d) Suppose you are a mean variance investor that maximizes E(Rp) 2 * Var(Rp) where Rp is the return on your portfolio of both risky and riskless assets. What fraction of your wealth should you invest in each of the three assets available? functions of money types of business organizations Arcs and Angle Relationships in circles , help fast pls A chemist is studying the following equilibirum, which has the given equilibrium constant at a certain temperature: 2 CH (g) 3 H2(g)+ C,H2(g) Kp-1.x 10 He fills a reaction vessel at this temperature with 10. atm of methane gas. Use this data to answer the questions in the table below. Can you predict the equilibrium pressure of H,, using only the tools yes available to you within ALEKS? no X ? If you said yes, then enter the equilibrium pressure of H, at right. atm Round your answer to 1 significant digit. Could use some help on this proof. I can't figure it out.Use induction on the size of S to show that if S is a finite set, then |2s| = 2|S|*Note: Here, |S| means the cardinality of S. An atom has 21 electrons, 17 protons and 18 neutrons. What is the total charge of the atom?