The National Association of Colleges and Employers (NACE) Spring Salary Survey shows that the current class of college graduates received an average starting-salary offer of $48,127. Your institution collected an SRS (n = 300) of its recent graduates and obtained a 95% confidence interval of ($46,382, $48,008). What can we conclude about the difference between the average starting salary of recent graduates at your institution and the overall NACE average? Write a short summary.

Answers

Answer 1

Based on the information provided, we can conclude that the average starting salary of recent graduates at the institution is likely not significantly different from the overall NACE average of $48,127.

This is because the 95% confidence interval obtained from the institution's SRS includes the NACE average.

However, it is important to note that this conclusion is limited to the specific sample size and methodology used by the institution for their survey.

The National Association of Colleges and Employers (NACE) Spring Salary Survey indicates an average starting-salary offer of $48,127 for recent college graduates.

In comparison, your institution conducted a survey using a Simple Random Sample (SRS) of 300 graduates and calculated a 95% confidence interval of ($46,382, $48,008) for their average starting salary.

In summary, the confidence interval suggests that the average starting salary of recent graduates at your institution is likely to fall between $46,382 and $48,008.

Since the NACE average of $48,127 is not within this interval, it can be concluded that there is a difference between the average starting salary at your institution and the overall NACE average, with your institution's average being slightly lower.

Visit here to learn more about Sample Size:

brainly.com/question/30509642

#SPJ11


Related Questions

solve the problem. given that p(a or b) = 1/6 , p(a) = 1/8 , and p(a and b) =1/9 , find p(b). express the probability as a simplified fraction.

Answers

The probability of event B is 11/72

What is Probability?

Probability is a measure of the likelihood of an event occurring. It is expressed as a number between 0 and 1, with 0 indicating impossibility and 1 indicating certainty, and is based on the ratio of favorable outcomes to total possible outcomes.

According to the given information:

We can use the formula for the probability of the union of two events:

p(A or B) = p(A) + p(B) - p(A and B)

Substituting the given values, we have:

1/6 = 1/8 + p(B) - 1/9

Simplifying this equation, we get:

1/6 = (9 + 72p(B) - 8)/72

Multiplying both sides by 72, we get:

12 = 9 + 72p(B) - 8

Solving for p(B), we get:

p(B) = (12 - 1)/72 = 11/72

Therefore, the probability of event B is 11/72

To know more about Probability visit :

https://brainly.com/question/11234923

#SPJ1

The probability of event B as a simplified fraction  is 11/72

What is Probability?

Probability is a measure of the likelihood of an event occurring. It is expressed as a number between 0 and 1, with 0 indicating impossibility and 1 indicating certainty, and is based on the ratio of favorable outcomes to total possible outcomes.

According to the given information:

We can use the formula for the probability of the union of two events:

=>p(A or B) = p(A) + p(B) - p(A and B)

Substituting the given values, we have:

=> 1/6 = 1/8 + p(B) - 1/9

Simplifying this equation, we get:

=>1/6 = (9 + 72p(B) - 8)/72

Multiplying both sides by 72, we get:

=> 12 = 9 + 72p(B) - 8

Solving for p(B), we get:

=> p(B) = (12 - 1)/72 = 11/72

Therefore, the probability of event B as simplified fraction  is 11/72.

To learn more about Probability refer the below link

https://brainly.com/question/11234923

#SPJ1

a sample of 75 students found that 55 of them had cell phones. the margin of error for a 95onfidence interval estimate for the proportion of all students with cell phones is:

Answers

The margin of error for a 95% confidence interval estimate for the proportion of all students with cell phones is approximately 0.0932.

To find the margin of error for a 95% confidence interval estimate for the proportion of all students with cell phones, we can use the formula:

Margin of Error = Z* * sqrt(p*(1-p)/n)

where:
Z* is the z-score corresponding to the desired level of confidence (in this case, 1.96 for 95% confidence)
p is the sample proportion (55/75 = 0.7333)
n is the sample size (75)

Plugging in the values, we get:

Margin of Error = 1.96 * sqrt(0.7333*(1-0.7333)/75)
Margin of Error ≈ 0.0932

Therefore, the margin of error for a 95% confidence interval estimate for the proportion of all students with cell phones is approximately 0.0932.

To learn more about margin of error, refer below:

https://brainly.com/question/29101642

#SPJ11

Learn

Dotebook

1. Mario has 12 boxes of pizza He cut each pizza into eights. How mar

pieces of pizza will there be?

Answers

Answer: 96 slices

Step-by-step explanation:

find the taylor polynomial of degree 4 for cos(x), for x near 0: p4(x)= approximate cos(x) with p4(x) to simplify the ratio: 1−cos(x)x= using this, conclude the limit: limx→01−cos(x)x=

Answers

As x approaches to  0, x²/8 approaches 0 the limit is 1/2 and the taylor polynomial for cos(x), for x near 0 is  (x²/2 - x⁴/24)/x

To find the Taylor polynomial of degree 4 for cos(x) near x = 0, we use the following formula:

p4(x) = cos(0) - (x²/2!) + (x⁴/4!) = 1 - (x²/2) + (x⁴/24)

To simplify the ratio (1-cos(x))/x, we substitute cos(x) with p4(x):

(1 - (1 - (x²/2) + (x⁴/24)))/x = (x²/2 - x⁴/24)/x

Now, to find the limit as x approaches 0:

lim (x->0) (x²/2 - x⁴/24)/x = lim (x->0) (x/2 - x³/24)

Using L'Hopital's rule, we differentiate the numerator and the denominator with respect to x:

lim (x->0) (1/2 - x²/8)

To know more about Taylor polynomial  click on below link:

https://brainly.com/question/31419648#

#SPJ11

Determine the form of a particular solution to the differential equations. Do not solve. (a) x" — x' – 2x = e^t cost – t^2 + cos 3t (b) y" – y' + 2y = (2x + 1)e^(x/2) cos (√7/2)x + 3(x^3 – x)e^(x/2) sin (√7/2) x

Answers

The form of the particular solution of the differential equation x" — x' – 2x = e^t cost – t^2 + cos 3t is x_p(t) = Ae^t cos(t) + Be^t sin(t) + Ct^2 + Dt + Ecos(3t) + Fsin(3t) and the particular solution of the y" – y' + 2y = (2x + 1)e^(x/2) cos (√7/2)x + 3(x^3 – x)e^(x/2) sin (√7/2) x is y_p(x) = (Ae^(x/2) cos(√7/2)x + Be^(x/2) sin(√7/2)x) + (C x^3 + Dx^2 + Ex + F)

Explanation: -

Part (a): -To determine the form of a particular solution to x" - x' - 2x = e^t cos(t) - t^2 + cos(3t),

we look at the non-homogeneous terms on the right-hand side. We see that we have a term of the form e^t cos(t), which suggests a particular solution of the form Ae^t cos(t) or Be^t sin(t).

We also have a polynomial term t^2, which suggests a particular solution of the form At^2 + Bt + C. Finally, we have a term of the form cos(3t), which suggests a particular solution of the form D cos(3t) + E sin(3t).

Thus,

x_p(t) = A e^t cos(t) + B e^t sin(t) + Ct^2 + Dt + E cos(3t) + F sin(3t) is particular solution of the above differential equation.

Part (b): -To determine the form of a particular solution to y" - y' + 2y = (2x + 1)e^(x/2) cos(√7/2)x + 3(x^3 - x)e^(x/2) sin(√7/2)x, we first observe that the right-hand side includes a product of exponential and trigonometric functions. Therefore, a particular solution may take the form of a linear combination of functions of the form e^(ax) cos(bx) and e^(ax) sin(bx).

Additionally, the right-hand side includes a polynomial of degree 3, so we may include terms of the form ax^3 + bx^2 + cx + d in our particular solution.

Overall, a possible form for a particular solution to this differential equation is:

y_p(x) = (Ae^(x/2) cos(√7/2)x + Be^(x/2) sin(√7/2)x) + (C x^3 + Dx^2 + Ex + F)

Know more about the "Particular solution" click here:

https://brainly.com/question/15127193

#SPJ11





Logan has 9 pounds of trail mix. he will repackage it in small bags of 1/2 pound each. How many bags can he make?

Answers

Answer:

9÷ 1/2 = 9 • 2/1 = 18 bags of trail mix

Step-by-step explanation:

You can solve this problem using division.  Since there are 9 pounds of trail mix to divide up, you would start with 9 pounds and divide it by 1/2 pound to find the number of bags you could make (use the reciprocal of the divisor 1/2)

Q- 6
Triangle NMO is drawn with vertices N(−5, 2), M(−2, 1), O(−3 , 3). Determine the image vertices of N′M′O′ if the preimage is reflected over x = −5.

N′(5, 2), M′(2, 1), O′(3, 3)
N′(2, −5), M′(1, −2), O′(3, −3)
N′(0, 2), M′(3, 1), O′(2, 3)
N′(−5, 2), M′(−8, 1), O′(−7, 3)

Answers

The vertices of the triangle after reflection is

D)N′(−5, 2), M′(−8, 1), O′(−7, 3).

What is triangle?

A triangle is a form of polygon with three sides; the intersection of the two longest sides is known as the triangle's vertex. There is an angle created between two sides. One of the crucial elements of geometry is this

Remember that the general rule to reflect over a vertical line in the form

if  x = a then,

=> (x , y) -> (-x-2a , y)

For x = 5, we'll have that the general rule is:

=> (x , y)  -> (-x-10 , y).

Now the triangle vertices are,

N(-5,2) => (-(-5)-10,2) => (5-10 , 2) => N'(-5,2)

M(-2,1) => (-(-2)-10,1) => (2-10,1) => M' (-8,1)

O(-3,3) => (-(-3)-10,3) => (3-10,3) => O'(-7,3)

Hence the vertices of the triangle after reflection is D)N′(−5, 2), M′(−8, 1), O′(−7, 3).

To learn more about triangle refer the below link

https://brainly.com/question/17335144

#SPJ1

At the city museum, child admission is $5.60. and adult admission is $9.40. On wensday, 177 tickets were sold for a total of $1352.20. how many adult tickets were sold that day?​

Answers

Let's use variables to represent the number of child and adult tickets sold on Wednesday.

Let c be the number of child tickets sold, and let a be the number of adult tickets sold.

We know that the price of a child ticket is $5.60, and the price of an adult ticket is $9.40.

From the problem statement, we know that 177 tickets were sold in total, so:

c + a = 177

We also know that the total revenue from ticket sales was $1352.20, so:

5.60c + 9.40a = 1352.20

Now we have a system of two equations with two variables. We can solve for a by using the first equation to express c in terms of a, and then substituting into the second equation:

c + a = 177 --> c = 177 - a

5.60c + 9.40a = 1352.20

Substituting c = 177 - a into the second equation, we get:

5.60(177 - a) + 9.40a = 1352.20

Expanding and simplifying:

992.20 - 5.60a + 9.40a = 1352.20

3.80a = 360

a = 95

Therefore, 95 adult tickets were sold on Wednesday.

Its bugging out but I got 95 tickets I would add explanation if it didn't act out.

X=Adult tickets

Y=Child tickets

X+Y=117

Y=117-X

9.40X+5.60Y=1352.20

9.40X+5.60(117-X)=1352.20

9.40X+991.20-5.60x=1352.20

3.80X=361

X=95

Need help asap due today!
Thank you so much if you help!!

Find the circumference”

Answers

Answer:

37.68

Step-by-step explanation:

The formula for getting the circumference of a circle is 2πr

So:

2 * 3.14 * 6

= 37.68

Hope this helps :)

Pls brainliest...

Students are conducting a physics experiment on pendulum motion. Their 30 cm pendulum traverses an arc of 15 cm. to the nearest degree, how many degrees of rotation did the pendulum swing?

Answers

The nearest degree, the pendulum swung approximately 29 degrees.

To find the degrees of rotation for the pendulum swing, we'll use the arc length formula and the definition of a radian. The formula is:

Arc length = Radius × Angle (in radians)

We have the arc length (15 cm) and the radius (30 cm). Rearrange the formula to find the angle:

Angle (in radians) = Arc length / Radius

Angle (in radians) = 15 cm / 30 cm = 0.5 radians

Now, convert radians to degrees using the conversion factor (1 radian ≈ 57.3 degrees):

Angle (in degrees) = 0.5 radians × 57.3 ≈ 28.65 degrees

So, to the nearest degree, the pendulum swung approximately 29 degrees.

To learn more about pendulum here:

brainly.com/question/4290205#

#SPJ11

(a) Find the volume of the solid generated by revolving the region bounded by the graph x2=y−2 and 2y−x−2=0 for 0≤x≤1 about y=3.
(b) A force of 9 lb. is required to stretch a spring from its natural length of 6 in. to a length of 8 in. Find the work done in stretching the spring
(i) from its natural length to a length of 10 in.
(ii) from a length of 7 in. to a length of 9 in.

Answers

(a) Volume of the solid generated by revolving the region bounded by the graph is 12.422 cubic units.

(b)

(i) The work done in stretching the spring from its natural length to a length of 10 in. is 54 lb.-in.

(ii) The work done in stretching the spring from a length of 7 in. to a length of 9 in. is approximately 13.5 lb.-in.

How to find the volume of the solid generated by revolving the region bounded by the graph?

(a) To find the volume of the solid generated by revolving the region bounded by the graph[tex]x^2=y-2[/tex] and 2y-x-2=0 for 0≤x≤1 about y=3, we can use the method of cylindrical shells:

First, we need to find the limits of integration for the radius of the shells. Since we are revolving around y=3, the distance between y=3 and the curve x^2=y-2 will give us the radius of the shell.

Solving for y in [tex]x^2=y-2[/tex], we get[tex]y=x^2+2.[/tex] Substituting this into 2y-x-2=0, we get [tex]x=2y-2y^2-2.[/tex] So the limits of integration for the radius will be from [tex]3-(x^2+2) to 3-(2y-2y^2-2).[/tex]

Next, we need to find the height of the shells. This is simply the length of the interval of integration for x, which is 0 to 1.

So the volume of the solid is given by the integral:

[tex]V = \int (3-(x^2+2)) - (3-(2y-2y^2-2)) dx[/tex] from x=0 to x=1

Simplifying and evaluating the integral, we get:

V ≈ 12.422 cubic units.

Therefore, the volume of the solid generated by revolving the region bounded by the graph [tex]x^2=y-2[/tex] and [tex]2y-x-2=0[/tex] for 0≤x≤1 about y=3 is approximately 12.422 cubic units.

How to find the work done in stretching the spring from its natural length to a length of 10 in?

(b) (i) The work done in stretching the spring from its natural length of 6 in. to a length of 10 in. can be found using the formula:

W =[tex](1/2)k(d2^2 - d1^2)[/tex]

where k is the spring constant, d1 is the initial length, and d2 is the final length.

Given that the force required to stretch the spring from its natural length of 6 in. to a length of 8 in. is 9 lb., we can find the spring constant as follows:

k = F/(d2 - d1) = 9/(8-6) = 4.5 lb/in

So the work done in stretching the spring from its natural length of 6 in. to a length of 10 in. is:

W = [tex](1/2)(4.5)(10^2 - 6^2)[/tex]= 54 lb.-in.

Therefore, the work done in stretching the spring from its natural length to a length of 10 in. is 54 lb.-in.

How to find the work done in stretching the spring from a length of 7 in. to a length of 9 in?

(ii) To find the work done in stretching the spring from a length of 7 in. to a length of 9 in., we can use the same formula:

W =[tex](1/2)k(d2^2 - d1^2)[/tex]

Using the same spring constant of 4.5 lb/in, the work done is:

W = [tex](1/2)(4.5)(9^2 - 7^2)[/tex]≈ 13.5 lb.-in.

Therefore, the work done in stretching the spring from a length of 7 in. to a length of 9 in. is approximately 13.5 lb.-in.

Learn more about volume of the solid

brainly.com/question/12649605

#SPJ11

On a recent quiz, the class mean was 73 with a standard deviation of 3.1. Calculate the z-score (to at least 2 decimal places) for a person who received score of 71. Z-Score: ____Is this unusual? A. Unusual B. Not Unusual

Answers

The, a z-score of -0.65 is not unusual

To calculate the z-score, we use the formula:

[tex]z =\frac{ (x - μ)}{σ}[/tex]

where x is the individual score, μ is the mean, and σ is the standard deviation.

Plugging in the values given, we get:

[tex]z= \frac{71-73}{3.1}[/tex]
z = -0.65

Rounding to 2 decimal places, the z-score is -0.65.

To determine if this score is unusual or not, we need to compare it to the normal distribution. A z-score of -0.65 means that the individual's score is 0.65 standard deviations below the mean.

According to the empirical rule, about 68% of the data falls within 1 standard deviation of the mean. Therefore, a z-score of -0.65 is not unusual and falls within the normal range of scores.

So, the answer is B. Not Unusual.

To know more about "mean" refer here:

https://brainly.com/question/31101410#

#SPJ11

Suppose a random variable X is Poisson with E(X) = 2.4. Find the probability that X will be at least 2, and the probability that X will be between 2 and 4 (inclusive). P(X > 2) = | P(2 < X < 4) = Use a probability calculator and give the answer(s) in decimal form, rounded to four decimal places.

Answers

The probability that X will be at least 2 is 0.5940 and the probability that X will be between 2 and 4 (inclusive) is 0.3010.

How to find the probability that X will be at least 2 and the probability that X will be between 2 and 4?

The Poisson distribution is given by the formula:

[tex]P(X = k) = (e^{(-\lambda)} * \lambda ^k) / k![/tex]

where λ is the expected value or mean of the distribution.

In this case, we are given that E(X) = 2.4, so λ = 2.4.

Using a Poisson probability calculator, we can find:

P(X > 2) = 1 - P(X ≤ 2) = 1 - (P(X = 0) + P(X = 1) + P(X = 2))

= [tex]1 - [(e^{(-2.4)} * 2.4^0) / 0! + (e^{(-2.4)} * 2.4^1) / 1! + (e^{(-2.4)} * 2.4^2) / 2!][/tex]

= [tex]1 - [(e^{(-2.4)} * 1) + (e^{(-2.4)} * 2.4) + (e^{(-2.4)} * 2.4^2 / 2)][/tex]

= 1 - 0.4060

= 0.5940 (rounded to four decimal places)

Therefore, the probability that X will be at least 2 is 0.5940.

Using a Poisson probability calculator, we can find:

P(2 < X < 4) = P(X = 3) + P(X = 4)

= [tex](e^{(-2.4)} * 2.4^3 / 3!) + (e^{(-2.4)} * 2.4^4 / 4!)[/tex]

= 0.2229 + 0.0781

= 0.3010 (rounded to four decimal places)

Therefore, the probability that X will be between 2 and 4 (inclusive) is 0.3010.

Learn more about poisson distribution

brainly.com/question/17280826

#SPJ11

A cartographer at point C sites a prominent rock feature, at point R, East from his location. There is a grassy peak, at point G, at a distance of “y” miles directly North of the cartographer. The angle formed by the cartographer, rock feature, and grassy peak is “x” degrees. See the diagram below. Using complete sentences, explain how the cartographer can use only these two measurements to calculate the distance from the grassy peak to the rock feature.

Answers

True: A Chorochromatic map is a type of cartographic map that represents features depending on how they are distributed across the surface in terms of quality.`

We have,

The art and science of cartography involves visually depicting a geographic location, typically on a flat surface like a map or chart. It could include superimposing a region's depiction with non-geographical distinctions like political, cultural, or other ones.

Making and utilizing maps is the theory and application of cartography. Cartography, which combines science, aesthetics, and method, is based on the idea that reality may be described in ways that effectively convey spatial information. The same basic components are included on most maps: the main body, the legend, the title, the scale and orientation indications, the inset map, and the source notes.

To know more about cartographic Maps, visit:

brainly.com/question/17665913

#SPJ1

complete question:

a cartographic map style that symbolizes features based on the qualitative surface distribution of a mapped feature is called a chorochromatic map.

Practice
Compare. Use >, <, or = to make a true statement
30 ounces o 2 pounds

Answers

After unit conversion , the statement is 30 ounces < 2 pounds.

What is unit conversion?

The same feature is expressed in a different unit of measurement through a unit conversion. Time can be stated in minutes rather than hours, and distance can be expressed in kilometres rather than miles, or in feet rather than any other unit of length.

Here the given is 32 ounces and 2 pounds,

We know  that , if two values in same measurement then we can easily compare them.

Here we know that 1 pound  = 16 ounces. Then

=> 2 pounds = 16*2 = 32 ounces.

Hence the statement is 30 ounces < 2 pounds.

To learn more about unit conversion refer the below link

https://brainly.com/question/13016491

#SPJ9

problem 6. show that if ab = ac and a is nonsingular, then the cancellation law holds; that is, b = c.

Answers

To show that if ab = ac and a is nonsingular, then the cancellation law holds, meaning b = c, we can follow these steps:

1. Start with the given equation: ab = ac.
2. We know that a is nonsingular, which means it has an inverse, denoted by a^(-1).
3. Multiply both sides of the equation by the inverse of a on the left: a^(-1)(ab) = a^(-1)(ac).
4. Use the associative property of matrix multiplication: (a^(-1)a)b = (a^(-1)a)c.
5. The product of a matrix and its inverse is the identity matrix (I): Ib = Ic.
6. The identity matrix doesn't change the matrix when multiplied: b = c.

Thus, by using the given terms "nonsingular," "cancellation law," and "b = c," we have shown that if ab = ac and a is nonsingular, then the cancellation law holds, and b = c.

Learn more about the cancellation law :

https://brainly.com/question/31328698

#SPJ11

Use Pythagoras' theorem to work out the length of the hypotenuse in the triangle on the right, below.
Give your answer in centimetres (cm) and give any decimal answers to 1 d.p.

Answers

The hypotenuse C of the triangle is 17 cm.

This is an exercise of the Pythagorean Theorem, which establishes that in every right triangle, the square of the length of the hypotenuse is equal to the sum of the squares of the lengths of the other two sides, called legs.

This can be expressed mathematically as:

c = √(a² + b²) ⇔ a² + b² = c²

Where "a" and "b" are the lengths of the legs and "c" is the length of the hypotenuse. This theorem is one of the fundamental bases of geometry and has many applications in physics, engineering, and other areas of science.

The Pythagorean Theorem formula is used to calculate the length of an unknown side of a right triangle, as long as the lengths of the other two sides are known. It can also be used to determine if a triangle is right if the lengths of its sides are known.

To calculate the hypotenuse, we will apply the formula:

c = √(a² + b²)

Knowing that:

a = 8cm

b = 15cm

Now we just substitute the data in the formula, and calculate the hypotenuse, then

c = √(a² + b²)c = √((8 cm)² + (15 cm)²)c = √(64 cm² + 225 cm²c = √(289 cm²)c = 17 cm

The hypotenuse C of the triangle is 17 cm.

ヘ( ^o^)ノ\(^_^ )If you want to learn more about mathematics, I share this link to complement your learning:

https://brainly.com/question/29085128

which equations are true? Select the four correct answers. A. 3/4=6/8 B. 4/6=10/12 C. 2/3=8/12 D. 8/8=5/5 E. 2/5=4/10 F. 1/4=5/8

Answers

Answer:

The Correct answers are

A

C

D

E

Answer:

Correct Answers:

A 3/4=6/8

C 2/3=8/12

D 8/8=5/5

E 2/5=4/10

Step-by-step explanation:

An artist is creating a scale drawing of a mural in the shape of a right triangle she will paint for the city. Her drawing is 8 inches long and has a hypotenuse of 15 inches. If the mural has a hypotenuse of 96 inches, how long is the mural?

Answers

Answer:

  51.2 inches

Step-by-step explanation:

You want the length of a mural whose hypotenuse is 96 inches if the scale drawing has a length of 8 inches and a hypotenuse of 15 inches.

Ratios

The ratios of corresponding lengths will be the same:

  drawing length / drawing hypotenuse = mural length / mural hypotenuse

  8 in / 15 in = mural length / 96 in

Solution

Multiplying the equation by 96 in, we have ...

  (96 in)·8/15 = mural length

  51.2 in = mural length

The mural is 51.2 inches long.

We can use ratios to solve this problem. If we let x be the length of the hypotenuse of the mural, then we can set up the following proportion:

8/15 = x/96

To solve for x, we can cross-multiply and simplify:

8 × 96 = 15 × x
768 = 15x
x = 768/15
x ≈ 51.2

Therefore, the length of the mural is approximately 51.2 inches.

Classify the following triangles as obtuse, acute, or right triangle, using the side- length relationship. a. 15, 16, 17 b. 20, 18, 7 c. 17, 144, 145 d. 24, 32, 40.​

Answers

a. 15, 16, 17 : The triangle is an acute triangle

b. 20, 18, 7 : The triangle is an obtuse triangle

c. 17, 144, 145 : The triangle is a right triangle

d. 24, 32, 40 : The triangle is a right triangle

Classifying triangles as Obtuse, Acute or Right

From the question, we are to classify the given triangles as obtuse, acute or right triangles

To classify the triangles, we will consider the longest side of the triangles

If the square of the longest side is lesser than the sum of squares of the other two sides, the triangle is acute If the square of the longest side is equal to the sum of squares of the other two sides, the triangle is rightIf the square of the longest side is greater than the sum of squares of the other two sides, the triangle is obtuse

a.  15, 16, 17

Is 17² = 15² + 16² ?

17² = 289

15² + 16² = 225 + 256 = 481

NO,

17² < 15² + 16²

Thus,

The triangle is an acute triangle

b.  20, 18, 7

Is 20² = 18² + 7² ?

20² = 400

18² + 7² = 324 + 49 = 373

NO,

20² > 18² + 7²

Thus,

The triangle is an obtuse triangle

a.  17, 144, 145

Is 145² = 144² + 17² ?

145² = 21025

144² + 17² = 20736 + 289 = 21025

YES,

Thus,

The triangle is a right triangle

a.  24, 32, 40

Is 40² = 32² + 24² ?

40² = 1600

32² + 24² = 1024 + 576 = 1600

YES

Hence,

The triangle is a right triangle

Learn more on Classifying triangles here: https://brainly.com/question/27996818

#SPJ1

Work out the area of this semicircle. Take to be 3.142 and give your answer to 2 decimal places. Diameter is 8cm.​

Answers

Answer:

3.142 in 2 decimal is 3.100

Step-by-step explanation:

When we come to diameter of 8cm I don't know

Its an 8th grade SBA review
hope you guys can help me •DUE ON APRIL 11

Answers

5. There is no solution since 5 = 7 is a false statement. Option C

6. There is no solution since 7x = 6x is a false statement. Option C

7. The value of the angle BCY = 55 degrees

8. The value of exterior angle , x is 137 degrees

How to determine the values

Note that algebraic expressions are described as expressions composed of variables, terms, constants, factors and constants.

From the information given, we have that;

5. 6x +8 - 3 = 8x + 7 -2x

collect the like terms

6x + 5 = 6x + 7

5 = 7

6. 9x + 11 - 2x = 6x + 11

collect the terms

7x = 6x

We can see that for the value of the first, x is zero and for the second, there is no solution

7. We have from the diagram that;

25x + 11x = 180; because angles on a straight line is equal to 180 degrees

add the like terms

36x = 180

Make 'x' the subject of formula

x = 5

<BCY = 11x = 11(5) = 55 degrees

8. The sum of the angles in a triangle is 180 degrees

Then,

62 + 61 + y = 180

y = 180 - 43

But, x + y = 180

x = 180 - 43 = 137 degrees

Learn about triangles at: https://brainly.com/question/14285697

#SPJ1

Find the common difference of the arithmetic sequence 14 , 16 , 18

Answers

Answer:

The common difference is 2.

Answer:

The common difference of the arithmetic sequence 14, 16, 18 is **2**.

In any arithmetic sequence, each term is equal to the previous term plus the common difference. So, the second term is equal to the first term plus the common difference. In this case, the second term, 16, is 2 more than the first term, 14. Therefore, the common difference is 2.

We can also find the common difference by subtracting any two consecutive terms in the sequence. For example, we can subtract the second term from the third term to get 18 - 16 = 2.

The common difference of an arithmetic sequence is always constant. This means that the difference between any two consecutive terms in the sequence will always be the same. In this case, the difference between any two consecutive terms is 2.

Step-by-step explanation:

find the points of intersection of the line x = 5 3t, y = 7 8t, z = −4 t, that is, l(t) = (5 3t, 7 8t, −4 t), with the coordinate planes. xy plane (x, y, z)

Answers

The line intersects the xy-plane (z=0) and the xz-plane (y=0) at the point (0,0,0) in both cases.

To find the point of intersection of the line l(t) = (5/3t, 7/8t, -4t) with the xy-plane (z=0), we can putting z=0 in the equation of the line to get

5/3t = x

7/8t = y

0 = z

Solving for t, we get

t = 0 (which corresponds to the point (0,0,0))

Substituting t=0 in the equations of the line, we get the point of intersection as

(5/3(0), 7/8(0), -4(0)) = (0, 0, 0)

Therefore, the line intersects the xy-plane at the point (0, 0, 0).

To find the point of intersection of the line with the xz-plane (y=0), we can substitute y=0 in the equation of the line to get

5/3t = x

0 = y

-4t = z

Solving for t

t = 0 (which corresponds to the point (0,0,0))

Putting t=0 in the equations of the line, we get the point of intersection as

(5/3(0), 7/8(0), -4(0)) = (0, 0, 0)

Therefore, the line intersects the xz-plane at the point (0, 0, 0).

To know more about points of intersection:

https://brainly.com/question/31384612

#SPJ4

Which relation is a function?ll

Answers

Answer: Option 1

Step-by-step explanation:

    In a function, each input can only have one output. This rules out option 2 and option 4.

    Next, a graphed function must pass the vertical line test. This rules out option 3.

    This leaves us with option 1, the correct answer option. Option one is a function.

construct a 95onfidence interval for the population variance σ2 if a sample of size 25 has standard deviation s = 14. round the answers to two decimal places.

Answers

We can say with 95% confidence that the population variance σ2 lies within the interval [155.25, 570.06].

To construct a 95% confidence interval for the population variance σ2, we can use the chi-square distribution.

First, we need to calculate the chi-square values for the upper and lower limits of the confidence interval. We use the formula:

chi-square upper = (n-1)*s^2 / χ^2(α/2, n-1)

chi-square lower = (n-1)*s^2 / χ^2(1-α/2, n-1)

where n is the sample size, s is the sample standard deviation, α is the level of significance (0.05 for 95% confidence interval), and χ^2 is the chi-square distribution function.

Plugging in the values, we get:

chi-square upper = (25-1)*14^2 / χ^2(0.025, 24) = 43.98

chi-square lower = (25-1)*14^2 / χ^2(0.975, 24) = 15.14

Next, we can use these chi-square values to calculate the confidence interval for σ2:

confidence interval = [(n-1)*s^2 / chi-square upper, (n-1)*s^2 / chi-square lower]

Plugging in the values, we get:

confidence interval = [(25-1)*14^2 / 43.98, (25-1)*14^2 / 15.14]

confidence interval = [155.25, 570.06]

Learn more about standard deviation here: brainly.com/question/23907081

#SPJ11

The following linear differential equation models the charge on the capacitor, q(t), at time t in an RLC series circuit. L d^2q/dt^2 + R dq/dt + 1/C q = E(t) Find the charge on the capacitor when L = 10 henry, R = 20 ohms, C = (6260)^-1 farad, and E(t) = 100 volts, with the initial conditions q(0) = 0 coulombs and i(0) = 0 amperes.

Answers

The charge on the capacitor at time t is given by q(t) = -21292.5e^(-0.00878t) + 21292.5e^(-314.53t) + 626000 coulombs.

How to find the charge on the capacitor?

To find the charge on the capacitor, with the initial conditions q(0) = 0 coulombs and i(0) = 0 amperes, we use the given linear differential equation:

L d^2q/dt^2 + R dq/dt + 1/C q = E(t)

We can solve for q(t) by finding the roots of the characteristic equation, and assuming a particular solution. Then we use the initial conditions to solve for the constants in the general solution.

The solution to the differential equation is:

q(t) = -21292.5e^(-0.00878t) + 21292.5e^(-314.53t) + 626000

Therefore, the charge on the capacitor at time t is given by q(t) = -21292.5e^(-0.00878t) + 21292.5e^(-314.53t) + 626000 coulombs.

Learn more about charge on capacitors

brainly.com/question/29301875

#SPJ11

Marginal Utility Consider the utility function: u(x1, 12) = x2 + x2(a) What is the marginal utility function with respect to 3? What is the marginal utility function with respect to x2? Make sure to write out the expressions as LTEX formulas. (b) Given your results in (a), what is significant about this utility function?

Answers

In economics, a utility function is a mathematical function that assigns a numerical value to the satisfaction or utility that a consumer derives from consuming a particular combination of goods and services.

First, let's correct the utility function you provided. I believe it should be:
u(x1, x2) = x1^2 + x2^2

Now, let's find the marginal utility functions with respect to x1 and x2. The marginal utility is the derivative of the utility function with respect to the corresponding variable.

(a) Marginal utility function with respect to x1:
MU_x1 = d(u(x1, x2))/dx1 = 2x1

Marginal utility function with respect to x2:
MU_x2 = d(u(x1, x2))/dx2 = 2x2

(b) The significance of this utility function is that it exhibits diminishing marginal utility for both x1 and x2. As the consumption of x1 or x2 increases, the additional utility gained from consuming more units of x1 or x2 decreases.

This is evident in the marginal utility functions MU_x1 and MU_x2, where the derivatives are constant values (2x1 and 2x2), indicating a linear relationship.

To learn more about “marginal utility” refer to the https://brainly.com/question/15050855

#SPJ11

Let, E = [u1, u2, u3] and F = [b1, b2], where u1 = (1, 0, - 1)T, u2 = (1, 2, l)T, u3 = ( - l, l, l)T and b1 = (l, - l)T, b2 = (2, - l)T. For each of the following linear transformations L from R3 into R2, find the matrix representing L with respect to the ordered bases E and F

Answers

The matrix representing L with respect to the ordered bases E is [ 0 5 3l ][ -2 l -3l ]. The matrix representing L with respect to the ordered bases F is [ 1 l -l/2 ] [ -1 1 3/2 ].

To find the matrix representing the linear transformation L with respect to the ordered bases E and F, we need to determine where L sends each vector in the basis E and express the results as linear combinations of the basis vectors in F. We can then arrange the coefficients of these linear combinations in a matrix.

Let's apply this approach to each of the given linear transformations:

L(x, y, z) = (x + y, z)

To find the image of u1 = (1, 0, -1)T under L, we compute L(u1) = (1 + 0, -1) = (1, -1). Similarly, we can compute L(u2) = (3, l) and L(u3) = (-l, 3l). Now we express each of these images as a linear combination of the vectors in F:

L(u1) = 1*b1 + (-1/2)b2

L(u2) = lb1 + (1/2)*b2

L(u3) = (-l/2)*b1 + (3/2)*b2

These coefficients give us the matrix:

[ 1 l -l/2 ]

[ -1 1 3/2 ]

L(x, y, z) = (x + 2y - z, -x - y + 3z)

Using the same process, we find:

L(u1) = (0, -2)

L(u2) = (5, l)

L(u3) = (3l, -3l)

Expressing these images in terms of E gives the matrix:

[ 0 5 3l ]

[ -2 l -3l ]

Know more about matrix here:

https://brainly.com/question/29132693

#SPJ11

Unit 10: Circles
Homework 5: Inscribed Angles
** This is a 2-page document! **
Directions: Find each angle or arc measure.

Answers

The measure of arc FE is 27degrees,angle m<B is 112degrees, <GHJ = <GIJ = 73⁰ , m<S = 90 degrees in the given circles

The sum of angle in the triangle DEF is 180 degrees

mFE = <D

Recall that <D+<E+<F = 180⁰

<D+63+90 = 180

<D = 180-153

<D = 27 degrees

Hence the measure of arc FE is 27degrees

6) For this circle geometry, we will use the theorem

The sum of Opposite side of a cyclic quadrilateral is 180 degrees.

A + C = 180

m<A + 101 = 180

m<A = 180-101

m<A = 79degrees

Similarly

B + D = 180

m<B + 68 = 180

m<B = 180-68

m<B = 112degrees

7) The sum of angle in a circle is 360, hence;

arcGJ+68+31+115 = 36p

arcGJ = 360 - 214

arcGJ = 146⁰

Since the angle at the centre is twice angle at the circumference, then;

<GHJ = 1/2 arcGJ

<GHJ = 1/2(146)

<GHJ = 73⁰

<GHJ = <GIJ = 73⁰ (angle in the same segment of the circle are equal)

8) Recall that the sum of Opposite side of a cyclic quadrilateral is 180 degrees.

P + R = 180

57 + <R = 180

m<R = 180-57

m<R = 123degrees

Similarly, m<Q+m<S = 180⁰

Since the triangle in a semi circle is a right angled triangle, hence m<Q = 90 degrees (triangle PQR is a right angled triangle)

m<S = 180 - 90

m<S = 90 degrees

To learn more on Circles click:

https://brainly.com/question/11833983

#SPJ1

Other Questions
Can someone please help me with this essay?Write an essay (800 words) and include these topics in the essay on Korean War:* Division after World War II* Invasion and Pusan Perimeter* Landing at Inchon* Stalemate on the battlefield and negotiating table* Truce, no treaty, remained divided A random sample of a distribution of monthly car sales from a local dealership consists of: $89,000, $112,000, $76,000, $39,000, $89,000, $99,000, $56,000. (a) What is the mean? $(No Response) (b) What is the median? (No Response) (c) What is the mode? $ (No Response) simplify the ratio of factorials. (4n 1)! (4n 1)! s the use of money and credit controls to influence macroeconomic outcomes. Mark Goldsmith's broker has shown him two bonds issued by different companies. Each has a maturity of 4 years, a par value of $1000, and a yield to maturity of 8.70. The first bond is issued by Crabbe Waste Disposal and has a coupon interest rate of %6.315 paid annually. The second bond, issued by Malfoy Enterprises, has a coupon interest rate of 8.90 % paid annually.a. Calculate the selling price for each of the bonds. A car has 12,500 miles on its odometer. Say the car is driven an average of 40 miles per day. Choose the model that expresses the number of miles N that will be on its odometer after x days Choose the correct answer below A. N(x)= 12.500x + 40 B. N(x)= -40x + 12,500 C. Nx)=40-12,500 D. N(x)=40x+12,500 38 3 for each question, complete the second sentence so that it means the same as the first, using no more than three words. a) Steve left before my arrival. When I... arrived. Steve had... already left. b) Do you need any help with your suitcase? Shall c) What's your usual time of arrival at school? Whenus d) Alice started playing tennis six months ago. Alice *************** you with your suitcase? **** arrive at school? tennis for six months. Let Y1 and Y2 be independent and uniformly distributed over the interval (0, 1). Finda the probability density function of U1 = min(Y1, Y2).b E ( U 1 ) and V (U1). What general conclusions can you draw concerning the acidity or basicity of the hydroxides of the elements of the third period? Discuss general trends in metallic and non-metallic properties as shown by your experiment. GPS (Global Positioning System) satellites orbit at an altitude of 2.1x107 m . You may want to review (Pages 392-398) Find the orbital period. Express your answer using two significant figures VO AXD ? T= h Submit Request Answer Part B Find the orbital speed of such a satellite. Express your answer using two significant figures. ? 3300 m/s Submit Previous Answers Request Answer X Incorrect; Try Again; 4 attempts remaining arrange the components of translation in the approximate order in which they would appear or be used in prokaryotic protein synthesis, from first to last. Assess how the media could be used to enhance the understanding of the importance of the Bill of Rights In exercises 1519, a matrix A is given. For each, consider the system of differential equations x' = Ax and respond to (a) - (d). (a) Determine the general solution to the system x' = Ax. (b) Classify the stability of all equilibrium solutions to the system. (c) How many straight-line solutions does this system of equations have? Why? (d) Use a computer algebra system to plot the direction field for this system and sketch several trajectories by hand. 16. A=D; -3 19. A- [3 ] How many carbon atoms are in 11.5 g C2H5OH? WILL GIVE BRAINLIEST ANSWER Construct a triangle with a 70 degree angle, a 85 degree angle, and a 105 degree angle. Did you construct a triangle, if so what type of trianlge is it? name the following polyhedra: which of the following describes the declarative programming paradigm? answer it uses detailed steps to provide instructions to a computer. it uses a domain-specific language (dsl) to instruct the program what needs to be done. it uses local and global variables as data types. it uses a linear, top-down approach to solving problems. A firm's long-run average cost curve decreases over a range of output because of ____Select the best answer below: A. decreasing returns to scale B. diminishing marginal returns C. increasing costs D. increasing returns to scale E. diminishing marginal returns For the equation (x^2 - 16)^3 (x - 1)y" - 2xy' + y = 0, the point x = 0 is an ordinary point. For the equation (x^2 - 16)^3 (x - 1)y" - 2xy' + y = 0, the point x = 1 is a singular point. Uniqueness of linear first order differential equations is guaranteed by the continuity of partial differential f/partial differential y. y = xe^x is a solution to y" - 2y' + y = 0. The differential equation y" + 2yy' + 3y = 0 is second order linear. (1 point) let y be the solution of the initial value problem y y=sin(2x),y(0)=0,y(0)=0.