TEST REVIEW

(Show all work, including formula and units for full credit.)

a) A plane has a speed of 550 km/h west relative to the air. A wind blows 35 km/h east relative to the ground. What is the plane’s speed and direction relative to the ground?

b) A motorboat heads due west at 18 m/s relative to a river that flows due north at 4.0 m/s. What is the velocity (both magnitude and direction) of the motorboat relative to the shore?

c) Martin is riding on a ferry boat that is traveling west at 3.2 m/s. He walks south across the deck of the boat at 0.54 m/s. What is Martin’s velocity relative to the water?

d) An airplane flies due east at 440 km/h relative to the air. There is a wind blowing at 65 km/h to the southwest relative to the ground. What are the plane’s speed and direction relative to the ground?

Answers

Answer 1

a) plane’s speed and direction relative to the ground is 518.6 km/h, 4.06° west of the north b) velocity (both magnitude and direction) of the motorboat relative to the shore is 18.4 m/s c) Martin's velocity relative to the water is 3.25 m/s d) Therefore, the velocity of the plane relative to the ground is 444 km/h to the east and 5.91° south of the east.

a) To find the plane's speed and direction relative to the ground when a plane has a speed of 550 km/h west relative to the air and a wind blows 35 km/h east relative to the ground, we will use vector addition concept.

Vector Addition: It is a process of adding two or more vectors to obtain the resultant vector. If two vectors, A and B are acting simultaneously at a point, then their resultant vector can be given by:

R = A + B (vector)

From the question, the given values are:

Speed of plane relative to the air = 550 km/h west Speed of wind relative to the ground = 35 km/h east.

Now, we will find the speed of the plane relative to the ground using the Pythagorean theorem and speed in the west as positive and speed in the east as negative.

∆v = v_ plane + v_ wind ,

∆v = 550 km/h - 35 km/h = 515 km/h,

Speed of the plane relative to the ground =

√(∆v² + v_wind²)= √((515)² + (35)²)≈ 518.6 km/h.

Now, we will find the direction of the plane relative to the ground using the trigonometric ratio. The angle can be found by calculating the inverse tangent of the opposite side over the adjacent side.

Angle (θ) = tan^-1 (opposite/adjacent) = tan^-1 (35/515)≈ 4.06° west of the north

b) To find the velocity (both magnitude and direction) of the motorboat relative to the shore when a motorboat heads due west at 18 m/s relative to a river that flows due north at 4.0 m/s, we will use vector addition concept.

From the question, the given values are: Speed of motorboat relative to the river = 18 m/s west, Speed of river current = 4.0 m/s north.

Now, we will find the velocity of the motorboat relative to the shore using the Pythagorean theorem and speed in the west as positive and speed in the north as positive.

Velocity of motorboat relative to the shore =

√(v_m² + v_c²)= √((18)² + (4.0)²)≈ 18.4 m/s.

Now, we will find the direction of the motorboat relative to the shore using the trigonometric ratio.

The angle can be found by calculating the inverse tangent of the opposite side over the adjacent side.

Angle (θ) = tan^-1 (opposite/adjacent) = tan^-1 (4.0/18)≈ 12.53° south of the west

c) To find Martin's velocity relative to the water when he is riding on a ferry boat that is traveling west at 3.2 m/s and he walks south across the deck of the boat at 0.54 m/s, we will use vector addition concept.

From the question, the given values are:

Speed of ferry boat = 3.2 m/s west, Speed of Martin's walk = 0.54 m/s south.

Now, we will find Martin's velocity relative to the water using the Pythagorean theorem and speed in the west as positive and speed in the south as negative.

Martin's velocity relative to the water

= √(v_f² + v_m²)= √((3.2)² + (-0.54)²)≈ 3.25 m/s.

Now, we will find the direction of Martin's velocity relative to the water using the trigonometric ratio.

The angle can be found by calculating the inverse tangent of the opposite side over the adjacent side.

Angle (θ) = tan^-1 (opposite/adjacent) = tan^-1 (-0.54/3.2)≈ -9.6° south of the west

d) To find the plane's speed and direction relative to the ground when an airplane flies due east at 440 km/h relative to the air and there is a wind blowing at 65 km/h to the southwest relative to the ground, we will use vector addition concept.

From the question, the given values are:

Speed of plane relative to the air = 440 km/h east,

Speed of wind relative to the ground = 65 km/h to the southwest.

We will resolve the speed of the wind into two components, one parallel to the direction of motion of the plane and the other perpendicular to the direction of motion of the plane.

Perpendicular component (v_ perp) = 65/sqrt(2) = 45.96 km/h,

Parallel component (v_ para) = 65/sqrt(2) = 45.96 km/h.

Now, we will find the speed of the plane relative to the ground using the Pythagorean theorem and speed in the east as positive and speed in the north as positive.

Speed of the plane relative to the ground

= √(v_p² + v_para²)= √((440)² + (45.96)²)≈ 444 km/h.

Now, we will find the direction of the plane relative to the ground using the trigonometric ratio.

The angle can be found by calculating the inverse tangent of the opposite side over the adjacent side.

Angle (θ) = tan^-1 (opposite/adjacent) = tan^-1 (45.96/440)≈ 5.91° south of the east.

Therefore, the velocity of the plane relative to the ground is 444 km/h to the east and 5.91° south of the east.

to know more about  Pythagorean theorem visit:

https://brainly.com/question/14930619

#SPJ11


Related Questions

on bode's advice, herschel named his newly discovered planet after:

Answers

Answer:

On Bode's advice, Herschel named his newly discovered planet after: the Greek god Uranus.

Explanation:

Herschel named his newly discovered planet Uranus on Bode's advice for a couple of reasons:

Mythological Naming Convention: During that time, it was a common practice to name celestial objects after mythological figures, particularly gods from Greek and Roman mythology. Bode suggested following this convention and recommended that Herschel choose a name from Greek mythology for the newly discovered planet.

Connection to the Sky: Uranus was chosen as the name for the planet because it was the name of the Greek god of the sky. Given that Herschel had discovered a celestial object in the sky, naming it after the god associated with the sky seemed fitting.

By naming the planet Uranus, Herschel paid homage to the mythological tradition of naming celestial bodies while also establishing a connection between his discovery and the vastness of the sky.

Hope this helps!

What happens, if anything, when you change the mass of the planet? Why do you think the mass of the planet does, or does not, affect the orbit of the planet?

Answers

Answer:

We know that the gravitational force between two objects of mass M1 and M2 that are at a distance R, is given by:

F = G*(M1*M2)/R^2

Where G is a constant.

If you reduce one of the masses, then the gravitational force between the objects will change.

So if we take un account the Earth and the Sun, when you reduce the mass of Earth, the force between Earth and the Sun will decrease, and this will change the orbit of the Earth around the Sun.

(The orbit also depends on the gravitational force between the Earth and the other planets in the system, and all those forces also change, which also has an impact in the orbit change)

A 100 watt bulb with 60 volts has a current flow of how many Amps?

Answers

Answer:

I = 1.666... amps

Explanation:

P = I*V or Power = Current * Voltage

(100 watts) = I * (60 Volts)

I = 1.666... amps

a 1118-kg car and a 2000-kg pickup truck approach a curve on the expressway that has a radius of 264 m .
As the car and truck round the curve at 61.1 mi/h , find the normal force on the truck to the highway surface.

Answers

The normal force on the truck to the highway surface is 20,534 N. This force is necessary to balance the weight of the truck and provide the centripetal force required for it to move in a circular path around the curve.

To find the normal force on the truck, we need to consider the forces acting on it while rounding the curve.

The two significant forces involved are the gravitational force (weight) and the centripetal force.

1. Gravitational Force (Weight):

The weight of an object is given by the equation:

Weight = mass × acceleration due to gravity

For the truck:

Mass of the truck (m) = 2000 kg

Acceleration due to gravity (g) = 9.8 m/s²

Weight of the truck (W_truck) = m × g

                       = 2000 kg × 9.8 m/s²

       W_truck   = 19,600 N

2. Centripetal Force:

The centripetal force required to keep an object moving in a circular path is given by the equation:

Centripetal Force = (mass × velocity²) / radius

For the truck:

Mass of the truck (m) = 2000 kg

Velocity (v) = 61.1 mi/h = 27.28 m/s (converted to meters per second)

Radius of the curve (r) = 264 m

Centripetal Force (F_c) = (m × v²) / r

                                       = (2000 kg × (27.28 m/s)²) / 264 m

                                 F_c = 20,534 N

The normal force on the truck to the highway surface is 20,534 N.

This force is necessary to balance the weight of the truck and provide the centripetal force required for it to move in a circular path around the curve.

To know more about force visit:

https://brainly.com/question/2254109

#SPJ11

Where do humans and other animals get their food? From only other animals From plants and other animals From only plants From the sun.


HELP PLZZZ

Answers

Answer:

Humans (which are omnivores) get their food from plants and other animals.

Some animals (omnivores) get their food from plants and other animals.

Some animals (carnivores) get their food from only other animals.

Some animals (herbivores) get their food from only plants.

Answer:

c

Explanation:

a current of 5.59 a in a long, straight wire produces a magnetic field of 2.23 μt at a certain distance from the wire. find this distance.

Answers

The distance from the wire is approximately 0.100 meters. This calculation is based on Ampere's law and the given values of current and magnetic field.

The magnetic field produced by a long, straight wire carrying a current can be calculated using Ampere's law. Ampere's law states that the magnetic field at a distance r from a long, straight wire carrying a current I is given by:

B = (μ₀I) / (2πr)

where B is the magnetic field, μ₀ is the permeability of free space (approximately 4π × 10^(-7) T·m/A), I is the current, and r is the distance from the wire.

In this case, we are given the current I as 5.59 A and the magnetic field B as 2.23 μT. To find the distance from the wire, we rearrange the formula:

r = (μ₀I) / (2πB)

Substituting the values:

r = (4π × 10^(-7) T·m/A × 5.59 A) / (2π × 2.23 × 10^(-6) T)

r ≈ 0.100 m

Therefore, the distance from the wire is approximately 0.100 meters.

The distance from the wire is approximately 0.100 meters. This calculation is based on Ampere's law and the given values of current and magnetic field.

To know more about Ampere's law visit:

https://brainly.com/question/17070619

#SPJ11







1) By using the definition, show that the following sets are disconnected. 2) Find all the connected) components of the following sets. (a) Z (b) [0, 1] U [2,3] (C) R \ {0} (d) R\Q

Answers

The sets Z, [0,1] U [2,3], R{0}, and R\Q have been analyzed for connectedness. The connected components of each set have been identified, demonstrating their disconnected nature.

Given, we need to determine whether the sets are connected or disconnected using the definition of connected and disconnected sets. Also, we need to find all the connected components of each given set.

(a) [tex]$Z$[/tex] (the set of integers):

We can show that [tex]$Z$[/tex]is disconnected by splitting it into two open sets. Let [tex]S1 = {...,-2, -1, 0, 1, 2, ...}$ and $S2 = {..., -3, -2, -1, 0}$[/tex]. It can be seen that $S1$ and $S2$ are disjoint and open in [tex]$Z$[/tex]. Hence, $Z$ is disconnected. Connected components of [tex]$Z$[/tex] is [tex]$Z$[/tex] itself.

(b) [tex]$[0,1]\cup[2,3]$[/tex] (the union of two disjoint intervals):

To show that the given set is connected, consider any two open sets[tex], $U $ and $ V$, such $ that $[0,1]\cup[2,3]\subseteq U\cup V$[/tex]. WLOG, let [tex]$0\in U$[/tex].

Then [tex][0,1]\subseteq U$. But $U$[/tex] is open, so there must exist an open interval of the form [tex]$(a,b)$[/tex] which contains [tex]$0$[/tex] and is a subset of [tex]$U$[/tex]. Clearly, [tex]$a < 0$[/tex]. Now, [tex]$(a, b)\cup [2, 3]\subseteq U\cup V$[/tex]. Since [tex]$(a, b)\cup [2, 3]$[/tex] is connected, it follows that either [tex](a, b)\cup [2, 3]\subseteq U$ or $(a, b)\cup [2, 3]\subseteq V$[/tex].

Now, if [tex](a, b)\cup [2, 3]\subseteq U$, then $2\in U$[/tex]. Again, [tex]$U$[/tex] is open, so there exists an open interval of the form [tex](c,d)$ such that $2\in (c, d)$ and $(c, d)\subseteq U$[/tex].

It can be easily shown that [tex]$(c, d)\cup [0, 1]\subseteq U$[/tex]. Hence, [tex]$U = [0, 1] \cup [2, 3]$[/tex] which is connected. Similarly, it can be shown that [tex]$V$[/tex] is connected if it contains both [tex][0, 1]$ and $[2, 3]$. Thus, $[0,1]\cup[2,3]$[/tex] is connected. Connected components of [tex][0,1]\cup[2,3]$ are $[0,1]$ and $[2,3]$[/tex].

(c) [tex]$R{0}$[/tex] (the set of non-zero real numbers):

Let [tex]A = {x\in R | x < 0}$ and $B = {x\in R | x > 0}$[/tex]. Clearly, [tex]$A$[/tex] and [tex]$B$[/tex] are open and disjoint in [tex]$R{0}$[/tex] such that $A \cup B = R{0}$. Hence, [tex]$R{0}$[/tex] is disconnected. Connected components of [tex]R{0}$ are $A$ and $B$[/tex].

(d) [tex]$R\Q$[/tex] (the set of irrational numbers):

Let [tex]A = {x\in R\Q | x < a}$ and $B = {x\in R\Q | x > a}$[/tex]. Clearly, [tex]$A$[/tex] and [tex]$B$[/tex] are open and disjoint in [tex]$R\Q$[/tex] such that [tex]$A \cup B = R\Q$[/tex]. Hence, [tex]$R\Q$[/tex] is disconnected. Connected components of [tex]R\Q$ is $R\Q$[/tex] itself.

Learn more about connected components: brainly.com/question/30764221

#SPJ11

Light travels at a speed of 3.0 ´ 108 m/s. If it takes light from the sun 5.0 ´ 102 s to reach Earth, what is the distance between Earth and the sun?

Answers

Answer:

The distance between the Earth and the Sun is:

1.5 multiplied by 10 raised to the power 8 km

Explanation:

(5.0 x 10²) x (3.0 x 10⁸) = 1.5 x 10¹¹ meters = 1.5 x 10⁸ km.

The idea that force causes acceleration doesn't seem strange. This and other ideas of Newtonian mechanics are consistent with our everyday experience. Why do the ideas of relativity seem strange? 1. The effects of relativity become apparent only at very high speeds very uncommon to everyday experience. 2. Earth's rotation doesn't let us observe relativity that applies to systems moving in straight trajectories. arnold (ta 22957) Homework II 3. For the effects of relativity to become apparent large masses are needed. 4. The principles of relativity apply outside Farth.

Answers

The ideas of relativity seem strange : The effects of relativity become apparent only at very high speeds very uncommon to everyday experience. The correct option is 1.

The ideas of relativity seem strange compared to Newtonian mechanics because they involve phenomena that are not commonly observed in our everyday experiences.

One reason is that the effects of relativity become significant only at very high speeds, close to the speed of light. In our everyday lives, we rarely encounter speeds anywhere close to this magnitude, so we don't directly observe the relativistic effects. It is only in extreme situations, such as in particle accelerators or when studying objects moving at a significant fraction of the speed of light, that the predictions of relativity become apparent.

Another reason is that Earth's rotation and the motions of everyday objects typically occur at speeds much lower than the speed of light. Relativity primarily applies to systems moving in straight trajectories at high speeds, and the rotational motion of Earth doesn't allow us to easily observe these effects in our daily lives.

Additionally, for the effects of relativity to become apparent, very large masses are needed. In everyday scenarios, the masses involved are usually much smaller than those required to observe significant relativistic effects.

Lastly, the principles of relativity apply not just on Earth but also in any reference frame. They are not limited to our planet and are applicable to the entire universe. The correct option is 1.

To know more about relativity, refer here:

https://brainly.com/question/31293268#

#SPJ11

A photon with wavelength 38.0 nm is absorbed when an electron in a three-dimensional cubical box makes a transition from the ground state to the second excited state. Part A What is the side length L of the box? Express your answer with the appropriate units. μΑ L = Value

Answers

The side length L of the cubical box, determined by the absorption of a photon with a wavelength of 38.0 nm during the transition from the ground state to the second excited state, is approximately 11.21 nm.

Find the side length L of the box?

To determine the side length L, we need to consider the relationship between the energy of the photon and the energy difference between the electron's initial and final states.

The energy of a photon is given by the equation E = hc/λ, where h is Planck's constant (6.626 × 10⁻³⁴ J·s), c is the speed of light (2.998 × 10⁸ m/s), and λ is the wavelength of the photon.

In this case, the energy of the absorbed photon corresponds to the energy difference between the ground state and the second excited state of the electron in the box.

Since the box is three-dimensional, the energy levels are given by the equation[tex]\(E = \frac{{\pi^2\hbar^2}}{{2m}}\left(\frac{{n_1^2}}{{L^2}} + \frac{{n_2^2}}{{L^2}} + \frac{{n_3^2}}{{L^2}}\right)\)[/tex], where π is a constant, ħ is the reduced Planck's constant (h/2π), m is the mass of the electron, n₁, n₂, and n₃ are the quantum numbers representing the energy levels, and L is the side length of the box.

By equating the energy of the photon to the energy difference between the states, we can solve for L. Plugging in the given values,

[tex]We have \( \frac{{hc}}{{\lambda}} = \frac{{\pi^2\hbar^2}}{{2m}}\left(\frac{{0^2}}{{L^2}} + \frac{{2^2}}{{L^2}} + \frac{{0^2}}{{L^2}}\right) \). Simplifying and solving for L, we find \( L \approx \sqrt{\frac{{2h\lambda}}{{4\pi^2m}}} \).Substituting the values and evaluating, \( L \approx \sqrt{\frac{{2 \times 6.626 \times 10^{-34} \, \text{J}\cdot\text{s} \times 38.0 \times 10^{-9} \, \text{m}}}{{4\pi^2 \times \text{electron mass}}}} \).[/tex]

After performing the calculations, we obtain L ≈ 11.21 nm.

To know more about wavelength, refer here:

https://brainly.com/question/31143857#

#SPJ4

The gas in the precipitator behaves in a highly non-Ohmic manner--indeed, the current is proportional to the third power of the electric field! This means that the effective resistance of the gas depends strongly on the applied field. After a layer of dust has accumulated on the ground plate, the effective resistance of the gas is. Once a layer of dust has accumulated, the effective resistance rises to. What is the magnitude of the electric field between the plates when there is a layer of dust? When there is a layer? Assume that the potential difference between the plates remains constant. Hint: are the resistances in parallel or in series?

Answers

The magnitude of the electric field between the plates when there is a layer of dust is higher than when there is no layer of dust. The resistances are in seriesThe gas in the precipitator behaves in a highly non-Ohmic manner. The current is proportional to the third power of the electric field.

The effective resistance of the gas depends strongly on the applied field. After a layer of dust has accumulated on the ground plate, the effective resistance of the gas is increasing. Once a layer of dust has accumulated, the effective resistance rises to a high level. This increase in resistance is due to the layer of dust between the plates.The magnitude of the electric field between the plates when there is a layer of dustThe magnitude of the electric field between the plates when there is a layer of dust is higher than when there is no layer of dust.

The reason for this is that the resistance of the gas in the precipitator is higher when there is a layer of dust. This means that the potential difference between the plates must be increased to maintain the same current. The electric field between the plates is proportional to the potential difference between the plates divided by the distance between the plates. In series, the resistances add together. Therefore, the effective resistance of the gas in the precipitator is the sum of the resistance of the gas and the resistance of the layer of dust.

To know more about resistance visit :

https://brainly.com/question/32301085

#SPJ11

am i right? please help!

Answers

Yes you are right! Well done!

please help me !!!! i really need it

Answers

Answer:

Prefer Soil more than sand

Explanation:

A rectangular loop with dimensions 4.20 cm by 9.50 cm carries current I. The current in the loop produces a magnetic field at the center of the loop that has magnitude 3.10×10−5 T and direction away from you as you view the plane of the loop. What are the magnitude and direction (clockwise or counterclockwise) of the current in the loop?

Answers

Answer:

1.63 A and in clockwise direction

Explanation:

The magnetic field due to the rectangular loop is :

[tex]$B=\frac{2 \mu_0 I}{\pi}\left(\frac{\sqrt{L^2+W^2}}{LW}\right)$[/tex]

Given : W = 4.20 cm

                [tex]$=4.20 \times 10^{-2} \ m$[/tex]

            L = 9.50 cm

               [tex]$= 9.50 \times 10^{-2} \ m$[/tex]

            [tex]$B = 3.40 \times 10^{-5} \ T $[/tex]

   Rearranging the above equation, we get

[tex]$I=\frac{B \pi LW}{2 \mu_0\sqrt{L^2+W^2}}$[/tex]

[tex]$I=\frac{(3.40 \times 10^{-5}) \pi(9.50 \times 10^{-2})(4.20 \times 10^{-2})}{2(4 \pi \times 10^{-7})\sqrt{(9.50 \times 10^{-2})^2+(4.20 \times 10^{-2})^2}}$[/tex]

I = 1.63 A

So the magnitude of the current in the rectangular loop is 1.63 A.

And the direction of current is clockwise.

les
Answer the question below using Active Thinking,
Learning
. Read the question carefully to determine what is being asked, Circle and/or underline key information in each question.
• Read all the answer choices.
• Do not just pick the correct answer. Briefly explain why you did NOT choose the other three choices and then explain why ya
did choose your correct answer choice.
Plants compete for many different resources, including sunlight and water. Which of the following adaptations of a plant is most
likely to help the plant be successful in competing for water?
A. a broad, deep root system
B. a tall stem or trunk
C. the ability to produce fruit with seeds
D. colorful flowers

Answers

Explanation:

I'm corona positive and isolated feeling depressed just logged in to talk someone but people ignoring me thanks for this behaviour got disappointed bye everyone logging out had a great time

A straight segment of wire has a length of 25 cm and carries a current of 5A. If the wire is perpendicular to the magnetic field of 0.60Tesla, then what is the magnitude of the magnetic force?

Answers

Answer:

The magnitude of the magnetic force acting on the conductor is 0.75 Newton

Explanation:

The parameters given in the question are;

The length of the straight segment of wire, L = 25 cm = 0.25 m

The current carried in the wire, I = 5 A

The orientation of the wire with the magnetic field = Perpendicular

The strength of the magnetic field in which the wire is located, B = 0.60 T

The magnetic force, 'F', is given by the following formula;

F = [tex]\underset{I}{\rightarrow }[/tex]·L×[tex]\underset{B}{\rightarrow }[/tex] = I·L·B·sin(θ)

Where;

[tex]\underset{I}{\rightarrow }[/tex] = The current flowing, I

L = The length of the wire

[tex]\underset{B}{\rightarrow }[/tex] = The magnetic field strength, B

θ = The angle of inclination of the conductor to the magnetic field

Where I = 5 A, L = 0.25 m, B = 0.60 T, and θ = 90°, we get;

F = 5 A × 0.25 m × 0.60 T × sin(90°) = 0.75 N

Therefore

The magnitude of the magnetic force, F = 0.75 N.

define transition element​

Answers

Answer:

Explanation:

In chemistry, the term transition metal has three possible definitions: The IUPAC definition defines a transition metal as "an element whose atom has a partially filled d sub-shell, or which can give rise to cations with an incomplete d sub-shell".

Answer:

Transition elements (also known as transition metals)

Explanation:

are elements that have partially filled d orbitals. IUPAC defines transition elements as an element having a d subshell that is partially filled with electrons, or an element that has the ability to form stable cations with an incompletely filled d orbital.

Which of the following describes half-life? Choose which apply.
A. Half-life is the amount of time it takes for half of a sample to decay.
B. The shorter the half-life, the more unstable the nuclide.
C. Half-life cannot be calculated for nuclides.
D. The longer the half-life, the more stable the nuclide

please answer correctly

Answers

A is the correct answer
A is the correct answer .

What happens when an object is moved against gravity, such as rolling a toy car up a
ramp?
a. Potential energy does not change
b. Potential energy decreases as it is transformed into kinetic energy
c. Kinetic energy does not change
d. Kinetic energy is transformed into potential energy

Answers

Answer:

gravitational force remain constant

we have that from the Question, it can be said that  

What happens when an object is moved against gravity, such as rolling a toy car up is

Kinetic energy is transformed into potential energyOpion D

From the Question we are told

What happens when an object is moved against gravity, such as rolling a toy car up

a. Potential energy does not change

b. Potential energy decreases as it is transformed into kinetic energy

c. Kinetic energy does not change

d. Kinetic energy is transformed into potential energy

Generally the equation for  Kinetic energy is mathematically given as

K.E=1/2mv^2

Generally the equation for  Potential energy is mathematically given as

P.E=mgh

Therefore

With increase in height of the car Kinetic energy is transformed into potential energy as g remains constant

Hence

What happens when an object is moved against gravity, such as rolling a toy car up is

Kinetic energy is transformed into potential energyOpion D

For more information on this visit

https://brainly.com/question/22610586?referrer=searchResults

AM and FM stand for two different processes that are used to code voices and music for transmission. What does AM stand for? 1. Amplitude Modulation 2. Amplitude Mediation A​

Answers

Answer:

1. Amplitude Modulation

Explanation:

AM is an acronym for Amplitude Modulation and it's refers to a process that is typically used for coding sounds such as voices and music for transmission from one point to another.

On the other hand, FM is an acronym for frequency modulation used for the propagation and transmission of sound waves.

Basically, the two forms of modulation are used for broadcasting in radio transmission.

Electromagnetic waves is a propagating medium used in all communications device to transmit data (messages) from the device of the sender to the device of the receiver.

Generally, the most commonly used electromagnetic wave technology in telecommunications is radio waves.

Radio waves can be defined as an electromagnetic wave that has its frequency ranging from 30 GHz to 300 GHz and its wavelength between 1mm and 3000m. Therefore, radio waves are a series of repetitive valleys and peaks that are typically characterized of having the longest wavelength in the electromagnetic spectrum.

A heavy piano is pushed up an inclined plane into a moving van. Which of the following choices best explains how the inclined plane made the task easier?
1. The force needed to move the piano up the plane was less than the force needed to lift it straight up into the van, but the distance over which the piano moved was greater.
2.The force exerted on the piano was the same as if it had been lifted, but the distance it needed to be move decreased, so the total work decreased.
3.The distance that the piano was moved was less that the distance it would have had to be lifted, so the total work decreased.
4. The amount of force need to push the piano up the ramp is the same as the force needed to lift it, so the amount of work remained the same.​

Answers

The term mechanical advantage has to do with the ratio of the load to the effort.

What is mechanical advantage?

The term mechanical advantage has to do with the ratio of the load to the effort. There is a mechanical advantage when the effort applied is less than the load.

Hence, the task is made easier because the force needed to move the piano up the plane was less than the force needed to lift it straight up into the van, but the distance over which the piano moved was greater.

Learn more about mechanical advantage:https://brainly.com/question/20521425

#SPJ1

Which best describes vibration?
0
the distance traveled per unit in time
the action of moving back and forth quickly and steadily
the distance between one compression and the compression next to it
the action of moving through a material or substance
which best describes vibration

Answers

Answer:

the distance between one compression and the compression next to it

Explanation:

Answer:

The one above this wrong.

The correct answer is b. The action of moving back and forth quickly and steadily

Explanation:

Understanding Accelerometer and Gyroscope Data Why should Ay be close to 9.8 m/s2, with the other two being close to 0? Why should all three groscope values be essentially 0 ? Write your answers in the space below. For your second set of data where you rotated the device counterclockwise then back clockwise, explain how the gyroscope data you see corresponds with how you moved the device. Specifically axplain how negative or positive data values correspond to the motion of the device.

Answers

The accelerometer measures acceleration, including the force of gravity. In a stationary position, the accelerometer should read an acceleration value close to 9.8 m/s² in the vertical direction (Ay axis) because it is sensing the gravitational force pulling downward.

The other two axes (Ax and Az) should be close to 0 since there is no significant movement or acceleration in those directions. On the other hand, a gyroscope measures angular velocity, which indicates rotational motion. In an ideal scenario, where the device is not experiencing any rotation, the gyroscope values should be essentially 0 on all three axes (X, Y, and Z).

When the device is rotated counterclockwise and then back clockwise, the gyroscope data will reflect the change in angular velocity. If the device is rotated counterclockwise, the gyroscope will detect a positive angular velocity along the corresponding axis. Conversely, if the device is rotated clockwise, the gyroscope will register a negative angular velocity. The gyroscope data values will indicate the magnitude and direction of the rotation, with positive values corresponding to counterclockwise rotation and negative values corresponding to clockwise rotation.

To learn more about accelerometer refer:

https://brainly.com/question/30327281

#SPJ11

Two boxes of fruit on a frictionless horizontal surface are connected by a light string as in Figure P4.85, where m1 = 10 kg and m2 = 20 kg. A force of 50 N is applied to the 20-kg box. (a) Determine the acceleration of each box and the tension in the string. (b) Repeat the problem for the case where the coefficient of kinetic friction between each box and the surface is 0.10.

Answers

(a)

The acceleration of the 10 kg box is 2.5 m/s², the acceleration of the 20 kg box is 1.25 m/s², and the tension in the string is 25 N.

To determine the acceleration of each box and the tension in the string, we'll apply Newton's second law of motion, which states that the net force acting on an object is equal to the product of its mass and acceleration.

Let's consider the system of the two boxes together. The force of 50 N is applied to the 20 kg box. We'll assume the positive direction is to the right.

Using the free-body diagrams for each box:

For the 10 kg box:

- The tension in the string (T) acts to the right.

- The net force acting on the 10 kg box is T.

- Applying Newton's second law: T = m₁a₁, where m₁ is the mass of the 10 kg box.

- Substituting the values: T = 10 kg × a₁.

For the 20 kg box:

- The applied force (50 N) acts to the right.

- The tension in the string (T) acts to the left.

- The net force acting on the 20 kg box is 50 N - T.

- Applying Newton's second law: 50 N - T = m₂a₂, where m₂ is the mass of the 20 kg box.

- Substituting the values: 50 N - T = 20 kg × a₂.

Since the boxes are connected by a string, the tension in the string is the same for both boxes. Therefore, we can equate the two equations:

10 kg × a₁ = 50 N - T.

We also know that the acceleration of the 20 kg box is half of the acceleration of the 10 kg box:

a₂ = 0.5a₁.

Solving these equations simultaneously, we get:

10 kg × a₁ = 50 N - T.

20 kg × (0.5a₁) = 50 N - T.

Rearranging the second equation, we find:

10 kg × a₁ = 50 N - T.

Substituting this into the first equation:

10 kg × a₁ = 10 kg × a₁.

This implies that T = 50 N - T.

Simplifying, we find:

2T = 50 N.

T = 25 N.

Substituting the value of T into the first equation:

10 kg × a₁ = 50 N - 25 N.

10 kg × a₁ = 25 N.

a₁ = 2.5 m/s².

Substituting the value of a₁ into the second equation:

20 kg × (0.5 × 2.5 m/s²) = 50 N - 25 N.

20 kg × 1.25 m/s² = 25 N.

a₂ = 1.25 m/s².

The acceleration of the 10 kg box is 2.5 m/s², the acceleration of the 20 kg box is 1.25 m/s², and the tension in the string is 25 N.

(b)

The acceleration of each box is 1.25 m/s², and the tension in the string is 22.5 N.

In this case, we need to consider the additional force of kinetic friction acting on each box.

For the 10 kg box:

- The frictional force acts to the left.

- The net force acting on the 10 kg box is T - frictional force.

- Applying Newton's second law: T - frictional force = m₁a₁, where m₁ is the mass of the 10 kg box.

- The frictional force is given by the coefficient of kinetic friction (μ) multiplied by the normal force (m₁g), where g is the acceleration due to gravity.

- Substituting the values: T - μm₁g = 10 kg × a₁.

For the 20 kg box:

- The applied force (50 N) acts to the right.

- The frictional force acts to the left.

- The net force acting on the 20 kg box is 50 N - T - frictional force.

- Applying Newton's second law: 50 N - T - frictional force = m₂a₂, where m₂ is the mass of the 20 kg box.

- The frictional force is given by the coefficient of kinetic friction (μ) multiplied by the normal force (m₂g), where g is the acceleration due to gravity.

- Substituting the values: 50 N - T - μm₂g = 20 kg × a₂.

Since the boxes are connected by a string, the tension in the string is the same for both boxes. Therefore, we can equate the two equations:

10 kg × a₁ + μm₁g = 50 N - T - μm₂g.

We also know that the acceleration of the 20 kg box is half of the acceleration of the 10 kg box:

a₂ = 0.5a₁.

Solving these equations simultaneously, we get:

10 kg × a₁ + μm₁g = 50 N - T - μm₂g.

20 kg × (0.5a₁) + μm₂g = 50 N - T - μm₂g.

Rearranging the second equation, we find:

10 kg × a₁ + μm₁g = 50 N - T - μm₂g.

Substituting this into the first equation:

10 kg × a₁ + μm₁g = 10 kg × a₁.

This implies that T + μm₂g = 50 N.

Simplifying, we find:

T = 50 N - μm₂g.

Substituting the given values:

T = 50 N - (0.10)(20 kg)(9.8 m/s²).

T = 50 N - 19.6 N.

T = 30.4 N.

Substituting the value of T into the equation for a₁:

10 kg × a₁ + μm₁g = 50 N - T.

10 kg × a₁ + (0.10)(10 kg)(9.8 m/s²) = 50 N - 30.4 N.

10 kg × a₁ + 9.8 N = 19.6 N.

10 kg × a₁ = 19.6 N - 9.8 N.

10 kg × a₁ = 9.8 N.

a₁ = 0.98 m/s².

Substituting the value of a₁ into the equation for a₂:

a₂ = 0.5a₁.

a₂ = 0.5(0.98 m/s²).

a₂ = 0.49 m/s².

In the case where the coefficient of kinetic friction between each box and the surface is 0.10, the acceleration of each box is 0.98 m/s², and the tension in the string is 30.4 N.

To know more about tension , visit

https://brainly.com/question/24994188

#SPJ11

A 6 kilogram concrete block is dropped from the top of a tall building. The block has fallen a distance of 55 meters and has a speed of 30 meters per second when it hits the ground.

a. At the instant the block was released, what was its gravitational potential energy?

b. Calculate the kinetic energy of the block at the point of impact.

c. How much mechanical energy was "lost" by the block as it fell?

d. Explain what happened to the mechanical energy that was "lost" by the block

Answers

a) At the point the block is released, the initial velocity is zero, so the initial kinetic energy of the block is zero. The block is at a height of 55 meters from the ground, so its gravitational potential energy can be calculated using the formula;

PE = mghwhere m = 6 kg (mass of the block), g = 9.8 m/s² (acceleration due to gravity), and h = 55 m (height of the block from the ground)PE = mgh = (6 kg) (9.8 m/s²) (55 m) = 3,234 JTherefore, the gravitational potential energy of the block when it was released was 3,234 Joules (J).b) The kinetic energy of the block at the point of impact can be calculated using the formula; KE = ½mv²where m = 6 kg (mass of the block), and v = 30 m/s (velocity of the block)KE = ½mv² = ½ (6 kg) (30 m/s)² = 2,700 J.

Therefore, the kinetic energy of the block at the point of impact was 2,700 Joules (J).c) The law of conservation of energy states that energy cannot be created or destroyed, it can only be transformed from one form to another. At the point of impact, the block loses its kinetic energy. The mechanical energy "lost" by the block can be calculated as the difference between the initial potential energy and the final kinetic energy.

ΔE = PE - KE= (3,234 J) - (2,700 J) = 534 J

When the block hit the ground, it created a loud sound, generated heat, and also caused the ground to shake. Therefore, the mechanical energy that was "lost" by the block was transformed into sound energy, heat energy, and seismic energy.

To know more about sound energy visit :

https://brainly.com/question/18957233

#SPJ11

A transverse wave on a rope is given by y(x,t)= (0.750cm)cos(π[(0.400cm−1)x+(250s−1)t]).
Part A Find the amplitude.
Part B Find the period
Part C Find the frequency
Part D Find the wavelength
Part E Find the speed of propagation.
Part F Is the wave traveling in the +x- or − x-direction?

Answers

The amplitude of the wave is 0.750 cm, the period is 0.004 s, the frequency is 250 Hz, the wavelength is 15.7 cm, the speed of propagation is 3925 cm/s, and the wave is traveling in the +x-direction.

Part A: The amplitude of a wave represents the maximum displacement of the wave from its equilibrium position. In this case, the amplitude is given by the coefficient of the cosine function, which is 0.750 cm. Therefore, the amplitude of the wave is 0.750 cm.

Part B: The period of a wave is the time it takes for one complete cycle of the wave to pass a given point. The period (T) is the reciprocal of the angular frequency (ω), which is the coefficient of t in the argument of the cosine function. In this case, the angular frequency is 250 s^(-1), so the period is T = 1/ω = 1/(250 s^(-1)) = 0.004 s.

Part C: The frequency of a wave is the number of complete cycles passing a given point per unit time. The frequency (f) is the reciprocal of the period (T). In this case, the frequency is f = 1/T = 1/0.004 s = 250 Hz.

Part D: The wavelength of a wave is the distance between two adjacent points in the wave that are in phase. For a transverse wave, the wavelength (λ) is related to the angular wave number (k) by the equation λ = 2π/k. The angular wave number is the coefficient of x in the argument of the cosine function. In this case, the angular wave number is 0.400 cm^(-1), so the wavelength is λ = 2π/(0.400 cm^(-1)) = 15.7 cm.

Part E: The speed of propagation (v) of a wave is related to its frequency (f) and wavelength (λ) by the equation v = fλ. In this case, the speed of propagation is v = (250 Hz)(15.7 cm) = 3925 cm/s.

Part F: To determine the direction of wave propagation, we look at the coefficient of x in the argument of the cosine function. In this case, the coefficient is positive (0.400 cm^(-1)), indicating that the wave is traveling in the +x-direction.

In conclusion, the amplitude of the wave is 0.750 cm, the period is 0.004 s, the frequency is 250 Hz, the wavelength is 15.7 cm, the speed of propagation is 3925 cm/s, and the wave is traveling in the +x-direction.

To know more about wavelength visit:

https://brainly.com/question/10750459

#SPJ11

.Verify that y(x)=Ax^n*e^(-mwx^2/2h)
where n is an integer, is an approximate solution to the differential equation
-h^2/2m*d^2*y/dx^2+1/2(mw^2*x^2*y= E*y

Answers

The [tex]$y(x) = Ax^n e^{-\frac{mwx^2}{2h}}$[/tex]  is an approximate solution to the given differential equation.

The given Differential equation is:

[tex]\[-\left(\frac{h^2}{2m}\right) \frac{d^2y}{dx^2} + \frac{1}{2}mw^2x^2y = Ey\][/tex]

Let us calculate the derivatives of [tex]$y(x)$[/tex] with respect to [tex]{x}[/tex]

First derivatives:

[tex]\[\frac{dy}{dx} = Anx^{n-1} e^{-\frac{mwx^2}{2h}} - mwx Ax^n e^{-\frac{mwx^2}{2h}}\][/tex]

Second derivatives:

[tex]\[\frac{d^2y}{dx^2} = An(n-1)x^{n-2} e^{-\frac{mwx^2}{2h}} - 2mwx Anx^{n-1} e^{-\frac{mwx^2}{2h}} - (mwx)^2 Ax^n e^{-\frac{mwx^2}{2h}}\][/tex]

Now, substitute [tex]$y(x)$[/tex] and its derivatives into differential equations:

[tex]\[-\left(\frac{h^2}{2m}\right) \left[ An(n-1)x^{n-2} e^{-\frac{mwx^2}{2h}} - 2mwx Anx^{n-1} e^{-\frac{mwx^2}{2h}} - (mwx)^2 Ax^n e^{-\frac{mwx^2}{2h}} \right] + \frac{1}{2}mw^2x^2 Ax^n e^{-\frac{mwx^2}{2h}} = Ey\][/tex]

Simplifying the equations we get:

[tex]\[e^{-\frac{mwx^2}{2h}} \left[ An(n-1)hx^{n-2} - 2mwx Anhx^{n-1} - (mwx)^2Ax^n + \frac{mw^2}{2}x^2 Ax^n \right] = Ey\][/tex]

Since, [tex]$y(x) = Ax^n e^{-\frac{mwx^2}{2h}}$[/tex] satisfies the differential equation after simplification, we can conclude that it is an approximate solution to the given differential equation.

To learn more about differential equation, refer to the link:

https://brainly.com/question/17004129

#SPJ4

find the magnitude of the earth's centripetal acceleration as it travels around the sun. assume a year of 365 days.

Answers

To find the magnitude of the Earth's centripetal acceleration as it travels around the Sun, we can use the formula for centripetal acceleration: a = (v^2) / r

where a is the centripetal acceleration, v is the velocity of the Earth, and r is the radius of the Earth's orbit. The velocity of the Earth can be calculated using the formula: v = (2πr) / T. where T is the period of the Earth's orbit, which is the length of a year. Given that a year has 365 days, we can convert it to seconds by multiplying by 24 (hours), 60 (minutes), 60 (seconds): T = 365 days * 24 hours/day * 60 minutes/hour * 60 seconds/minute. Now, we need to find the radius of the Earth's orbit. The average distance between the Earth and the Sun, known as the astronomical unit (AU), is approximately 149.6 million kilometers or 1.496 × 10^11 meters. Plugging the values into the equations: T = 365 * 24 * 60 * 60 = 31,536,000 seconds. r = 1.496 × 10^11 meters. Calculating the velocity: v = (2π * 1.496 × 10^11) / 31,536,000 ≈ 29,788 m/s. Finally, we can calculate the centripetal acceleration: a = (v^2) / r = (29,788^2) / (1.496 × 10^11) ≈ 0.00593 m/s^2. Therefore, the magnitude of the Earth's centripetal acceleration as it travels around the Sun is approximately 0.00593 m/s^2.

To learn more about magnitude, https://brainly.com/question/29751082

#SPJ11

: When an unbalanced force acts on an object, the force (1 Point) changes the motion of the object O is cancelled by another force does not change the motion of the object O is equal to the weight of the object

Answers

When an unbalanced force acts on an object, it changes the motion of the object.

When an unbalanced force is applied to an object, the net force acting on the object is not zero. According to Newton's second law of motion, the acceleration of an object is directly proportional to the net force acting on it and inversely proportional to its mass. Therefore, when an unbalanced force is exerted on an object, it causes a change in the object's motion.

The direction and magnitude of the acceleration depend on the direction and magnitude of the unbalanced force. If the unbalanced force is greater than the opposing forces acting on the object (such as friction or air resistance), the object will experience a change in its velocity and undergo acceleration in the direction of the net force. This acceleration can result in the object speeding up, slowing down, or changing its direction of motion.

It is important to note that when the net force acting on an object is zero, the object remains in a state of either rest or constant velocity, as described by Newton's first law of motion. In this case, the object is said to be in equilibrium, and the forces acting on it are balanced. However, when an unbalanced force is present, it disrupts this equilibrium and causes a change in the object's motion.

To learn more about unbalanced force refer:

https://brainly.com/question/227461

#SPJ11

A visitor asks, "Why are the orbits of the planets elliptical?"
A) Because both the Sun and the other planets are pulling on each planet, which distorts a circular orbit into an ellipse. B) Because collisions between the planets that took place when the solar system was forming knocked the planets into orbits of this shape. C) This is the only shape that a planet's orbit can have; other types of objects like moons and stars can have orbits with different shapes.
D) This is the only shape an orbit can have that is stable so that the planet doesn't fall into the Sun or go shooting off into space.

Answers

The orbits of the planets are elliptical because both the Sun and the other planets are pulling on each planet, which distorts a circular orbit into an ellipse. The correct option is A.

The elliptical shape of the planets' orbits can be explained by gravitational forces acting between celestial bodies. According to Newton's law of universal gravitation, every object with mass exerts an attractive force on other objects. In the case of planets, their orbits are influenced by the gravitational pull of the Sun and the gravitational interactions with other planets in the solar system.

The combined gravitational forces of the Sun and other planets create a net force on each planet, causing its path to deviate from a perfect circle. The resulting gravitational pull distorts the circular orbit into an elliptical shape. This means that the distance between the planet and the Sun varies throughout its orbital path, with the closest point known as perihelion and the farthest point known as aphelion.

While other factors, such as collisions during the formation of the solar system, may have played a role in shaping the planets' orbits, the primary reason for their elliptical shape is the gravitational interaction between celestial bodies. The elliptical orbit is a stable configuration that allows the planet to maintain its trajectory without falling into the Sun or being ejected into space, as mentioned in option D.

To learn more about Planets click here

https://brainly.com/question/7439931

#SPJ11

Other Questions
When talking with a hostile patient you should respond byA. Raising your voice.B. Terminating the conversation.C. Lowering your voice.D. Referring him/her to your supervisor.E. Lowering your voic The caregiver training benefit is for OA) reimbursing informal caregivers for the cost of providing care O B) reimbursing formal caregivers for the cost of providing care OC) training formal caregivers OD) training informal caregivers 9. An item that is used as money, but which also hasvalue from its use as something other than money is What is the measure of the other acute angle An object is projected from a height of 100m above the ground at an angle of 300to thehorizontal with a velocity of 100m/s.Calculate(4)(4)The maximum height reached above the groundTime of flightThe velocity and the direction of the object 1 sec before it hit the ground(4) Which of the following is an example of improving communication skills? What two emissions scenarios most closely represent the current trend in CO2 emissions? What is the subject of the equal pay bill letter by James green identify the limiting reactant when 7.28 grams of magnesium oxide reacts with 4.50 grams of aluminum to make magnesium and aluminum oxide? i need a typed answer a link wont work What questions do they ask on the flvs Spanish module 4 dba Finalize and submit your five-paragraph essay. Your essay must contain a minimum of two information sources obtained through research and one interview. Acknowledge your information sources with correctly formatted in-text citations, and include a correctly formatted works cited page. Make sure you have includedA strong introduction with a thesis and a hook.Reasons that support your argument.Counterclaims to strengthen your argument.Credible evidence to support both your argument and counterclaims.A conclusion that restates your claim and position and may include a call to action.In-text citations.A works cited page A company is considering only three city locations to set-up a plant. Location A has an initial investment of $30,000 but 1 the production variable cost of $75 per unit. Location B has an initial investment of $60,000 and a variable cost of $60 per unit. Location C has an initial investment of $110,000 and a variable cost of $50 per unit. a) You need to solve the total cost equations and draw the total cost lines. b)The management would like to know over what range of production volume each location is cost-effective. c)If they plan to produce 2500 units which location is the best in terms of cost? Why company needs to build the corporate objectives? What are they? As a new hired supply chain manager, what is your supply objectives? How you align your goal with company goal? How do you identify most difficult obstacles to build a strategic, functional supply chain is 0.2857 a rational number?Explain The Miller Manufacturing Company has two divisions. The Cutting Division prepares timber at its sawmills. The Assembly Division prepares the cut lumber into finished wood for the furniture industry. No inventories exist in either division at the beginning of 2019. During the year, the Cutting Division prepared 60,000 cords of wood at a cost of $660,000. All the lumber was transferred to the Assembly Division, where additional operating costs of $6 per cord were incurred. The 600,000 boardfeet of finished wood were sold for $2,500,000. Required: Determine the operating income for each division if the transfer price is $9 per cord. The speed of an electron is 1.68*10^8m/s what is the wavelength OK IF YOU KNOW THE ANSWER PLEASE TYPE IN COMMENTS!Timothy has 2 turtles named Buster and Bubbles. Buster is 75 millimeters long and Bubbles is 6 centimeters long. Buster is longer. Is this true or false?Group of answer choices1.True1.False 2) Consider an individual who has enough resources to invest completely either in Agricultural, or Transportation, or both in some proportions. The tabulation is as follows: Person X Agricultural Transportation A 0 42 B 10 40 20 35 D 30 25 E 40 15 F 50 0 a. Draw the production possibility frontier from the above information. b. In (two) different graphs, show: i. What happens to the PPF when the price of Fertilizers goes up, keeping other variables remain constant? ii. What happens to the PPF when Padma Bridge will be open for communication, keeping other variables remain constant? Camels are a type ofsuited for living in dry and arid environments.A. DROMEDARYB. EFFACEC. ELFIND. EMBELLISHE. EMBODY Infants and children who remain within close distance to a caregiver are more likely to _[blank]_ than those who do not.suffer from ill healthdevelop strong anxiety survive to adulthoodattract attention from peers