The equation of the sphere with two end points on its diameter (0, 2, 5) and (4, 6, 9 is given by a.(x - 2)2+(-4)2+(2-7)2 = 12 b.(x - 2)2 + (-4)2 + (z - 7)2 = 9 c.(x-4)2 + (y-2)2+(2-2)2 = 12 d.(x-4)2 + (y - 2)2 + (2-2)2 = 9 e.(x - 2)2 + (y-2)2 + (z - 4)2 = 12

Answers

Answer 1

Comparing with the given options, we can see that the correct answer is (e):[tex](x - 2)^2 + (y - 2)^2 + (z - 4)^2 = 12[/tex]. We can use the midpoint formula to find the center of the sphere:

Midpoint Formula = [tex]([(0+4)/2], [(2+6)/2], [(5+9)/2])[/tex] [tex]= (2, 4, 7)[/tex]

The radius of the sphere can be found by finding the distance between the center and one of the endpoints:

r = [tex]\sqrt{((4-2)^2 + (6-4)^2 + (9-7)^2)}[/tex] = [tex]\sqrt{(8+4+4) }[/tex]= [tex]\sqrt{16}[/tex] = [tex]4[/tex]

So, the equation of the sphere is:[tex](x - 2)^2 + (y - 4)^2 + (z - 7)^2 = 16[/tex]

Expanding the equation, we get:[tex]x^2 - 4x + 4 + y^2 - 8y + 16 + z^2 - 14z + 49 = 16[/tex]

Simplifying, we get:[tex]x^2 - 4x + y^2 - 8y + z^2 - 14z + 53 = 0[/tex]

To learn more about midpoint formula, visit here

https://brainly.com/question/30242630

#SPJ4


Related Questions

answer please, ill give brainliestt!!

Answers

Answer:

VU and TU

Step-by-step explanation:

the marked angle between the lines VU and TU is ∠ VUT or ∠ TUV

that is the 2 lines forming the angle between them

Answer:

VU and TU

Step-by-step explanation:

i did this and the rest of it to

find the coefficient of x7 when the following expression is expanded by the binomial theorem. x7 in (3x +4)10 the term

Answers

The coefficient of x7 in the expansion of (3x + 4)10 is 53,248,000.

To find the coefficient of x^7 in the expansion of (3x + 4)^10 using the binomial theorem, we need to identify the term that has x^7.

The binomial theorem states that (a + b)^n = Σ (nCk) * a^(n-k) * b^k, where k goes from 0 to n and nCk denotes the binomial coefficient, which is the combination of choosing k items from n.

In our case, a = 3x, b = 4, and n = 10. We need to find the term with x^7, so the power of a (3x) should be 3 (since 3x raised to the power of 3 is x^7). This means the term will have the form:

10C3 * (3x)^3 * 4^(10-3)

Now we calculate the coefficients:

10C3 = 10! / (3! * (10 - 3)!) = 120
(3x)^3 = 27x^{7}
4^7 = 16384

Now, we multiply the coefficients together:

120 * 27 * 16384 = 53,248,000

Therefore, the coefficient of x^7 in the expansion of (3x + 4)^10 is 53,248,000.

Visit here to learn more about coefficient:

brainly.com/question/28975079

#SPJ11

marginal and conditional pdfs. the joint density function of two random variables x and y is given by: cx2 xy 2

Answers

The marginal PDF of x is a function of x^2, and the conditional PDF of y given x=a is a function of y^2.

What are the marginal and conditional PDFs for the random variables x and y, given their joint PDF cx^2 xy^2?

To find the marginal and conditional PDFs, we need to first determine the value of the constant c.

Since this is a joint PDF, it must satisfy the condition that the integral of the PDF over the entire domain equals 1. Therefore, we have:

integral from -inf to +inf of (integral from -inf to +inf of cx^2 * xy^2 dy)dx = 1

Simplifying this expression, we get:

integral from -inf to +inf of (c/3)x^5 dx = 1

Solving for c, we get:

c = 3/[(2/3)*(pi^2)]

Therefore, the joint PDF is:

f(x,y) = (3/[(2/3)*(pi^2)]) * x^2 * y^2

Now, we can find the marginal PDF of x by integrating f(x,y) over y from negative infinity to positive infinity:

f_x(x) = integral from -inf to +inf of f(x,y) dy = integral from -inf to +inf of (3/[(2/3)*(pi^2)]) * x^2 * y^2 dy

Simplifying this expression, we get:

f_x(x) = (3/[(2/3)*(pi^2)]) * x^2 * integral from -inf to +inf of y^2 dy

The integral of y^2 over the entire domain is equal to infinity, but we can still normalize the marginal PDF by dividing it by its integral over the entire domain. Therefore, we have:

f_x(x) = (3/(pi^2)) * x^2, for -inf < x < +inf

Next, we can find the conditional PDF of y given x = a by dividing the joint PDF by the marginal PDF of x evaluated at x = a:

f(y|x=a) = f(x,y) / f_x(a)

f(y|x=a) = [(2/3)(pi^2)] / (3a^2) * y^2, for 0 < y < +inf

Therefore, the marginal PDF of x is a function of x^2, and the conditional PDF of y given x=a is a function of y^2.

Learn more about PDFs

brainly.com/question/31064509

#SPJ11

. given that z is a standard normal random variable, find c for each situation. (a) p(z < c) = 0:2119 (b) p(-c < z < -c) = 0:9030 (c) p(z < c) = 0:9948 (d) p(z > c) = 0:6915

Answers

(a) The closest z-value to 0.2119 is -0.81, so c = -0.81.

(b) The closest z-value to 0.9515 is 1.43, so c = 1.43 or -1.43.

(c) The closest z-value to 0.9948 is 2.62, so c = 2.62.

(d) The closest z-value to 0.2546 is -0.53, so c = 0.53 or -0.53.

How to find c for p(z < c) = 0:2119?

(a) For a standard normal distribution, we can find the value of c such that P(z < c) = 0.2119 using a standard normal distribution table or calculator. From the table, we can see that the closest probability value to 0.2119 is 0.2119 = 0.5893 - 0.3771.

This corresponds to z = -0.81 (the closest z-value to 0.2119 is -0.81), so c = -0.81.

How to find c for p(-c < z < -c) = 0:9030?

(b) For a standard normal distribution, we can find the value of c such that P(-c < z < c) = 0.9030 using symmetry.

Since the distribution is symmetric about the mean, P(-c < z < c) = 2P(z < c) - 1 = 0.9030. Solving for P(z < c), we get P(z < c) = (1 + 0.9030)/2 = 0.9515.

From the standard normal distribution table or calculator, we find that the closest probability value to 0.9515 is 0.9515 = 0.3450 + 0.6064.

This corresponds to z = 1.43 (the closest z-value to 0.9515 is 1.43), so c = 1.43 or -1.43.

How to find c for p(z < c) = 0:9948?

(c) Similarly, for P(z < c) = 0.9948, we find the closest probability value in the standard normal distribution table or calculator to be 0.9948 = 0.4999 + 0.4948.

This corresponds to z = 2.62 (the closest z-value to 0.9948 is 2.62), so c = 2.62.

How to find c for p(z > c) = 0:6915?

(d) For P(z > c) = 0.6915, we can use symmetry to find the value of c. Since the distribution is symmetric about the mean, P(z > c) = P(z < -c) = 0.6915.

From the standard normal distribution table or calculator, we find that the closest probability value to 0.6915 is 0.6915 = 0.2546 + 0.4364.

This corresponds to z = -0.53 (the closest z-value to 0.2546 is -0.53), so c = 0.53 or -0.53.

Learn more about standard normal distribution

brainly.com/question/29509087

#SPJ11

Consider the joint density function
f(x,y)= { 16y/x^2 2≤x 0≤y≤1
0 elsewhere
compute the correlation coefficient rhoxy

Answers

The marginal mean and variance of X, nor the covariance of X and Y, we cannot find the correlation coefficient.

To find the correlation coefficient, we first need to find the marginal means and variances of X and Y, as well as their covariance.

Marginal mean of X:

E[tex](X) = ∫∫ xf(x,y) dy dx[/tex]

[tex]= ∫2^∞ ∫0^1 x(16y/x^2) dy dx[/tex]

[tex]= ∫2^∞ [8x] dx[/tex]

= ∞ (diverges)

The integral diverges, so we cannot calculate the marginal mean of X.

Marginal mean of Y:

E [tex](Y) = ∫∫ yf(x,y) dy dx[/tex]

[tex]= ∫2^∞ ∫0^1 y(16y/x^2) dy dx[/tex]

[tex]= ∫2^∞ [8/x^2] dx[/tex]

[tex]= 4[/tex]

Marginal variance of X:

Var[tex](X) = E(X^2) - [E(X)]^2[/tex]

[tex]= ∫∫ x^2f(x,y) dy dx - [E(X)]^2[/tex]

[tex]= ∫2^∞ ∫0^1 x^2(16y/x^2) dy dx - ∞[/tex]

[tex]= ∫2^∞ [8x] dx - ∞[/tex]

= ∞ (diverges)

The integral diverges, so we cannot calculate the marginal variance of X.

Marginal variance of Y:

Var[tex](Y) = E(Y^2) - [E(Y)]^2[/tex]

[tex]= ∫∫ y^2f(x,y) dy dx - [E(Y)]^2[/tex]

[tex]= ∫2^∞ ∫0^1 y^2(16y/x^2) dy dx - 16[/tex]

[tex]= ∫2^∞ [8/x^2] dx - 16[/tex]

[tex]= 4 - 16/3[/tex]

[tex]= 4/3[/tex]

Covariance of X and Y:

Cov [tex](X,Y) = E(XY) - E(X)E(Y)[/tex]

[tex]= ∫∫ xyf(x,y) dy dx - ∞(4)[/tex]

[tex]= ∫2^∞ ∫0^1 xy(16y/x^2) dy dx - ∞(4)[/tex]

[tex]= ∫2^∞ [8x] dx - ∞(4)[/tex]

[tex]= ∞ - ∞(4)[/tex]

= -∞ (diverges)

The integral diverges, so we cannot calculate the covariance of X and Y.

Since we cannot calculate the marginal mean and variance of X, nor the covariance of X and Y, we cannot find the correlation coefficient.

To learn more about coefficient visit:

https://brainly.com/question/28975079

#SPJ11

Yuki had 400 pennies mimi took 250 away. The teacher then brung 1,876 Pennies to Yuki’s table. How much does Yuki have now?

Answers

What you need to do is 400-250 which leave you will 150+1,876=2,026 so that’s how much penny’s he has in total

find the area under the standard normal curve between z=−2.95z=−2.95 and z=2.61z=2.61. round your answer to four decimal places, if necessary.

Answers

The area under the standard normal curve between z=-2.95 and z=2.61 is approximately 0.9942.

What is curve?

A curve is a geometrical object that is made up of points that are continuous and connected to form a line or a path. It can be defined mathematically by an equation or parametrically by a set of equations that describe the x and y coordinates of points on the curve as a function of a parameter such as time or distance along the curve.

Using a standard normal distribution table, we can find the area under the curve between z=-2.95 and z=2.61 as follows:

Area = Phi(2.61) - Phi(-2.95)

Where Phi(z) represents the cumulative distribution function of the standard normal distribution.

From the standard normal distribution table, we find:

Phi(2.61) = 0.9959

Phi(-2.95) = 0.0017

Therefore, the area under the curve between z=-2.95 and z=2.61 is:

Area = 0.9959 - 0.0017 = 0.9942

Rounding to four decimal places, we get:

Area ≈ 0.9942

Therefore, the area under the standard normal curve between z=-2.95 and z=2.61 is approximately 0.9942.

To learn more about curve visit:

https://brainly.com/question/31012623

#SPJ1

Help me find Surface Value! (Use the image Below)

Answers

The value of surface area of the pyramid is 1/8yd² (option a).

To find the surface area of a square pyramid, we need to add up the area of all its faces.

In this case, we can see from the net that the two equal sides of each triangular face are each 1/2 yard long, and the height of the pyramid is also 1/2 yard. Therefore, the length of the hypotenuse of each triangular face is given by the square root of (1/2)² + (1/2)² = √(2)/2 yards.

The area of each triangular face can be found by multiplying the length of the base (which is also 1/2 yard) by the height (which is 1/2 yard) and then dividing by 2, since the area of a triangle is given by 1/2 times the base times the height.

Therefore, the area of each triangular face is (1/2 x 1/2)/2 = 1/8 square yards.

Since the pyramid has four triangular faces, the total area of all the triangular faces is 4 times 1/8 square yards.

Hence the correct option is (a).

To know more about surface area here

https://brainly.com/question/27784309

#SPJ1

Which conditional and its converse are both true?

If x² = 4, then x = 2.
If x= 3, then x² = 6.
If x= 1, then 2x = 2.
If x = 2, then x² = 4.

Answers

The second answer is conditional.

This is because when x=3 is squared, it would equal 9, so though those two equations may be true sometimes, they will not always be equal, and therefore it is conditional.

The function f(x) is invertible. Find (f ^-1)' (3) given that f(x) = 5x – 2.
a. 2/15
b. 1/15 c. 15 d. 30
e. -1/15

Answers

1. The inverse function, f^(-1)(x) = (x + 2)/5.

2. The derivative of the inverse function, (f^(-1))'(x) = 1/5.

3. (f^(-1))'(3) = 1/5.

We know that a function is invertible if and only if it is one-to-one and onto. In this case, we can easily see that f(x) is a one-to-one function because different inputs always give different outputs, and it is also onto because any real number can be obtained as an output. Therefore, f(x) is invertible.

To find (f^-1)'(3), we need to use the formula for the derivative of the inverse function:

(f^-1)'(3) = 1 / f'(f^-1(3))

First, we need to find f^-1(x). We can do this by solving the equation y = 5x - 2 for x in terms of y:

y = 5x - 2

y + 2 = 5x

x = (y + 2) / 5

Therefore, f^-1(x) = (x + 2) / 5.

Now we can find f'(x):

f(x) = 5x - 2

f'(x) = 5

Next, we need to find f^-1(3):

f^-1(3) = (3 + 2) / 5 = 1

Finally, we can use the formula to find (f^-1)'(3):

(f^-1)'(3) = 1 / f'(f^-1(3)) = 1 / f'(1) = 1 / 5

Therefore, the answer is b) 1/15.

Learn more about Function:

brainly.com/question/12431044

#SPJ11

True or False: For a sample with a mean of M =76, a score of X = 72 corresponds to Z = -0.50. The sample standard deviation is S= 8

Answers

True. This can be determined using the formula for calculating the z-score: Z = (X - M) / (S / sqrt(n)), where X is the score, M is the mean, S is the sample standard deviation, and n is the sample size. Substituting the given values, we get:

Z = (72 - 76) / (8 / sqrt(1)) = -0.5

Therefore, a score of X = 72 corresponds to Z = -0.50, given that the sample has a mean of M = 76 and a sample standard deviation of S = 8.
True. Given a sample with a mean (M) of 76 and a sample standard deviation (S) of 8, you can calculate the Z-score for a score of X = 72 using the formula:

Z = (X - M) / S

Z = (72 - 76) / 8

Z = (-4) / 8

Z = -0.50

Visit here to learn more about standard deviation brainly.com/question/23907081

#SPJ11

(b) approximate the sum of the series with error less than 0.0001. in other words, find sn for the value of n found in part a. round your answer to 4 decimal places.

Answers

To approximate the sum of the series with an error less than 0.0001, we need to find the partial sum up to the value of n found in part a. From part a, we know that n = 9.

So, we need to find the sum of the first 9 terms of the series. Using the formula for the nth term of the series, we can write:
an = 1/(n*(n+1))

So, the first few terms of the series are:

a1 = 1/2
a2 = 1/6
a3 = 1/12
a4 = 1/20
a5 = 1/30
a6 = 1/42
a7 = 1/56
a8 = 1/72
a9 = 1/90

To find the sum of the first 9 terms, we can simply add these terms:

s9 = a1 + a2 + a3 + a4 + a5 + a6 + a7 + a8 + a9
s9 = 0.5 + 0.1667 + 0.0833 + 0.05 + 0.0333 + 0.0238 + 0.0179 + 0.0125 + 0.0111
s9 = 0.8893

To ensure that our approximation has an error less than 0.0001, we need to check the error term. We know that the error term for the nth partial sum is bounded by the (n+1)th term of the series. So, in this case, the error term is bounded by a10:

a10 = 1/110

We want the error to be less than 0.0001, so we need:

a10 < 0.0001
1/110 < 0.0001

Therefore, we know that s9 is an approximation of the actual sum of the series with an error of less than 0.0001.

Rounding s9 to 4 decimal places, we get:
s9 = 0.8893

So, the sum of the series with an error less than 0.0001 is approximately 0.8893.

To learn more about Sequences, visit:

https://brainly.com/question/6561461

#SPJ11

Using a trig identity, write x(t)=−(cos(5t))+2sin(5t)using only one cosine function.
x(t)= (b) Using a trig identity, write x(t)=cos(5t)+2sin(5t) using only one cosine function.
x(t)= (c) Using a trig identity, write x(t)=e−3t(−(cos(5t))+2sin(5t)) using only one cosine function in your answer.
x(t)=

Answers

Well I do not have a lot of people the same thing as a result of the most

A ladybug lands on the end of a clock's second hand
when the hand is pointing straight up. The second
hand is 1 foot long and when it rotates and points
directly to the right, the ladybug is 10 feet above the
ground.
1. How far above the ground is the ladybug after 0, 30,
45, and 60 seconds have passed?

Answers

By following cosine law, The ladybug is 1 foot above the ground when the second hand points straight up, 0 feet above the ground after 30 seconds, approximately 0.29 feet above the ground after 45 seconds, and 2 feet above the ground after 60 seconds.

What exactly is cosine law?

The cosine law, commonly referred to as the law of cosines, is a rule that explains how a triangle's sides and angles relate to one another. According to this rule, the square of any side is equal to the difference between the squares of the other two sides added together, multiplied by two, and the cosine of the angle between the other two sides. It can be used to solve for missing information and is applicable to any triangles1. It makes the Pythagorean theorem more prevalent.

The second hand of the clock is rotating in a circle like the ladybug does. One foot, or the length of the second hand, makes up the circle's radius. The ladybug is 10 feet above the ground when the second hand is immediately to the right. With a radius of 10 feet, this indicates that the ladybug is travelling in a vertical circle.

The following formula can be used to determine the height above the ground:

radius is equal to (radius× cos(angle)) - distance.

where r is the circle's radius and is the angle formed by the second hand and vertical axis.

Angle = 0 degrees when the second hand is pointing up straight, so:

Distance is equal to 1 - (1× cos(0)) = **1 foot**.

Angle equals 90 degrees after 30 seconds, so:

Distance is equal to 1 - (1 × cos(90)) = 0 ft.

Angle = 135 degrees after 45 seconds, so:

Distance is equal to 1 - (1 ×cos(135)) **0.29 feet**.

Angle equals 180 degrees after 60 seconds, so:

Distance = 1 - (1×cos(180)), which is **2 feet**.

To know more about cosine law visit:

brainly.com/question/17289163

#SPJ1

I REALLY NEED HELP PLEASE, I WILL FOLLOW AND FAV THE BRAINIEST ONE HERE.

Answers

Answer:

2(2.5) + 2(4.5) + 2(1.75) + 3.25

= 5 + 9 + 3.5 + 3.25 = 14 + 6.75 = 20.75

= 20 3/4 feet

The length of the wall is 20 3/4 feet.

how many square feet are there in an area of 1.00 sq metres? physical universe

Answers

There are approximately 10.764 square feet in an area of 1.00 square metre. This conversion is a mathematical relation and is applicable in the physical universe.


In order to convert square meters to square feet, you can use the following conversion factor: 1 square meter is equal to 10.764 square feet. So, in an area of 1.00 square meters, there are approximately 10.764 square feet. This conversion is applicable in the physical universe.

The use of a unit depends on the context. For instance, the area of a room is measured in meters, but a pencil's length and thickness are measured in centimetres and millimeters, respectively.

As a result, we must convert from one unit to another. We must comprehend the relationship between units before we can comprehend the idea of unit conversion.

We need to convert between units in order to ensure accuracy and prevent measurement confusion. For example, we do not measure a pencil's length in kilometres. In this scenario, it is necessary to convert from kilometres (km) to centimetres (cm). In most cases, multiplicative conversion factors are used to convert one unit to another of the same quantity.

Visit here to learn more about area  : https://brainly.com/question/27683633
#SPJ11

how many terms of the series [infinity] 1 [n(1 ln n)3] n = 1 would you need to add to find its sum to within 0.01?n > e10√25/2n > e9√25/2n > e8√25/2n > e9√25/4n > e8√25/4

Answers

we need to add at least 12 terms to find the sum of the series to within 0.01.

To find the sum of the series [infinity] 1 [n(1 ln n)3] n = 1 within 0.01, we need to use the Cauchy condensation test.

First, we need to check the convergence of the series. We can use the integral test:

[tex]\int_1^{oo}{x(lynx)^3}dx[/tex]
[tex]=\int u^3du\\\\= (\frac{1}{4}) u^4 + C\\\\= (\frac{1}{4}) [1 ln x]^4 + C[/tex]
As x approaches infinity, the integral converges, and therefore, the series also converges.

Now, using the Cauchy condensation test, we have:

[tex]2^n [2^n (1 ln 2^n)3]\\\\= 2^{4n} [(n ln 2)3]\\\\= (8 ln 2)3 (n ln 2)3\\\\= (8 ln 2)^3 [\frac{1}{2}^{3n}}] [(n ln 2)^3]\\\\[/tex]

The series [infinity][tex](8 ln 2)^3 [\frac{1}{2}^{3n}] [(n ln 2)^3] n = 1[/tex]converges, and its sum is equal to[tex]\frac{ [(8 ln 2)^3]}{[2^3 - 1]}.[/tex]

We can use the error formula for alternating series to estimate how many terms we need to add to find the sum to within 0.01:

[tex]error \leq a_{(n+1)}[/tex]

where [tex]a_n = (8 ln 2)^3 [{1/2}^{3n}] [(n ln 2)3][/tex]

Let's solve for n:

[tex]0.01 \leq a_{(n+1)}\\0.01 \leq (8 ln 2)^3 [1/2^{(3(n+1))}] [(n+1) ln 2]3[/tex]

n ≥ 11.24

Therefore, we need to add at least 12 terms to find the sum of the series to within 0.01.

learn more about sum of the series,

https://brainly.com/question/4617980

#SPJ11

find the elasticity of the demand function 2p 3q = 90 at the price p = 15

Answers

To find the elasticity of the demand function 2p + 3q = 90 at the price p = 15, we need to first solve for q at that price level.

2(15) + 3q = 90

30 + 3q = 90

3q = 60

q = 20

So, at a price level of p = 15, the quantity demanded is q = 20.

Next, we need to find the derivative of the demand function with respect to price:

dQ/dp = -2/3

Then, we can use the formula for elasticity:

Elasticity = (dQ/dp) * (p/Q)

Elasticity = (-2/3) * (15/20)

Elasticity = -0.5

Therefore, the elasticity of the demand function 2p + 3q = 90 at the price p = 15 is -0.5.
To find the elasticity of the demand function 2p 3q = 90 at the price p = 15, we need to first find the corresponding quantity (q) and then calculate the price elasticity of demand.

Step 1: Solve for q in terms of p
2p 3q = 90
3q = 90 - 2p
q = (90 - 2p) / 3

Step 2: Substitute p = 15 into the equation
q = (90 - 2(15)) / 3
q = (90 - 30) / 3
q = 60 / 3
q = 20

Now we have the point (p, q) = (15, 20) on the demand curve.

Step 3: Differentiate the demand function with respect to p
dq/dp = -2/3

Step 4: Calculate the price elasticity of demand (E)
E = (dq/dp) * (p/q)
E = (-2/3) * (15/20)

E = -0.5

The elasticity of the demand function 2p 3q = 90 at the price p = 15 is -0.5.

Visit here to learn more about demand function brainly.com/question/28198225
#SPJ11

Which recursive sequence would produce the sequence 4, -14, 58, ...?
a₁ = 4 and an = -4an-1 +2
a₁ = 4 and an = −3an-1 – 2
a₁ = 4 and an = 2an-1
a₁ = 4 and an = −2an-1-3

Answers

Answer:

The first one is the right one

Step-by-step explanation:

The recursive sequence that produces the sequence 4, -14, 58, ... is given by:

a₁ = 4

aₙ = -4aₙ₋₁ - 2, for n ≥ 2

a 25 kgkg air compressor is dragged up a rough incline from r⃗ 1=(1.3ı^ 1.3ȷ^)mr→1=(1.3ı^ 1.3ȷ^)m to r⃗ 2=(8.3ı^ 4.4ȷ^)mr→2=(8.3ı^ 4.4ȷ^)m, where the yy-axis is vertical.

Answers

The work done in dragging the air compressor up the incline is 4,168.24 J.

What method is used to calculate work done?

To solve this problem, we need to determine the work done in dragging the air compressor up the incline.

First, we need to determine the change in height of the compressor:

Δy = y2 - y1

Δy = 4.4 m - 1.3 m

Δy = 3.1 m

Next, we need to determine the work done against gravity in lifting the compressor:

W_gravity = mgh

W_gravity = (25 kg)(9.81 m/s^2)(3.1 m)

W_gravity = 765.98 J

Finally, we need to determine the work done against friction in dragging the compressor:

W_friction = μmgd

where μ is the coefficient of kinetic friction, g is the acceleration due to gravity, and d is the distance moved.

We can assume that the compressor is moved at a constant speed, so the work done against friction is equal to the work done by the applied force.

To find the applied force, we can use the fact that the net force in the x-direction is zero:

F_applied,x = F_friction,x

F_applied,x = μmgcosθ

where θ is the angle of the incline (measured from the horizontal) and cosθ = (r2 - r1)/d.

d = |r2 - r1| = √[(8.3 m - 1.3 m)² + (4.4 m - 1.3 m)²]

d = 8.24 m

cosθ = (r2 - r1)/d

cosθ = [(8.3 m - 1.3 m)/8.24 m]

cosθ = 0.888

μ = F_friction,x / (mgcosθ)

μ = F_applied,x / (mgcosθ)

μ = (F_net,x - F_gravity,x) / (mgcosθ)

μ = (0 - mg(sinθ)) / (mgcosθ)

μ = -tanθ

where sinθ = (Δy / d) = (3.1 m / 8.24 m) = 0.376.

μ = -tanθ = -(-0.376) = 0.376

F_applied = F_net = F_gravity + F_friction

F_applied = F_gravity + μmg

F_applied = mg(sinθ + μcosθ)

F_applied = (25 kg)(9.81 m/s^2)(0.376 + 0.376(0.888))

F_applied = 412.58 N

W_friction = F_appliedd

W_friction = (412.58 N)(8.24 m)

W_friction = 3,402.26 J

Therefore, the total work done in dragging the compressor up the incline is:

W_total = W_gravity + W_friction

W_total = 765.98 J + 3,402.26 J

W_total = 4,168.24 J

So the work done in dragging the air compressor up the incline is 4,168.24 J.

Learn more about work done.

brainly.com/question/13662169

#SPJ11

The weekly demand for drinking-water product, in thousands of liter, from a local chain of efficiency stores is a continuous random variable X having the probability density:
f(x)={2(x−1) 1 0 elsewhere
The values are:
E(X)=53E(X2)=176

Answers

If X is a continuous random variable having the probability density:

f(x)={2(x−1) 1 0 elsewhere then the variance of X is 1/6.

To find the variance of X, we need to use the formula:

Var(X) = [tex]E(X^2)[/tex] - [tex][E(X)]^2[/tex]

To find the expectation E(X) and E(X^2) for the continuous random variable X with the given probability density function (pdf), we integrate the respective expressions over the entire support of the random variable.

Given the pdf:

f(x) = { 2(x - 1), 1, 0 elsewhere }

We can calculate E(X) as follows:

E(X) = ∫x*f(x) dx

      = ∫x*2(x - 1) dx

      = 2∫([tex]x^2[/tex] - x) dx

      = 2[([tex]x^3[/tex]/3) - ([tex]x^2[/tex]/2)] evaluated from 0 to 1

      = 2[(1/3) - (1/2) - (0 - 0)]

      = 2[(1/3) - (1/2)]

      = 2[-1/6]

      = -1/3

Similarly, we can calculate E(X^2) as follows:

E(X^2) = ∫[tex]x^2[/tex]*f(x) dx

         = ∫[tex]x^2[/tex]*2(x - 1) dx

         = 2∫([tex]x^3[/tex] - [tex]x^2[/tex]) dx

         = 2[([tex]x^4[/tex]/4) - ([tex]x^3[/tex]/3)] evaluated from 0 to 1

         = 2[(1/4) - (1/3) - (0 - 0)]

         = 2[(1/4) - (1/3)]

         = 2[1/12]

         = 1/6

Therefore, the expectation E(X) is -1/3 and E(X^2) is 1/6 for the given continuous random variable X with the specified pdf.

Therefore, the variance of X is 1/6.

To know more about variance refer here:

https://brainly.com/question/14116780

#SPJ11

find the indicated measure. use the given sample data to find Q3 49 52 52 74 67 55 55A. 55.0 B. 67.0 C. 6.0 D. 61.0

Answers

Answer: Option B: 67.0

Step-by-step explanation: To find Q3, we need to first find the median (Q2) of the dataset.

Arranging the data in order, we get:

49, 52, 52, 55, 55, 67, 74

The median (Q2) is the middle value of the dataset, which is 55.

Next, we need to find the median of the upper half of the dataset, which consists of the values:

55, 67, 74

The median of this upper half is 67.

Therefore, Q3 (the third quartile) is 67.0, option B.

Please answer if you actually know how to .. I really really need it.

Answers

The trapezoid ABCD have adjacent angles to be supplementary and values of the variable x = 4 while the measure of m∠D = 78°.

How to evaluate for the angle of the trapezoid.

The adjacent angles of the the trapezium are supplementary, so their sum is equal to 180°.

m∠A and m∠D are supplementary so;

14x + 46 + 7x + 50 = 180°

21x + 96° = 180°

21x = 180° - 96° {subtract 96° from both sides}

x = 84°/21

x = 4

m∠D = 7(4) + 50

m∠D = 78°

Therefore, the trapezoid ABCD have adjacent angles to be supplementary and values of the variable x = 4 while the measure of m∠D = 78°.

Read more about angles here: https://brainly.com/question/30179943

#SPJ1

Gcmf and factor form of 5x²-10x³​

Answers

5x² is the greatest common monomial factor (GCMF) of 5x²-10x³, and 5x²(1-2x) is the factored form.

We hunt for the greatest monomial that splits both terms evenly to obtain the GCMF of 5x²-10x³. In this situation, both words have an x² factor, hence the GCMF is 5x². Using the distributive property, we can factor this out:

5x² - 10x³ = 5x²(1 - 2x)

This is the factored version of the formula, which demonstrates that 5x2 is a common factor of both components and that (1-2x) is the remaining factor. We can verify this by multiplying 5x² by (1-2x) and getting 5x² - 10x³, which is the original formula.

To know more about GCMF, visit,

https://brainly.com/question/28957399

#SPJ4

A shipping crate is advertised to hold up to 24 cubic feet. If a box in the shape of a rectangular prism measures by 2ft 1 1/2ft by 0.8 ft, how many boxes will the shipping crate hold?

Answers

Okay, let's break this down step-by-step:

* The shipping crate holds up to 24 cubic feet of space.

* The box measures:

Width: 2ft 1 1/2in = 2.75ft

Length: 1 1/2ft = 1.5ft

Height: 0.8ft

* To convert to cubic feet:

Width x Length x Height = (2.75ft) x (1.5ft) x (0.8ft) = 4.2 cubic feet

* So each box takes up 4.2 cubic feet of space.

* To fill the 24 cubic feet in the crate:

24 cubic feet / 4.2 cubic feet per box = 5 boxes

Therefore, the shipping crate can hold up to 5 of those rectangular boxes.

Let me know if you have any other questions!

Determine whether each relation is an equivalence relation. Justify your answer. If the relation is an equivalence relation, then describe the partition defined by the equivalence classes.
e) The domain is the set of all integers. xOy if x + y is odd. An integer z is odd if z = 2k + 1 for some integer k.

Answers

The relation xOy is not reflexive and not transitive, it is not an equivalence relation. There are no equivalence classes to describe.

To determine whether the relation xoy on the set of all integers, where xoy if x+y is odd, is an equivalence relation, we need to check if it satisfies the three properties of reflexivity, symmetry, and transitivity.

1. Reflexivity:

For any integer x, x+x=2x, which is even.

Therefore, x0x is false, and the relation is not reflexive.

2. Symmetry:

If xOy, then x+y is odd. But y+x is also odd since addition is commutative.

Therefore, yOx, and the relation is symmetric.

3. Transitivity:

If xOy and yOz, then x+y is odd and y+z is odd. Adding these equations together,

we get x+y+y+z=x+z+2y, which is even.

Therefore, x+z is even, and xOz is false. Thus, the relation is not transitive.

Since the relation xOy is not reflexive and not transitive, it is not an equivalence relation. There are no equivalence classes to describe.

learn more about equivalence relation,

https://brainly.com/question/14307463

#SPJ11

The relation xOy is not reflexive and not transitive, it is not an equivalence relation. There are no equivalence classes to describe.

To determine whether the relation xoy on the set of all integers, where xoy if x+y is odd, is an equivalence relation, we need to check if it satisfies the three properties of reflexivity, symmetry, and transitivity.

1. Reflexivity:

For any integer x, x+x=2x, which is even.

Therefore, x0x is false, and the relation is not reflexive.

2. Symmetry:

If xOy, then x+y is odd. But y+x is also odd since addition is commutative.

Therefore, yOx, and the relation is symmetric.

3. Transitivity:

If xOy and yOz, then x+y is odd and y+z is odd. Adding these equations together,

we get x+y+y+z=x+z+2y, which is even.

Therefore, x+z is even, and xOz is false. Thus, the relation is not transitive.

Since the relation xOy is not reflexive and not transitive, it is not an equivalence relation. There are no equivalence classes to describe.

learn more about equivalence relation,

https://brainly.com/question/14307463

#SPJ11

Which of the following ordered pairs is NOT a solution to the system
of equations?
y=2x-1
y = 2(x-1) +1
(0, -1)
(2.3)
(-2,-5)
(-8, 15)
(8.15)

Answers

Answer:

[tex](-8, 15)[/tex]

Step-by-step explanation:

First, solve this system. Since [tex]y=y[/tex],

[tex]2x-1 = 2(x-1)+1\\2x-1=2x-2+1\\2x-1=2x-1[/tex]

Thus, they are the same equation.

Now, plug in to find:

[tex]-1 = 2(0)-1 (correct)\\3 = 2(2) -1 (correct)\\-5 = 2(-2) - 1 (correct)\\15 \neq 2(-8) - 1 (incorrect)\\15 = 2(8) - 1 (correct)[/tex]

Thus [tex](-8, 15)[/tex] is the ordered pair that doesn't work.

According to previous studies, 12% of the U.S. population is left-handed. Not knowing this, a high school student claims that the percentage of left-handed people in the U.S. is 14%. The student is going to take a random sample of 1650 people in the U.S. to try to gather evidence to support the claim. Let p be the proportion of left-handed people in the sample. Answer the following. (If necessary, consult a list of formulas.)(a) Find the mean of p.(b) Find the standard deviation of p.(c) Compute an approximation for P(p≥0.14), which is the probability that there will be 14% or more left-handed people in the sample. Round your answer to four decimal places.

Answers

The probability approximation for P(p≥0.14) is 0.0495

(a) The mean of the sample proportion p is equal to the population proportion, which is 0.12:

μp = 0.12

(b) The standard deviation of the sample proportion p can be calculated as:

σp = sqrt[(0.12(1-0.12))/1650]

  = 0.0121

Therefore, the standard deviation of the sample proportion p is 0.0121.

(c) To compute an approximation for P(p≥0.14), we can use the central limit theorem and assume that the distribution of the sample proportion p is approximately normal.

The mean and standard deviation of the sample proportion have already been calculated in parts (a) and (b).

z = (0.14 - 0.12) / 0.0121

 = 1.65

Using a standard normal distribution table or calculator, the probability that a standard normal random variable is greater than or equal to 1.65 is approximately 0.0495.

For similar question on probability:

https://brainly.com/question/11234923

#SPJ11

A blueprint for a cottage has a scale of 1:40. One room measures 3.4 m by 4.8 m.
Calculate the dimensions of the room on the blueprint.


can you teach me how to solve it?​

Answers

Sure, here are the steps to solve this problem:

1. Since the scale of the blueprint is 1:40, it means that any 1 unit on the blueprint represents 40 units on the actual building.

2. The room on the building measures 3.4 m by 4.8 m.

3. So for the dimensions of the room on the blueprint, we divide the measurements by the scale ratio.

4. 1:40 scale means 1 unit = 40 units.

5. So,

3.4 m / 40 units = 0.085 units = 0.08 units (round to 0.08 units)

4.8 m / 40 units = 0.12 units

6. Therefore, the room on the blueprint measures 0.08 units by 0.12 units.

Let me know if this explanation helps or if you have any other questions! I'm happy to help further.

step-by-step:

Room dimensions on building: 3.4 m by 4.8 m

Scale of blueprint: 1 : 40

Step 1) 1 unit on blueprint = 40 units on building

Step 2) 3.4 m / 40 units = 0.085 units (round to 0.08 units)

Step 3) 4.8 m / 40 units = 0.12 units

Step 4) Room dimensions on blueprint = 0.08 units by 0.12 units

Does this help explain the steps? Let me know if any part is still confusing!

This table shows outcomes of a spinner with 3 equal sections colored orange, blue, and white. Based on the outcomes, enter the number of times the arrow is expected to land on the orange section if it is spun 20 times.

Orange: 30
Blue: 34
White: 36

Answers

The probability of landing on the orange section of the spinner is 30/(30+34+36) = 0.2941.
If the spinner is spun 20 times, we can expect it to land on the orange section approximately 0.2941 x 20 = 5.88 times.
Therefore, we can expect the arrow to land on the orange section 5.88 times if it is spun 20 times.
Other Questions
What is the probabilty Direct export is a non-equity mode of entry. Why do we consider direct export separately from other non-equity modes of entry? Group of answer choices Direct export is easiest. Direct export is cheapest. Direct export is done without a partner. Non-equity modes are contractual market transactions. None of the choices referenced here apply. The exporter must have an export license from the Home authority. Question 1 (Essay Worth 10 points)(01. 02 MC)The number line shows the distance in meters of two jellyfish, A and B, from a predator located at point X:A horizontal number line extends from negative 3 to positive 3. The point A is at negative 1. 5, the point 0 is labeled as X, and the point labeled B is at 0. 5. Write an expression using subtraction to find the distance between the two jellyfish. (5 points)Show your work and solve for the distance using additive inverses. (5 points) The total pressure of gases A, B, and C in a closed container is 4.1 . If the mixture is 36% A, 42% B, and 22% C by volume, what is the partial pressure of gas C?a.0.22 atmb.1.5 atmc.1.7 atmd.0.90 atm how to solve the differential equation dv/dt = -32-kv 19 center: (8, 2), point on circle: (14, -1) a 2.0 kg metal hoop that has a radius of 20.0 cm rolls at a velocity of 10.0 m/s. it begins to climb at a 15o incline. how high does it get? The spot exchange rate is 125 = $1. The U.S. discount rate is 10%; inflation over the next three years is 3% per year in the U.S. and 2% per year in Japan.Year 0 Year 1 Year 2 Year 3 1,000,000 500,000 500,000 500,000 NPV = $2,137.46 USE THIS INFORMATION TO ANSWER THE NEXT QUESTION Consider a project of the Cornell Haul Moving Company, the timing and size of the incremental after-tax cash flows (for an all-equity firm) are shown below in millions: 0 1 2 3 4 $1000 +$125 +$250 +$375 +$500 If the firm were financed entirely with equity, the required return would be 10%. What is the value of this project to an all-equity firm? a) $46.5 b) $46.5 c) -$56.5 d) $56.5 A systems engineer friend of mine who worked at a large military contractor in my town could never tell me much about "what" he made or "how" he made it, but we would often have philosophical discussions about "why."Ever since his early graduate school days, he was trained to ask questions that enable him to solve problems such as how will I create a solution? What technology will I use? How can it be optimized?It was as if he was deprogrammed from asking "why," so he particularly liked talking with me, the ethical philosopher. Why is his company funding war? Why is he creating this? Why cant he share his work with his friends and family? Why is his bonus structure dependent on several trips overseas? 1.- If f(x)= x^8, then f'(x) =2.- If g(x)= -4x^4 then g'(x) =3.- If h(x)= 1/x^5 then h'(x) = suppose a broker charges a higher-than-usual fee to sell highly demanded ipo shares to an investor. what type of abuse is the broker partaking in? Which migration strategy should be used to move an application from a local data center to the doud, allowing for modification of existing applications to start using native cloud services? A.Refactoring B.Repurchasing C.Replatforming D.Rehosting Five friends-Allison, Beth, Carol, Diane, and Evelyn- have identical calculators and are studying for a statistics exam. They set their calculators down in a pile before taking a study break and then pick them up in random order when they return from the break. What is the probability that at least one of the five gets her own calculator? [Hint: Let A be the event that Alice gets her own calculator, and define events B, C, D, and E analogously for the other four stu- dents.] How can the event (at least one gets her own calcu- lator} be expressed in terms of the five events A, B, C, D, and E? Now use a general law of probability. [Note: This is called the matching problem. Its solution is easily extended to individuals. Can you recognize the result when n is large (the approximation to the resulting series)?] What was President Eisenhowers strategy of going to the very edge of war to force the other side to back down?A. BrinksmanshipB. Covert OperationsC. Limited WarD. Appeasement how does amino acid divergence compare to nucleotide divergenc Within a star like the Sun, there are several forces at work. Classify the following forces as directed outward or directed inward. Not all items will be usedDirected outwardDirected inwardAnswer Bank:thermal pressure, gravitational force, systematic electrical force Ms. Smith tells you that a righttriangle has a hypotenuse of 24 feet and a leg of 17 feet. She asks you to find the other leg of the triangle. Whatis your answer? What personality (or character) type does Hank display according to Freudian theory? Provide evidence for your answer. 4. Gabriel wants to learn how to play darts, sohe researches the costs of different dartboardsat stores in his area. What would be the mostappropriate way for him to display his data?Answer will be marked!! At a certain instant in time, an electromagnetic wave hasin the -z direction andin the +y direction. In what direction does the wave propogate? A) +z direction B) +x direction C) +y direction D) -x direction E) -z direction