use f(x, y, z) = x2 yz, f(x, y, z) = xy, yz, xz , and g(x, y, z) = −sin(z), exz, y . compute (f ✕ g)(5, −1, 8). (your instructors prefer angle bracket notation < > for vectors.)

Answers

Answer 1

The final answer is (f ✕ g)(5, -1, 8) = <-198.58, -295696.03, 200>..

A function is a mathematical concept that describes a relationship between two sets of values, called the input or independent variable and the output or dependent variable. A function maps each input value to exactly one output value. The input values can be numbers, vectors, or other mathematical objects, while the output values can also be numbers, vectors, or other mathematical objects.

A function is typically denoted by a symbol, such as f(x), where f is the name of the function and x is the input variable. The value of the function at a particular input value x is denoted by f(x). compute the product of two functions f and g, denoted as f ✕ g, we need to evaluate each function at the given point and then multiply the results.

First, we evaluate[tex]f(x, y, z) = x^2[/tex] yz at (5, -1, 8):

f(5, -1, 8) =[tex]5^2[/tex] * (-1) * 8 = -200

Next, we evaluate g(x, y, z) = -sin(z), e^(xz), y at (5, -1, 8):

g(5, -1, 8) = <-sin(8), e^(5*8), -1> = <-0.989, 1478.48, -1>

Finally, we compute the product of f and g:

(f ✕ g)(5, -1, 8) = f(5, -1, 8) * g(5, -1, 8) = <-198.58, -295696.03, 200>

Therefore, (f ✕ g)(5, -1, 8) = <-198.58, -295696.03, 200>.

To learn more about function visit:

https://brainly.com/question/12431044

#SPJ11


Related Questions

find the mean (i.e. expected value) of the random variable x associated with the probability density function over the indicated interval. f(x) = 1 72 x2; [0, 6]

Answers

The mean (expected value) of the random variable x associated with the probability density function f(x) = (1/72)x^2 over the interval [0, 6] is 4.5.

To find the mean (expected value) of the random variable x associated with the probability density function f(x) = 1/72 x^2 over the interval [0, 6], we use the formula:

E(x) = ∫[0,6] x f(x) dx

= ∫[0,6] x (1/72 x^2) dx

= (1/72) ∫[0,6] x^3 dx

= (1/72) [(1/4) x^4] [0,6]

= (1/72) [(1/4) (6^4 - 0^4)]

= (1/72) (6^4/4)

= (1/72) (324)

= 4.5

To find the mean (expected value) of the random variable x associated with the probability density function f(x) = (1/72)x^2 over the interval [0, 6], we need to integrate the product of x and the probability density function over the given interval.

Mean (expected value) = E(x) = ∫(x * f(x)) dx, over the interval [0, 6]

E(x) = ∫(x * (1/72)x^2) dx from 0 to 6
E(x) = (1/72) * ∫(x^3) dx from 0 to 6

Now, integrate x^3 with respect to x:

E(x) = (1/72) * (x^4 / 4) | from 0 to 6

Now, evaluate the integral at the limits:

E(x) = (1/72) * ((6^4 / 4) - (0^4 / 4))
E(x) = (1/72) * (1296 / 4)
E(x) = (1/72) * 324

Finally, multiply the result:

E(x) = 4.5

Visit here to learn more about Mean:

brainly.com/question/20118982

#SPJ11

jane is eight years older than amy. if amy is now twice as old as jane was at one-third jane's current age, how old is jane now?

Answers

Currently Jane is 24 years old. Let's start by using variables to represent the ages of Jane and Amy. Let j be Jane's current age and a be Amy's current age.

From the first sentence of the problem, we know that j = a + 8. Now, let's focus on the second sentence of the problem. It says that Amy is now twice as old as Jane was at one-third Jane's current age.

Let's break down this sentence into smaller pieces. "Jane was at one-third Jane's current age" means that Jane's age at that time was j/3. "Amy is now twice as old as Jane was at one-third Jane's current age" means that:

a = 2(j/3)

3/2 × a = j

Now we have two equations that relate the ages of Jane and Amy:

j = a + 8

3/2 × a = j

We can substitute the first equation into the second equation to get an equation that only has one variable:

1/2 × a = 8

a = 16

So Amy = 16 years old. We can use the first equation to find Jane's age:

j = a + 8

j = 16 + 8

j = 24

Currently Jane is 24 years old.

To learn more about Current age visit:

https://brainly.com/question/530237

#SPJ4

The positions of a particle moving in the xy-plane is given by the parametric equations x=t3−3t2 and y=2t3−3t2−12t. For what values of t is the particle at rest?

Answers

The particle is at rest when the velocity is zero.

To find the values of t, you need to calculate the first derivatives of the parametric equations and set them equal to zero.

Main answer: The particle is at rest for t = 0 and t = 2.


1. Calculate the first derivatives of x(t) and y(t):
dx/dt = 3t² - 6t
dy/dt = 6t² - 6t - 12

2. Set the derivatives equal to zero and solve for t:
3t² - 6t = 0
6t² - 6t - 12 = 0

3. Factor the equations:
t(3t - 6) = 0
6(t² - t - 2) = 0

4. Solve for t:
t = 0, (3t - 6) = 0
t² - t - 2 = 0

5. From the first equation, t = 0 or t = 2.
From the second equation, use the quadratic formula:
t = (1 ± √(1 + 8))/2
t ≈ 1.41, -1.41

6. The particle is at rest for t = 0 and t = 2. The other values do not correspond to a stationary point.

To know more about quadratic formula click on below link:

https://brainly.com/question/9300679#

#SPJ11

a = 2.7 cm, b = 12 cm and c = 9.2 cm. If m is the midpoint of SR Calculate the size of angle MwwT (correct to 1 d.p.) ​

Answers

The size of angle MWT is calculated to 1 d.p. to give

37.8 degrees

How to find angle MWT

The size of angle MWT is solved using trigonometry tan

tan (angle MWT) = (distance midpoint of a to edge w) / b

Where distance midpoint of a to edge w is calculated using Pythagoras theorem

(distance midpoint of a to edge w)² = (1/2 a)² + c²

(distance midpoint of a to edge w)² = (1.35)² + 9.2²

distance midpoint of a to edge w = 9.3

tan (angle MWT) = 9.3 / 12

angle MWT = arc tan (9.3/12) = 37.776

angle MWT = 37.8 degrees to 1 d.p.

Learn more about angles at

https://brainly.com/question/25716982

#SPJ1

find the length of the curve y =x4 for 0≤ x ≤1. round your answer to 3 decimal places if needed.
Only use numerical characters and decimal point
where needed. i.e. Enter the number without any
units, commas, spaces or other characters.

Answers

The length of the curve y = x^4 for 0≤ x ≤1 is approximately 1.082.

To find the length of the curve y = x^4 for 0≤ x ≤1, you'll need to use the arc length formula:

Arc length = ∫√(1 + (dy/dx)^2) dx from a to b, where a = 0 and b = 1.

First, find the derivative of y with respect to x:
y = x^4
dy/dx = 4x^3

Now, square the derivative and add 1:
(4x^3)^2 + 1 = 16x^6 + 1

Next, find the square root of the result:
√(16x^6 + 1)

Now, integrate the expression with respect to x from 0 to 1:
∫(√(16x^6 + 1)) dx from 0 to 1

Unfortunately, this integral doesn't have a closed-form solution, so we'll need to use numerical methods, such as Simpson's rule or a numerical integration calculator, to approximate the length.

Using a numerical integration calculator, the length of the curve y = x^4 for 0≤ x ≤1 is approximately 1.082.

Your answer: 1.082

To learn more about curve: https://brainly.com/question/31376454

#SPJ11

The length of the curve y = x^4 for 0≤ x ≤1 is approximately 1.082.

To find the length of the curve y = x^4 for 0≤ x ≤1, you'll need to use the arc length formula:

Arc length = ∫√(1 + (dy/dx)^2) dx from a to b, where a = 0 and b = 1.

First, find the derivative of y with respect to x:
y = x^4
dy/dx = 4x^3

Now, square the derivative and add 1:
(4x^3)^2 + 1 = 16x^6 + 1

Next, find the square root of the result:
√(16x^6 + 1)

Now, integrate the expression with respect to x from 0 to 1:
∫(√(16x^6 + 1)) dx from 0 to 1

Unfortunately, this integral doesn't have a closed-form solution, so we'll need to use numerical methods, such as Simpson's rule or a numerical integration calculator, to approximate the length.

Using a numerical integration calculator, the length of the curve y = x^4 for 0≤ x ≤1 is approximately 1.082.

Your answer: 1.082

To learn more about curve: https://brainly.com/question/31376454

#SPJ11

What is the area of this composite figure

Answers

The composite figure has an area of 24 square units.

How to determine the area of a composite figure

In this question we find the representation of a composite figure formed by the combination of four figures, a triangle and three rectangles, whose area formulas are listed below:

Rectangle

A = b · h

Triangle

A = 0.5 · b · h

Where:

A - Areab - Widthh - Height

Now we proceed to determine the area of the composite figure:

A = 2 · 3 + 0.5 · 2 · 1 + 7 · 2 + 1 · 3

A = 6 + 1 + 14 + 3

A = 24

The area of the composite figure is equal to 24 square units.  

To learn more on areas of composite figures: https://brainly.com/question/23718948

#SPJ1

use the alternative form of the derivative to find the derivative at x = c (if it exists). (if the derivative does not exist at c, enter undefined.) f(x) = x3 2x2 9, c = −2

Answers

The derivative of f(x) at x = c does not exist.

To find the derivative of f(x) at x = c using the alternative form of the derivative, we first need to calculate the derivative of f(x) with respect to x.

Given that f(x) = x^3 - 2x^2 + 9, we can find the derivative of f(x) using the power rule and the constant multiple rule. The power rule states that the derivative of x^n, where n is a constant, is n*x^(n-1). The constant multiple rule states that the derivative of a constant multiplied by a function is equal to the constant multiplied by the derivative of the function.

Applying the power rule and constant multiple rule to f(x), we get:

f'(x) = 3x^2 - 4x

Now, we can evaluate f'(x) at x = c, which in this case is x = -2:

f'(-2) = 3(-2)^2 - 4(-2)

= 3(4) + 8

= 12 + 8

= 20

So, the derivative of f(x) at x = -2 is 20. However, we are asked to find the derivative at x = c = -2 using the alternative form of the derivative.

The alternative form of the derivative states that the derivative of a function at a specific point is equal to the limit of the difference quotient as x approaches the given point. In other words, the derivative at x = c is equal to the limit of (f(x) - f(c))/(x - c) as x approaches c.

Substituting c = -2 into the alternative form of the derivative, we get:

f'(-2) = lim(x->-2) (f(x) - f(-2))/(x - (-2))

However, if we try to evaluate this limit, we get an indeterminate form of 0/0. This means that the derivative of f(x) at x = -2 does not exist, as the limit of the difference quotient is undefined. Therefore, the main answer is that the derivative of f(x) at x = c does not exist.

For more questions like Derivative click the link below:

https://brainly.com/question/25324584

#SPJ11

Pls help! I need to find the angle measures for questions 14-17.

Answers

Answer:

3

Step-by-step explanation:

gd=14cm

dc=17cm

then,

gd-dc

14cm-17cm

0=14cm-17cm

0=-3

0+3

3

Prism A and prism B are similar.

Answers

Check the picture below.

[tex]\cfrac{1^2}{2^2}=\cfrac{110}{A}\implies \cfrac{1}{4}=\cfrac{110}{A}\implies A=440~in^2[/tex]

What is the value of n if the equation n*y^2+ 2y − 4 = 0 has exactly one root?

Answers

Answer:

0

Step-by-step explanation:

ny^2 + 2y - 4 = 0

ny^2 + 2y = 4

y(ny + 2) = 4

y = 4

ny + 2 = 4

ny = 2, 0 = 2

The only possible solution to make this expression incorrect is if 0 = 2, so n is equal to 0.

Given P(x) = x^3 + 2x^2 + 9x + 18. Write P in factored form (as a product of linear factors). Be sure to write the full equation, including P(x) = ______.

Answers

The factored form of polynomial P(x) is [tex]P(x) = 1(x + 2)(x^2 - x + 9).[/tex]



To factor [tex]P(x) = x^3 + 2x^2 + 9x + 18,[/tex]we need to first look for any common factors that we can factor out. In this case, we can factor out a 1, so:

[tex]P(x) = 1(x^3 + 2x^2 + 9x + 18)[/tex]

Next, we can try to find the roots of the polynomial by using the Rational Root Theorem, which states that if a polynomial has integer coefficients, then any rational root of the polynomial must have the form p/q, where p is a factor of the constant term and q is a factor of the leading coefficient. In this case, the constant term is 18 and the leading coefficient is 1, so the possible rational roots are:

±1, ±2, ±3, ±6, ±9, ±18

We can try these roots by using synthetic division or long division to see if they are roots of the polynomial. After trying a few of these roots, we find that -2 is a root of the polynomial, so we can factor out (x + 2):

[tex]P(x) = 1(x^3 + 2x^2 + 9x + 18)\\     = 1(x + 2)(x^2 + ax + b)[/tex]

where a and b are coefficients that we need to find. To find a and b, we can use the fact that the coefficient of x^2 in the factored form should be equal to the coefficient of x^2 in the original polynomial. That is,

2 + 2a = 2

Solving for a, we get a = -1. Next, we can expand the factor (x^2 - x + b) and equate the coefficients of x and the constant term to the corresponding coefficients in the original polynomial. That is,

2a + b = 9
2b = 18

Solving for b, we get b = 9. Therefore, we have:

[tex]P(x) = 1(x + 2)(x^2 - x + 9)[/tex]

So the factored form of P(x) is [tex]P(x) = 1(x + 2)(x^2 - x + 9).[/tex]

learn more about polynomial

https://brainly.com/question/11536910

#SPJ11

The factored form of polynomial P(x) is [tex]P(x) = 1(x + 2)(x^2 - x + 9).[/tex]



To factor [tex]P(x) = x^3 + 2x^2 + 9x + 18,[/tex]we need to first look for any common factors that we can factor out. In this case, we can factor out a 1, so:

[tex]P(x) = 1(x^3 + 2x^2 + 9x + 18)[/tex]

Next, we can try to find the roots of the polynomial by using the Rational Root Theorem, which states that if a polynomial has integer coefficients, then any rational root of the polynomial must have the form p/q, where p is a factor of the constant term and q is a factor of the leading coefficient. In this case, the constant term is 18 and the leading coefficient is 1, so the possible rational roots are:

±1, ±2, ±3, ±6, ±9, ±18

We can try these roots by using synthetic division or long division to see if they are roots of the polynomial. After trying a few of these roots, we find that -2 is a root of the polynomial, so we can factor out (x + 2):

[tex]P(x) = 1(x^3 + 2x^2 + 9x + 18)\\     = 1(x + 2)(x^2 + ax + b)[/tex]

where a and b are coefficients that we need to find. To find a and b, we can use the fact that the coefficient of x^2 in the factored form should be equal to the coefficient of x^2 in the original polynomial. That is,

2 + 2a = 2

Solving for a, we get a = -1. Next, we can expand the factor (x^2 - x + b) and equate the coefficients of x and the constant term to the corresponding coefficients in the original polynomial. That is,

2a + b = 9
2b = 18

Solving for b, we get b = 9. Therefore, we have:

[tex]P(x) = 1(x + 2)(x^2 - x + 9)[/tex]

So the factored form of P(x) is [tex]P(x) = 1(x + 2)(x^2 - x + 9).[/tex]

learn more about polynomial

https://brainly.com/question/11536910

#SPJ11

Which is equivalent to (x > 5), given that x is a numeric variable. A.(x < 5) B.!(x >= 5) C.!(x <= 5) D.!(x < 5)

Answers

The numeric variable equivalent to equivalent to (x > 5) is, !(x < 5). The answer is D.

The original statement is "x > 5". The negation of this statement is "not (x > 5)", which is equivalent to "x <= 5". However, option A is the opposite of the correct answer since it says "x < 5", not "x <= 5". Option B says "not (x >= 5)", which is equivalent to "x < 5", but again, it is not the correct answer since it uses the "not greater than or equal to" symbol.

Option C says "not (x <= 5)", which is equivalent to "x > 5", but this is the opposite of the original statement. Therefore, the correct answer is D. !(x < 5), which is equivalent to "not (x is less than 5)", or "x is greater than or equal to 5". Hence, option D is correct.

To know more about numeric variable, here

brainly.com/question/17291241

#SPJ4

h(x)=3x-5 and g(x)=2x+1 find gh(x)

Answers

Required function g(h(x)) is 6 x - 9.

What is Functions?

A function is a relationship between a set of outputs referred to as the range and a set of  inputs referred to as the domain, with the condition that each input is contain  to exactly one output. An input x corresponding to a function f output, which is represented by f(x).

What is Composite Function?

We can combine two functions so that the outputs of one function become the inputs of the other if we have two functions is known as composite function . A composite function is defined by this action,that the function g f(x) = g(f(x)) is known as a composite function. This is occasionally referred to as a function of a function. g f can also be written as g o f instead.

We have, h(x)=3 x-5 and g(x)=2 x+1.

So, g(h(x)) = g(3 x - 5) = 2(3 x - 5) + 1 = 6 x - 9.

Learn more about Composite Functions here,

https://brainly.com/question/10687170

#SPJ1

Members of a softball team raised $1952. 50 to go to a tournament. They rented a bus

Eor $983. 50 and budgeted $57 per player for meals. Write and solve an equation

_which can be used to determine p, the number of players the team can bring to the

Cournament.

Answers

You would create an equation using the total money raise, subtract the 983 and then divide by 57

an athlete can run 6 miles in 51 minutes . at this rate , how many miles could the athlete run in 1.5 hours ?

Answers

At the given rate, the athlete could run 10.584 miles in 1.5 hours.

To determine how many miles the athlete could run in 1.5 hours at the given rate, follow these steps:

Step 1: Calculate the athlete's speed in miles per minute.

The athlete can run 6 miles in 51 minutes, so their speed is:

Speed = Distance ÷ Time = 6 miles ÷ 51 minutes ≈ 0.1176 miles per minute.

Step 2: Convert 1.5 hours to minutes.

1.5 hours = 1.5 × 60 = 90 minutes.

Step 3: Calculate the distance the athlete can run in 1.5 hours.

Distance = Speed × Time = 0.1176 miles per minute × 90 minutes ≈ 10.584 miles.

Therefore, at the given rate, the athlete could run approximately 10.584 miles in 1.5 hours.

Learn more about distance here,

https://brainly.com/question/26046491

#SPJ11

Which equation represents the linear relationship between the x-values and the y values in the table ?
A. y = -x + 9
B. y = 3x +5
C. y = -2x + 8
D. y = 4x + 3

Answers

Answer: The answer is B, y= 3x+5

Let W be the region bounded by the cylinders z= 1-y^2 and y=x^2, and the planes z=0 and y=1 . Calculate the volume of W as a triple integral in the three orders dzdydx, dxdzdy, and dydzdx.Im having trouble figuring out my parameters for which i am integrating. I do understand however that i should get the same volume for all three orders since the orders don't matter.

Answers

The order of integration does not affect the final answer, but may affect the complexity of the integrals.

To calculate the volume of the region W using triple integrals, we need to determine the bounds for each variable.

First, we can see that the planes z=0 and y=1 bound the region in the z and y directions, respectively.

Next, to find the bounds for x, we need to find the intersection of the two cylinders. Solving for y in the equation [tex]z=1-y^2[/tex], we get y = ±sqrt(1-z). Substituting this into the equation [tex]y=x^2[/tex], we get [tex]x^2[/tex] = ±sqrt(1-z), or x = ±sqrt(sqrt(1-z)). So the bounds for x are -sqrt(sqrt(1-z)) to sqrt(sqrt(1-z)).

Now we can set up the triple integrals in the three orders:

Note that the order of integration does not affect the final answer, but may affect the complexity of the integrals.

To learn more about complexity visit:

https://brainly.com/question/17027861

#SPJ11

express the general solution of the given differential equation on the interval (0,[infinity]) in termsof bessel functions:(a) 4x2y′′ 4xy′ (64x2−9)y= 0(b)x2y′′ xy′−(36x2 9)y= 0

Answers

The following parts can be answered by the concept of Differential equation.

(a) For the differential equation 4x²y'' + 4xy' - (64x² - 9)y = 0, we can rewrite it as:

y'' + (1/x)y' - (16 - 9/x²)y = 0

This is a Bessel's equation of order ν = 3. The general solution is given by:

y(x) = c_1 J_3(2√2x) + c_2 Y_3(2√2x)

where c_1 and c_2 are constants, J_3 is the Bessel function of the first kind of order 3, and Y_3 is the Bessel function of the second kind of order 3.

(b) For the differential equation x²y'' + xy' - (36x² - 9)y = 0, we can rewrite it as:

y'' + (1/x)y' - (36 - 9/x²)y = 0

This is also a Bessel's equation, but with order ν = 3/2. The general solution is given by:

y(x) = c_1 J_(3/2)(6x) + c_2 Y_(3/2)(6x)

where c_1 and c_2 are constants, J_(3/2) is the Bessel function of the first kind of order 3/2, and Y_(3/2) is the Bessel function of the second kind of order 3/2.

To learn more about Differential equation here:

brainly.com/question/14620493#

#SPJ11

At the city museum, child admission is $6.10 and adult admission is $9.90. On Friday, four times as many adult tickets as child tickets were sold, for a total sales of $1188.20. How many child tickets were sold that day?​

Answers

Answer: 26 child tickets were sold that day.

Step-by-step explanation:

Let's say the number of child tickets sold is "x".

According to the problem, the number of adult tickets sold is four times the number of child tickets sold. So, the number of adult tickets sold would be 4x.

6.10x + 9.90(4x) = 1188.20

6.10x + 39.60x = 1188.20

45.70x = 1188.20

x = 26

without solving for the de, describe the spring system y'' 8y' 16y=0

Answers

The given differential equation y'' + 8y' + 16y = 0 represents a damped spring system with a damping coefficient of 8 and a spring constant of 16.

To describe the spring system represented by the differential equation y'' + 8y' + 16y = 0, we will be using the given terms.

1. Differential equation (DE): The given DE is a second-order linear homogeneous differential equation with constant coefficients. It represents the motion of a damped spring system, where y'' denotes the acceleration, y' denotes the velocity, and y denotes the displacement of the mass.

2. Damping: The term 8y' represents the damping in the spring system. It is proportional to the velocity (y') of the mass, and acts to oppose the motion, thus slowing down the oscillation.

3. Spring constant: The term 16y represents the restoring force exerted by the spring, which is proportional to the displacement (y) of the mass. The spring constant is 16.

4. Natural frequency: The natural frequency of the spring system can be found by considering the undamped case (i.e., without the 8y' term). In this case, the DE becomes y'' + 16y = 0. The natural frequency (ω_n) can be calculated as the square root of the spring constant divided by the mass (ω_n = √(k/m)). We don't have the mass value, so we can only state that ω_n = √(16/m).

5. Damping coefficient: The damping coefficient is the constant proportionality factor for the damping term. In this case, it is 8.

6. Damped frequency: Damped frequency (ω_d) is the frequency of oscillation when damping is present. It can be found using the natural frequency and the damping ratio (ζ). However, we do not have enough information to calculate the damping ratio or the damped frequency in this case.

In summary, the given differential equation y'' + 8y' + 16y = 0 represents a damped spring system with a damping coefficient of 8 and a spring constant of 16. The natural frequency depends on the mass, but the damped frequency cannot be calculated without additional information.

To know more about motion of a damped spring system refer here:

https://brainly.com/question/23611719

#SPJ11

help someone with these two questions


Answers

The shapes involved in the first figure is a triangle and a trapezium, with an area of 139.5. The shapes involved in the second figure is a triangle and a rectangle, with an area of 22 square units.

How to calculate for the area of the figures

The first figure can be observed to be made up of a triangle and a trapezium. While the second is a triangle and a rectangle, so we shall calculate for the area and sum the results to get the total area of the composite figures as follows:

First figure:

area of the triangle = 1/2 × 9 × 6 = 27 square units

area of the trapezium = 1/2 × (6 + 9) × 15 = 112.5 square units

area of the first figure = 27 + 112.5 = 139.5 square units

Second figure:

area of the triangle = 1/2 × 4 × 2 = 4 square units

area of the rectangle = 9 × 2 = 18 square

area of the second figure = 4 + 18 = 22 square units.

Therefore, the shapes involved in the first figure is a triangle and a trapezium, with an area of 139.5. The shapes involved in the second figure is a triangle and a rectangle, with an area of 22 square units.

Know more about area here:https://brainly.com/question/21135654

#SPJ1

1) 2( x + $3.60 ) = $19.40
2) 45.93 + 112 + (−61.24)
3) 20x + 2 > −98
4) 2/5 (4x - 8)
5) On a school field trip, the number of students (y) is always proportional to the number of adults (x). In one group there are 96 students and 8 adults. What is the constant of proportionality between this relationship?

Answers

Answer:

1. 2(x+3.60) = 19.40

Divide both sides by 2:

x+3.60 = 9.70

Subtract 3.60 from both sides:

x = 6.10

Answer: 6.10

2. 45.93 + 112 + (−61.24)

45.93 + 112 = 157.93

157.93 - 61.24 = 96.69

Answer: 96.69

3. 20x + 2 > −98

Subtract 2 from both sides:

20x > −100

Divide both sides by 20:

x > −5

Answer: x > −5

4. 2/5 (4x - 8)

= 8x/5 - 16/5

Answer: 8x/5 - 16/5

5. On a school field trip, the number of students (y) is always proportional to the number of adults (x). In one group there are 96 students and 8 adults. What is the constant of proportionality between this relationship?

The constant of proportionality is the number that, when multiplied by the number of adults, gives the number of students. In this case, the constant of proportionality is 96/8 = 12.

Answer: 12

solve the given initial-value problem. x' = 1 2 0 1 − 1 2 x, x(0) = 4 9 x(t)

Answers

The solution of the initial-value problem of x'=[1/2 0; 1 -1/2] x is x(t) = [4/3 * e^(t/2); 5/3 * e^t + 8/3 * e^(t/2)].

To solve the given initial value problem x'=[1/2 0; 1 -1/2] x with x(0)=[4;9], we need to find the solution of the system of differential equations.

The characteristic equation of the matrix [1/2 0; 1 -1/2] is λ^2 - (3/2)λ + (1/4) = 0, which has two distinct roots, λ_1 = 1/2 and λ_2 = 1.

The general solution of the system is x(t) = c_1 * [1; 2] * e^(λ_1t) + c_2 * [0; 1] * e^(λ_2t), where c_1 and c_2 are constants to be determined using the initial condition x(0) = [4; 9].

Substituting the values of λ_1, λ_2, and x(0) in the above equation, we get c_1 = 4/3 and c_2 = 5/3.

Therefore, the solution of the initial-value problem is x(t) = [4/3 * e^(t/2); 5/3 * e^t + 8/3 * e^(t/2)].

To know more about initial-value problem:

https://brainly.com/question/30547172

#SPJ4

--The given question is incomplete, the complete question is given

" Solve the given initial-value problem x' is matrix of 2x2 form, x' = [1/2  0   1  −1/2] x,  x(0) = [4 9] of 2x1 matrix form. find x(t)"--

If the null space of a 7 times 9 matrix is 3-dimensional, find:

Rank A= DIm Row A, and Dim Col A.
Rank A = 4, Dim Row A = 4, DIm Col A = 4
Rank A = 6, Dim Row A = 3, Dim Col A = 3
Rank A = 6, Dim Row A = 6, Dim Col A = 6
Rank A = 6, Dim Row A = 6, Dim Col A = 3

Answers

By the rank-nullity theorem, we know that for any matrix A, the rank of A plus the dimension of the null space of A is equal to the number of columns of A. If the null space of a 7 times 9 matrix is 3-dimensional, Rank A = 6, Dim Row A = 6, Dim Col A = 6

we know that for any matrix A, the rank of A plus the dimension of the null space of A is equal to the number of columns of A. That is:

Rank A + Dim Null A = # of columns of A

In this case, we are given that the null space of the 7x9 matrix A is 3-dimensional. Therefore, we have:

Rank A + 3 = 9

Solving for Rank A, we get:

Rank A = 6

Now, we also know that the rank of a matrix is equal to the dimension of its row space and the dimension of its column space. That is:

Rank A = Dim Row A = Dim Col A

Therefore, we have:

Rank A = Dim Row A = Dim Col A = 6

So the correct option is: Rank A = 6, Dim Row A = 6, Dim Col A = 6

To know more about rank of a matrix refer here:

https://brainly.com/question/29857274

#SPJ11

Consider the following.C = x3 − 10x2 + 33xUse the cost function to find the production level at which the average cost is a minimum.x =For this production level, show that the marginal cost and average cost are equal.marginal cost $average cost $

Answers

As the marginal cost and average cost are both equal to $8 at x = 5, we can conclude that the marginal cost and average cost are equal at this production level.

To find the production level at which the average cost is a minimum, we need to first find the average cost function. The average cost function is given by:

[tex]AC(x) = C(x)/x[/tex]

Substituting C(x) from the given equation, we get:

[tex]AC(x) = (x^3 - 10x^2 + 33x)/x[/tex]

Simplifying this, we get:

[tex]AC(x) = x^2 - 10x + 33[/tex]

To find the production level at which the average cost is a minimum, we need to find the value of x that minimizes the average cost function. We can do this by taking the derivative of the average cost function and setting it equal to zero:

[tex]d/dx (x^2 - 10x + 33) = 2x - 10 = 0[/tex]

Solving for x, we get:

x = 5

Therefore, the production level at which the average cost is a minimum is x = 5.

To show that the marginal cost and average cost are equal at this production level, we need to first find the marginal cost function. The marginal cost function is given by the derivative of the cost function:

[tex]MC(x) = d/dx (x^3 - 10x^2 + 33x) = 3x^2 - 20x + 33[/tex]

Substituting x = 5, we get:

[tex]MC(5) = 3(5)^2 - 20(5) + 33 = 8[/tex]

Therefore, the marginal cost at x = 5 is $8.

To find the average cost at x = 5, we can substitute x = 5 into the average cost function:

[tex]AC(5) = 5^2 - 10(5) + 33 = 8[/tex]

Therefore, the average cost at x = 5 is also $8.

Since the marginal cost and average cost are both equal to $8 at x = 5, we can conclude that the marginal cost and average cost are equal at this production level.

To know more about marginal cost refer here:

https://brainly.com/question/15575229

#SPJ11

I do not understand how to get b and what if i have to get c?

Answers

The value of b is given as follows:

b = 5.

How to define a linear function?

The slope-intercept representation of a linear function is given by the equation presented as follows:

y = mx + b

The coefficients of the function and their meaning are described as follows:

m is the slope of the function, representing the change in the output variable y when the input variable x is increased by one.b is the y-intercept of the function, which is the initial value of the function, i.e., the numeric value of the function when the input variable x assumes a value of 0. On a graph, it is the value of y when the graph of the function crosses the y-axis.

When two lines are parallel, they have the same slope, hence:

4x + 5y = 1

5y = -4x + 1

y = -4x/5 + 1.

Hence:

y = -4x/5 + b.

When x = 4, y = 3, hence the intercept is given as follows:

3 = -16/5 + b

b = 31/5

Hence, in standard format, the equation will be given as follows:

y = -4x/5 + 31/5

4x/5 + y = 31/5

4x + 5y = 31

Meaning that the value of b is of 5.

More can be learned about linear functions at https://brainly.com/question/24808124

#SPJ1

A stone is tossed into the air from ground level with an initial velocity of 34 m/s. Its height at time t is h(t) = 34t − 4.9t2 m. Compute the stone's average velocity over the time intervals [3, 3.01], [3, 3.001], [3, 3.0001],and[2.99, 3], [2.999, 3], [2.9999, 3]. (Round your answers to three decimal places.)T interval [3,3.01] [3,3.001] [3,3.0001]
Average Velocity ??? ???? ????
T interval [2.99,3] [2.999,3] [2.9999,3]
Average Velocity ???? ????? ????
Estimate the instataneous velocity v at t=3.
V= _____ m/s

Answers

To compute the average velocity over each time interval, we use the formula: average velocity = (h(t2) - h(t1))/(t2 - t1), where h(t) is the height function.

Using the given height function, h(t) = 34t - 4.9t^2, we calculate the average velocities:
1. [3, 3.01]:
Average Velocity = (h(3.01) - h(3))/(3.01 - 3) ≈ -17.147 m/s
2. [3, 3.001]:
Average Velocity = (h(3.001) - h(3))/(3.001 - 3) ≈ -17.194 m/s
3. [3, 3.0001]:
Average Velocity = (h(3.0001) - h(3))/(3.0001 - 3) ≈ -17.199 m/s
4. [2.99, 3]:
Average Velocity = (h(3) - h(2.99))/(3 - 2.99) ≈ -17.243 m/s
5. [2.999, 3]:
Average Velocity = (h(3) - h(2.999))/(3 - 2.999) ≈ -17.205 m/s
6. [2.9999, 3]:
Average Velocity = (h(3) - h(2.9999))/(3 - 2.9999) ≈ -17.200 m/s
To estimate the instantaneous velocity at t=3, observe the average velocities as the time intervals approach t=3:
As the intervals get closer to t=3, the average velocities appear to approach -17.2 m/s. Thus, the estimated instantaneous velocity at t=3 is:
V ≈ -17.2 m/s

FOR MORE INFORMATION ON instantaneous velocity SEE:

https://brainly.com/question/28837697

#SPJ11

use the empirical rule to estimate the percentage of cold sufferers who experience symptoms for less than 9.9 days.

Answers

If Z is between -1 and 1, then the percentage is within the 68% range. If Z is between -2 and 2, then the percentage is within the 95% range. If Z is between -3 and 3, then the percentage is within the 99.7% range.

To use the empirical rule to estimate the percentage of cold sufferers who experience symptoms for less than 9.9 days, we first need to know the mean (average) and the standard deviation of the data.

Let's assume that the mean (µ) is X days and the standard deviation (σ) is Y days. The empirical rule states that for a normal distribution:
- Approximately 68% of the data falls within 1 standard deviation (σ) of the mean (µ)
- Approximately 95% of the data falls within 2 standard deviations (σ) of the mean (µ)
- Approximately 99.7% of the data falls within 3 standard deviations (σ) of the mean (µ)

Now, we want to estimate the percentage of cold sufferers who experience symptoms for less than 9.9 days. We need to determine how many standard deviations away 9.9 days is from the mean.

To do this, use the formula:

Z = (Observed Value - Mean) / Standard Deviation
Z = (9.9 - X) / Y

Once you calculate the Z score, refer to the empirical rule:
- If Z is between -1 and 1, then the percentage is within the 68% range.
- If Z is between -2 and 2, then the percentage is within the 95% range.
- If Z is between -3 and 3, then the percentage is within the 99.7% range.

Finally, based on the Z score and the empirical rule, you can estimate the percentage of cold sufferers who experience symptoms for less than 9.9 days.

To know more about empirical rule to estimate the percentage refer here:

https://brainly.com/question/23645979

#SPJ11

the game of four square on a 12 foot by 12-foot court you square is a 6foot by 6 foot what is the area if four square not including you court

Answers

Answer:

108 ft ^2

Step-by-step explanation:

12^2 - 6^2 = 108

You invest $2,000 in a Certificate of Deposit (CD) with an APR 2.25% for 3 years
that compounds annually. What is the balance after 3 years?

Answers

The balance after 3 years on a Certificate of Deposit with an APR of 2.25% that compounds annually is $2,163.05.

What is meant by balance?

Balance refers to the equality between two expressions or equations, where both sides have the same value. It is often used in solving equations or evaluating algebraic expressions.

What is meant by compounds?

A compound refers to a combination of two or more simple mathematical statements or propositions, connected by logical operators such as "and", "or", or "not". It is used in logic and boolean algebra.

According to the given information:

To calculate the balance after 3 years on a Certificate of Deposit with an APR of 2.25% that compounds annually, we can use the formula:

A = P(1 + r/n)^{n*t}

Where:

A = the balance after t years,

P = the principal amount invested,

r = the annual interest rate as a decimal,

n = the number of times the interest is compounded per year,

t = the number of years

Plugging in the given values, we get:

P = $2,000r = 0.0225 (2.25% expressed as a decimal)

n = 1 (compounded annually)

t = 3 years,

[tex]A = 2,000(1 + 0.0225/1)^{1*3}[/tex]

[tex]A = 2,000(1 + 0.0225)^3[/tex]

[tex]A = 2,000(1.0225)^3[/tex]

A = $2,163.05 (rounded to the nearest cent)

Therefore, the balance after 3 years on a Certificate of Deposit with an APR of 2.25% that compounds annually is $2,163.05.

To know more about balance visit:

brainly.com/question/23271078

#SPJ1

Other Questions
Which is the best summary of the passage? A Treat The kitten walked softly and quietly around the outside of the shed, listening for any noises. She took slow steps, her nose to the ground, her ears standing straight up. She made her way around the corner of the shed when she froze. With her head lifted, the kitten strained to hear a far-off sound. It sounded like her owner, Peter, was calling her. Now, the kitten knew that if she went home, she would need to go inside the house, and she was not ready to go inside. On the other hand, Peter may have kitty treats, and she loved kitty treats. This was a difficult decision, and the kitten was hungry. A kitty snack would definitely taste great. Just then, she heard Peter shake the bag of kitty treats, and she took off for home. A kitty treat was worth going inside. Responses A kitten is out exploring when she hears her owner call her home. She tries to decide whether or not to return home. She hears her owner shake the treat bag and decides to return home. A kitten is out exploring when she hears her owner call her home. She tries to decide whether or not to return home. She hears her owner shake the treat bag and decides to return home. A kitten is looking for kitty treats when she hears her owner call her. She runs home immediately knowing he has treats for her. He gives her a treat when she gets home. A kitten is looking for kitty treats when she hears her owner call her. She runs home immediately knowing he has treats for her. He gives her a treat when she gets home. A kitten is exploring near a shed. She is sniffing and listening for smells and sounds as she walks around the shed. She hears a sound and listens closely. A kitten is exploring near a shed. She is sniffing and listening for smells and sounds as she walks around the shed. She hears a sound and listens closely. A kitten is nowhere to be found and as Peter is looking for his cat, he calls her name. He even shakes a bag of treats. Finally, Peter decides to go search for the kitten. seven hundred three million written in scientific notation? A certain mass of nitrogen gas occupies a volume of 8.52 L at a pressure of 5.06 atm. At what pressure will the volume of thissample be 10.90 L? Assume constant temperature and ideal behavior.= P =atm Ashley Cano purchased a bottle of salad dressing that broke apart when she tried to open it. She cut her hand and had to get stitches. Her buyers' rights are protected under __ laws.a. food and beverageb. defective packagingc. manufacturingd. consumer protectione. factory liability How many fissions take place per second in a 200-MW reactor?Assume 200 MeV is released per fission? let f(x, y, z) = xy3z2 and let c be the curve r(t) = et cos(t2 1), ln(t2 1), 1 t2 1 with 0 t 1. compute the line integral of f along c. What is the effect of spherical aberration on lens? Problem 9.5.11. Important quantum problem. Consider the three spin-1 matrices Sx = 1/2 [0 1 0] Sy=1/2[0 -i 0] Sz = [1 0 0]1 0 1 i 0 -i 0 0 00 1 0 0 i 0 0 0 -1which represent the components of the internal angular momentum of some ele- mentary particle at rest. That is to say. the particle has some angular momentum unrelated to r x p. The operator S= S^2x-S^2y+S^3z represents the total angular momentum squared. The dynamical state of the system is given by a state vector in the complex three dimensional space on which these spin matrices act. By this we mean that all available information on the particle is stored in this vector. According to the laws of quantum mechanics . A measurement of the angular momentum along any direction will give only one of the eigenvalues of the corresponding spin operator.The probability that a given eigenvalue will result is equal to the absolute value squared of the inner product of the state vector with the corresponding eigenvector (The state vector and all eigenvectors are all normalized.) The state of the system immediately following this measurement will be the corresponding eigenvector (a) What are the possible values we can get if we measure spin along the z-axis? (b) What are the possible values we can get if we measure spin along the x or y-axis? (c) Say we got the largest possible value for St. What is the state vector immedi- ately afterwards? (d) If Sz is now measured what are the odds for the various outcomes? Say we got the largest value. What is the state just after the measurement? If we remeasure Sx at once, will we once again get the largest value? (e) What are the outcomes when S2 is measured? f) From the four operators S, Sy, Sz. S2, what is the largest number of commut- ing operators we can pick at a time? (g) A particle is in a state given by a column vector Costs of Birthday Cakes) Use Table: Costs of Birthday Cakes. Assume that fixed costs are $10. What is the marginal cost of the fourth cake? A. $35 B. $10 C. $8 D. $25 22. How do we correct the issue of flipped imagery caused by mirrors? Kooyman hardware sells a ladder. They had... Kooyman hardware sells a ladder. They had 5 ladders at the start of the week but demand was for 6 ladders. What was their fill rate for this ladder? 1% % ed PLS HELP!!!!!Convert the following measurements. Show all work, including units that cancel.82.6 L of neon at STP -> mol cad cannot automate and accelerate the drafting process. select one: true false give two convincing pieces of evidence that you succeeded in synthesizing ferrocene should the salesperson mention a discount at the beginning, middle, or end of a sales presentation? why What is the future value of $2,400 in 17 years assuming an interest rate of 7.9 percent compounded semiannually? Deposit $ 2,400Number of years 17Interest rate 7,9%Times compounded per year2 Complete the following analysis. Do not hard code values in your calculations. Your answer should be positive. Future value A resistance thermometer which measures temperature by measuring the change in resistance of a conductor, is made of platinum and has a resistance of 50.0 ohms at 20.0 degrees Celsius. a) When the device is immersed in a vessel containing melting indium, its resistance increases to 76.8 ohms. From this information, find the melting point of indium. b) The indium is heated further until it reaches a temperature of 235 degrees Celsius. What is the new current in the platinum to the current IMP at the melting point? in a competition,a school awarded medals in different categories to 50 participants.25 medals and dance,12 medals in dramatics and 18 medals in music.if 4 participants received medal for both dance and drama, 5 person receive medal for both drama and music,9 person receive medal for both dance and music and 2 person receive medals for the three categories .(A.)how many person did not receive medals for the dance category?(USING A VENN DIAGRAM TO ILLUSTRATE THE PROBLEM AND SHADE THE REGION THAT IS ASKED.)you send picture extra point with picture assuming friction is negligible, write an equation for how fast the car is traveling after a time t. express your solution in terms of t and the variables given in the problem statement. explain four causes of immoral behaviour among the youth in ghana