suppose events h, m, and l are collectively exhaustive events. apply bayes’ theorem to calculate p(h|a) with the following information: p(a|h) =0.2; p(a|m) = 0.3; p(a|l) = 0.2; p(h) = 0.1; p(m) = 0.4.

Answers

Answer 1

By using bayestheorem;

P(h|a) = 0.0625.

What method is used to calculate P(h|a)?

We can use Bayes' theorem to calculate P(h|a) as follows:

P(h|a) = P(a|h) * P(h) / P(a)

where P(a) is the total probability of event a, given by:

P(a) = P(a|h) * P(h) + P(a|m) * P(m) + P(a|l) * P(l)

We are given that P(a|h) = 0.2, P(a|m) = 0.3, and P(a|l) = 0.2. We are also given that the events h, m, and l are collectively exhaustive, which means that their probabilities add up to 1. Therefore, we have:

P(m) + P(l) = 0.4 + P(l) = 1 - P(h) = 0.9

Solving for P(l), we get:

P(l) = 0.5

Now we can use Bayes' theorem to calculate P(h|a) as follows:

P(h|a) = P(a|h) * P(h) / P(a)

= 0.2 * 0.1 / (0.2 * 0.1 + 0.3 * 0.4 + 0.2 * 0.5)

= 0.02 / 0.32

= 0.0625

Therefore, P(h|a) = 0.0625.

Learn more about bayestheorem.

brainly.com/question/28096770

#SPJ11


Related Questions

Help AGAIN!
Which one cheaper and by how much?
View attachment below

Answers

Answer: Website A is cheaper, by an amount of, £0.29.

Step-by-step explanation: Here, the problem is simply about, initially adding, and then finding difference between the added results.

That is,

For Website A,

Net Cost = £49.95 + £4.39

= £54.34

Similarly,

For Website B,

Net Cost = £47.68 + £6.95

= £54.63

Therefore, we can clearly see,

Website A is cheaper by,

£(54.63 - 54.34) = £0.29

Read more about addition and subtraction:

https://brainly.com/question/778086

evaluate the integral taking ω:0≤x≤1,0≤y≤4 ∫∫2xy^2dxdy

Answers

The value of the integral ∫∫R 2xy^2 dA over the given region R is 64/3.

To evaluate the integral ∫∫R 2xy^2 dA over the region R given by 0 ≤ x ≤ 1 and 0 ≤ y ≤ 4, we integrate with respect to x first, and then with respect to y:

∫∫R 2xy^2 dA = ∫[0,4] ∫[0,1] 2xy^2 dx dy

Integrating with respect to x, we get:

∫[0,4] ∫[0,1] 2xy^2 dx dy = ∫[0,4] (y^2) [x^2]0^1 dy

Simplifying the expression inside the integral, we get:

∫[0,4] (y^2) [x^2]0^1 dy = ∫[0,4] y^2 dy

Integrating with respect to y, we get:

∫[0,4] y^2 dy = [y^3/3]0^4

Substituting the limits of integration and simplifying, we get:

[y^3/3]0^4 = (4^3/3) - (0^3/3) = 64/3

Therefore, the value of the integral ∫∫R 2xy^2 dA over the given region R is 64/3.

To learn more about Simplifying visit:

https://brainly.com/question/28770219

#SPJ11

Find an equation of the tangent line to the curve y=8x at the point (2,64)

Answers

Equation of the tangent line to the curve y=8x is y = 8x + 48.

How do we need to find the slope of the tangent at that point?

Derivative of the curve, we get:

dy/dx = 8

This means that the slope of the tangent line to the curve at any point is 8.

So, at the point (2,64), the slope of the tangent line is 8.

By point-slope form of a line, we will find the equation of the tangent line:

y - y1 = m(x - x1)

where m is the slope and (x1,y1) is the given point.

Plugging in the values, we get:

y - 64 = 8(x - 2)

Simplifying, we get:

y = 8x + 48

Equation of the tangent line to the curve y=8x at the point (2,64) is y = 8x + 48.

Learn more about tangent line.

brainly.com/question/31326507

#SPJ11

2. find the angle in the figure in both radion measure and
angle measure.
ест
6
5cm

Answers

The measure of the central angle is 86 degrees.

How to find the central angle?

The length of the arc is 9 cm and the radius is 6 centimetres. Therefore, let's find the central angle as follows:

Hence,

length of an arc = ∅ / 360 × 2πr

where

r = radius∅ = central angle

Therefore,

length of arc = 9 cm

radius = 6 cm

Therefore,

9 = ∅ / 360 × 2 × 3.14 × 6

9 = 37.68∅ / 360

cross multiply

3240 = 37.68∅

divide both sides by 37.68

∅ = 3240 / 37.68

∅ = 85.9872611465

∅ = 86 degrees.

learn more on central angle here: https://brainly.com/question/12896852

#SPJ1

Please solve this geometry problem.

Answers

hope this helps you .

Simplify the radical expression. Show all your steps.

√363 − 3√27

Answers

Answer: simplified expression is 2√3.

Step-by-step explanation:

√363 = √(121 × 3) = √121 × √3 = 11√3

√27 = √(9 × 3) = √9 × √3 = 3√3

√363 − 3√27 = 11√3 − 3(3√3) = 11√3 − 9√3 = 2√3

The simplified form of the given radical expression is 2√3.

What is radical form?

Radical form is the expression that involves radical signs such as square root, cube root, etc instead of using exponents to describe the same entity.

The given expression is √363 − 3√27.

Here, √121×3 − 3√9×3

= 11√3-9√3

= 2√3

Therefore, the simplified form of the given radical expression is 2√3.

Learn more about the radical form here:

brainly.com/question/27272065.

#SPJ2

The point p(4,-2) Is dialated by a scale factor of 1.5 about the point (0,-2) The resluting point is point q. what are the points of q ,A(5.5, -2), B(5.5, -3.5), C(6,-2), D(6,-3)

Answers

The point Q after dilation with a scale factor of 1.5 about the point (0, -2) is (6, -2). So, correct option is C.

To find the new coordinates of point P after dilation with a scale factor of 1.5 about the point (0, -2), we can use the following formula:

Q(x, y) = S(x, y) = (1.5(x - 0) + 0, 1.5(y + 2) - 2)

Substituting the coordinates of point P (4, -2), we get:

Q(x, y) = S(4, -2) = (1.5(4 - 0) + 0, 1.5(-2 + 2) - 2)

Q(x, y) = S(4, -2) = (6, -2)

Therefore, the new point after dilation is Q(6, -2).

To check which of the given points A, B, C, and D match the new point Q, we can compare their coordinates. Only point C(6, -2) matches the new point Q, so that must be the answer. Points A, B, and D do not match the new point.

So, correct option is C.

To learn more about dilation click on,

https://brainly.com/question/31009831

#SPJ1

I think I understand how to do this but the answer I think it is goes past the graph?

Answers

The other root of the quadratic equation include the following (-4, 0).

What is the vertex form of a quadratic equation?

In Mathematics and Geometry, the vertex form of a quadratic equation is given by this formula:

y = a(x - h)² + k

Where:

h and k represents the vertex of the graph.a represents the leading coefficient.

For the given quadratic function, we have;

y = a(x - h)² + k

0 = a(8 - 2)² - 5

0 = 36a - 5

5 = 36a

a = 5/36

Therefore, the required quadratic function in vertex form is given by;

y = 5/36(x - 2)² - 5

0 = 5/36(x - 2)² - 5

5 = 5/36(x - 2)²

36 = (x - 2)²

±6 = x - 2

x = -6 + 2

x = -4.

Other root = (-4, 0).

Read more on vertex here: https://brainly.com/question/30945046

#SPJ1

Quickly answer please!
The graph of a function contains the points (-5, 1), (0,
3), (5, 5). Is the function linear? Explain.
(Photo of answer choice included)

Answers

(d) The function (-5, 1), (0, 3), (5, 5) is not a linear function

Calculating the type of the function

From the question, we have the following parameters that can be used in our computation:

(-5, 1), (0, 3), (5, 5).

A linear function has a constant rate of change, meaning that the slope of the line is always the same.

However, if we plot the given points on a graph, we can see that they do not lie on a straight line.

Therefore, the function is not linear.

Read more about function at

https://brainly.com/question/28532394

#SPJ1

Solve the equation x² + 4x - 11 = 0 by completing the square.
Fill in the values of a and b to complete the solutions.

x = a - (squared)b
x = a + (squared) b

Answers

The required values are -2+√15, -2-√15.

What is a quadratic equation?

Any equation in algebra that can be written in the standard form where x stands for an unknown value, where a, b, and c stand for known values, and where a 0 is true is known as a quadratic equation.

Here, we have

Given:  x² + 4x - 11 = 0

we have to find the values of a and b to complete the solutions.

The given equation is x² + 4x - 11 = 0

The general form of a quadratic equation is ax² + bx + c = 0

Comparing with the given equation we have

a = 1

b = 4

c = -11

Rearranging the equation:

x² + 4x = 11

Finding (b/2)²

(4/2)² = 4

Adding to both sides of the equation

x² + 4x + 4 = 11 + 4

(x+2)² = 15

x + 2 = ±√15

x = -2  ±√15

Hence, the required values are -2+√15, -2-√15.

To learn more about the quadratic equation from the given link

https://brainly.com/question/28038123

#SPJ9

prove that x2 2: x for all x e z.

Answers

We have demonstrated that x² ≥ x for all integers x. Therefore, the statement x² ≥ x for all x ∈ Z is true.

What is inequality?

An inequality is a relation that compares two numbers or other mathematical expressions in an unequal way. The majority of the time, size comparisons between two numbers on the number line are made.

To prove that x² ≥ x for all x ∈ Z, we need to show that the inequality holds true for any arbitrary integer value of x.

We can prove this by considering two cases:

Case 1: x ≥ 0

If x ≥ 0, then x² ≥ 0 and x ≥ 0. Therefore, x² ≥ x.

Case 2: x < 0

If x < 0, then x² ≥ 0 and x < 0. Therefore, x² > x.

In either case, we have shown that x² ≥ x for all integers x. Therefore, the statement x² ≥ x for all x ∈ Z is true.

Learn more about inequality on:

https://brainly.com/question/17448505

#SPJ11

x is an erlang (n,λ) random variable with parameter λ = 1/3 and expected value e[x] = 15. (a) what is the value of the parameter n? (b) what is the pdf of x? (c) what is var[x]?

Answers

The pdf of x is f(x) = (x^4 * e^(-x/3)) / 1620.

the variance of x is var[x] = 45.

(a) Since x is an Erlang (n, λ) random variable with expected value e[x] = 15 and λ = 1/3, we have:

e[x] = n/λ = n/(1/3) = 3n

Therefore, we have:

3n = 15

n = 5

So the value of the parameter n is 5.

(b) The probability density function (pdf) of an Erlang (n, λ) random variable is given by:

f(x) = (λ^n * x^(n-1) * e^(-λx)) / (n-1)!

Substituting λ = 1/3 and n = 5, we have:

f(x) = (1/3)^5 * x^4 * e^(-x/3) / 4!

        = (x^4 * e^(-x/3)) / 1620

Therefore, the pdf of x is f(x) = (x^4 * e^(-x/3)) / 1620.

(c) The variance of an Erlang (n, λ) random variable is given by:

var[x] = n/λ^2 = n/(1/λ)^2

Substituting λ = 1/3 and n = 5, we have:

var[x] = 5/(1/(1/3))^2

        = 45

Therefore, the variance of x is var[x] = 45.

Visit to know more about PDF:-

brainly.com/question/15714810

#SPJ11

3.48 Referring to Exercise 3.39, find
(a) f(y|2) for all values of y;
(b) P(Y = 0 | X = 2).
this is 3.39
3.39 From a sack of fruit containing 3 oranges, 2 apples, and 3 bananas, a random sample of 4 pieces of fruit is selected. If X is the number of oranges and Y is the number of apples in the sample, find (a) the joint probability distribution of X and Y ; (b) P[(X, Y ) ∈ A], where A is the region that is given by {(x, y) | x + y ≤ 2}.

Answers

Referring to Exercise 3.39,

(a) f(y|2) for all values of y is f(2|2) = P(Y=2|X=2) = P(X=2, Y=2) / P(X=2) = (1/14) / (3/14) = 1/3

(b) P(Y = 0 | X = 2) = 1

To find f(y|2), we need to first calculate the conditional probability of Y=y given that X=2, which we can do using the joint probability distribution we found in part (a) of Exercise 3.39:
P(Y=y|X=2) = P(X=2, Y=y) / P(X=2)
We know that P(X=2) is equal to the probability of selecting 2 oranges out of 4 fruits, which can be calculated using the hypergeometric distribution:
P(X=2) = (3 choose 2) * (2 choose 0) / (8 choose 4) = 3/14
To find P(X=2, Y=y), we need to consider all the possible combinations of selecting 2 oranges and y apples out of 4 fruits:
P(X=2, Y=0) = (3 choose 2) * (2 choose 0) / (8 choose 4) = 3/14
P(X=2, Y=1) = (3 choose 2) * (2 choose 1) / (8 choose 4) = 3/14
P(X=2, Y=2) = (3 choose 2) * (2 choose 2) / (8 choose 4) = 1/14
Therefore, f(y|2) is:
f(0|2) = P(Y=0|X=2) = P(X=2, Y=0) / P(X=2) = (3/14) / (3/14) = 1
f(1|2) = P(Y=1|X=2) = P(X=2, Y=1) / P(X=2) = (3/14) / (3/14) = 1
f(2|2) = P(Y=2|X=2) = P(X=2, Y=2) / P(X=2) = (1/14) / (3/14) = 1/3
To find P(Y=0|X=2), we can use the conditional probability formula again:
P(Y=0|X=2) = P(X=2, Y=0) / P(X=2) = 3/14 / 3/14 = 1
Therefore, P(Y=0|X=2) = 1.

To learn more about conditional probability, refer:-

https://brainly.com/question/30144287

#SPJ11

Help please!
5/8 ÷ 1/8​

Answers

Answer: 5

5/8/1/8, you can do 5x8 and also do 8x1 because you can not divide fractions after that you get 40/8 then you divide 40/8 is 5 so the answer is 5

The answer to 5/8 divided by 1/8 equal 5 1
- divided - = 5/8
8. 8

1. Solve the problem. If the price charged for a bolt is p cents, then x thousand bolts will be sold in a certain hardware store, where p=63-x/20. How many bolts must be sold to maximize revenue A) 630 thousand bolts B) 630 bolts C) 1260 bolts D) 1260 thousand bolts

Answers

A total of 630 thousand bolts must be sold to maximize revenue. The correct answer is A) 630 thousand bolts.

To maximize revenue, we need to first determine the revenue function.

Revenue is given by the product of price (p) and quantity (x).

In this case, p = 63 - x/20.

Write the revenue function:

R(x) = px

= (63 - x/20)x


Simplify the function:

R(x) = 63x - (x²)/20


To maximize the revenue, find the vertex of the parabola formed by the quadratic function.

The x-coordinate of the vertex is given by -b/(2a), where a and b are the coefficients of x² and x, respectively.


In this case, a = -1/20 and b = 63. So, the x-coordinate of the vertex is:

x = -63 / (2  (-1/20))

= 63 (20 / 2)

= 630.


Therefore, option A) is correct.

Learn more about revenue:

https://brainly.com/question/16232387

#SPJ11

[infinity]consider the series ∑ 1/n(n+2)n=1 determine whether the series converges, and if it converges, determine its value.Converges (y/n) = ___Value if convergent (blank otherwise = ____

Answers

The value of the series is: ∑ 1/n(n+2) = lim N→∞ S(N) = 1/2.

The series ∑ 1/n(n+2)n=1 converges. To determine its value, we can use the partial fraction decomposition:

1/n(n+2) = 1/2 * (1/n - 1/(n+2))

Using this decomposition, we can rewrite the series as:

∑ 1/n(n+2) = 1/2 * (∑ 1/n - ∑ 1/(n+2))

The first series ∑ 1/n is the harmonic series, which diverges. However, the second series ∑ 1/(n+2) is a shifted version of the harmonic series, and it also diverges. But since we are subtracting a divergent series from another divergent series, we can use the limit comparison test to determine whether the original series converges or diverges. Specifically, we can compare it to the series ∑ 1/n, which we know diverges. This gives:

lim n→∞ 1/n(n+2) / 1/n = lim n→∞ (n+2)/n^2 = 0

Since the limit is less than 1, we can conclude that the series ∑ 1/n(n+2) converges. To find its value, we can evaluate the partial sums:

S(N) = 1/2 * (∑_{n=1}^N 1/n - ∑_{n=1}^N 1/(n+2))
    = 1/2 * (1/1 - 1/3 + 1/2 - 1/4 + ... + 1/(N-1) - 1/(N+1))

As N approaches infinity, the terms in the parentheses cancel out except for the first and last terms:

S(N) → 1/2 * (1 - 1/(N+1))

Learn more about parentheses here: brainly.com/question/28146414

#SPJ11

find the partial derivatives of the function f(x,y)=xye−9y

Answers

The partial derivatives of the function f(x,y) = xy*e^(-9y) with respect to x and y are: ∂f/∂x = ye^(-9y), and ∂f/∂y = x(-9y*e^(-9y)) + e^(-9y).

The first partial derivative concerning x is obtained by treating y as a constant and differentiating concerning x. The result is ye^(-9y), which means that the rate of change of f concerning x is equal to ye^(-9y).

The second partial derivative concerning y is obtained by treating x as a constant and differentiating concerning y. The result is x(-9ye^(-9y)) + e^(-9y), which means that the rate of change of f concerning y is equal to x times -9ye^(-9y) plus e^(-9y).

To better understand these partial derivatives, we can analyze the behavior of the function f(x,y) = xy*e^(-9y). As we can see, the function is the product of three terms: x, y, and e^(-9y). The term e^(-9y) represents a decreasing exponential function that approaches zero as y increases. Therefore, the value of f(x,y) decreases as y increases. The terms x and y represent a linear function that increases as x and y increase. Therefore, the value of f(x,y) increases as x and y increase.

To learn more about Derivatives, visit:

https://brainly.com/question/23819325

#SPJ11

Write a formula for a two-dimensional vector field which has all vectors of length 1 and perpendicular to the position vector at that point.

Answers

We can define the vector field as:F(x,y) = v = ⟨−y,x⟩/√(x²+y²).

This vector field satisfies the conditions that all vectors have length 1 and are perpendicular to the position vector at each point

What are perpendicular lines?

Perpendicular lines are lines that intersect at a right angle (90 degrees).

Let's consider a two-dimensional vector field, denoted by F(x,y), where F is a vector function of two variables x and y. We want all vectors in this field to have length 1 and to be perpendicular to the position vector at each point.

The position vector at a point (x,y) is given by r = x, y , so we need to find a vector that is perpendicular to r and has length 1. One such vector is \ -y, x .

To make sure that all vectors in the field have length 1, we can normalize this vector by dividing it by its magnitude:

v = ⟨−y,x⟩/√(x²+y²).

Finally, we can define the vector field as:

F(x,y) = v = ⟨−y,x⟩/√(x²+y²).

This vector field satisfies the conditions that all vectors have length 1 and are perpendicular to the position vector at each point.

To learn more about perpendicular lines from the given link:

https://brainly.com/question/18271653

#SPJ1

We can define the vector field as:F(x,y) = v = ⟨−y,x⟩/√(x²+y²).

This vector field satisfies the conditions that all vectors have length 1 and are perpendicular to the position vector at each point

What are perpendicular lines?

Perpendicular lines are lines that intersect at a right angle (90 degrees).

Let's consider a two-dimensional vector field, denoted by F(x,y), where F is a vector function of two variables x and y. We want all vectors in this field to have length 1 and to be perpendicular to the position vector at each point.

The position vector at a point (x,y) is given by r = x, y , so we need to find a vector that is perpendicular to r and has length 1. One such vector is \ -y, x .

To make sure that all vectors in the field have length 1, we can normalize this vector by dividing it by its magnitude:

v = ⟨−y,x⟩/√(x²+y²).

Finally, we can define the vector field as:

F(x,y) = v = ⟨−y,x⟩/√(x²+y²).

This vector field satisfies the conditions that all vectors have length 1 and are perpendicular to the position vector at each point.

To learn more about perpendicular lines from the given link:

https://brainly.com/question/18271653

#SPJ1

using homework 10 data: using α = .05, p = 0.038 , your conclusion is _________.

Answers

Hi! Based on the information provided, using homework 10 data with a significance level (α) of 0.05 and a p-value of 0.038, your conclusion is that you would reject the null hypothesis.

This is because the p-value (0.038) is less than the significance level (0.05), indicating that there is significant evidence to suggest that the alternative hypothesis is true. Therefore, the conclusion is made based on the evidence to suggest that there is a statistically significant difference between the groups being compared in the study analyzed in homework 10.

To learn more about the topic:

https://brainly.com/question/4436370

#SPJ11

Please help if you can, i don't understand

Answers

Answer: I believe -2 is the answer

Step-by-step explanation: To solve for the function over an interval, you need to know the equation of the function. If you have the equation, you can plug in the values of the interval into the equation to find the corresponding y-values. For example, if the function is y = 2x + 1 and the interval is [0,3], you can plug in x = 0 and x = 3 to find the corresponding y-values and get the ordered pairs (0,1) and (3,7).

Evaluate the expression 7 + 2 x 8 − 5. (1 point)

18

20

48

63

Answers

The answer is 18 because you multiply 8 and 2 and then subtract 5 and then add 7

find the limit of the following sequence or determine that the sequence diverges. {tan^−1( 4n/ 4n +5)}

Answers

The limit of the given sequence is π/4, and the sequence converges to this value.

The given sequence is {tan^−1(4n/(4n+5))}. To determine if the sequence converges or diverges, we can analyze the limit of the function as n approaches infinity.

As n goes to infinity, the function behaves like tan^−1(4n/4n), which simplifies to tan^−1(1). Since the arctangent function has a range of (-π/2, π/2), tan^−1(1) falls within this range, and it is equal to π/4 (or 45° in degrees).

Now, let's consider the difference between the given function and the simplified one: (4n+5) - 4n = 5. As n becomes larger, the effect of the constant term 5 becomes negligible. Consequently, the function approaches tan^−1(1) as n approaches infinity.

To learn more about arctangent function : brainly.com/question/29342276

#SPJ11

The following table gives the mean and standard deviation of reaction times in seconds) for each of two different stimuli, Stimulus 1 Stimulus 2 Mean 6.0 3.2 Standard Deviation 1.4 0.6 If your reaction time is 4.2 seconds for the first stimulus and 1.8 seconds for the second stimulus, to which stimulus are you reacting (compared to other individuals) relatively more quickly?

Answers

z-score for Stimulus 2 (-2.33) is more negative than the z-score for Stimulus 1 (-1.29), you are reacting relatively more quickly to Stimulus 2 compared to other individuals.

How to determine to which stimulus you are reacting relatively more quickly?

We need to calculate the z-scores for your reaction times for each stimulus.

For Stimulus 1:

z-score = (your reaction time - mean reaction time for Stimulus 1) / standard deviation for Stimulus 1

z-score = (4.2 - 6.0) / 1.4

z-score = -1.29

For Stimulus 2:

z-score = (your reaction time - mean reaction time for Stimulus 2) / standard deviation for Stimulus 2

z-score = (1.8 - 3.2) / 0.6

z-score = -2.33

The more negative the z-score, the farther away your reaction time is from the mean.

Therefore, since the z-score for Stimulus 2 (-2.33) is more negative than the z-score for Stimulus 1 (-1.29), you are reacting relatively more quickly to Stimulus 2 compared to other individuals.

Learn more about z-score.

brainly.com/question/15016913

#SPJ11

For two programs at a university, the type
of student for two majors is as follows.

Find the probability a student is a science major,
given they are a graduate student.

Answers

Answer:

Step-by-step explanation:

To find the probability that a student is a science major given that they are a graduate student, we need to use Bayes' theorem:

P(Science | Graduate) = P(Graduate | Science) * P(Science) / P(Graduate)

We know that P(Science) = 0.45 and P(Liberal Arts) = 0.55, and that P(Graduate | Science) = 0.35 and P(Graduate | Liberal Arts) = 0.25. We also know that the total probability of being a graduate student is:

P(Graduate) = P(Graduate | Science) * P(Science) + P(Graduate | Liberal Arts) * P(Liberal Arts)

Plugging in the values, we get:

P(Graduate) = 0.35 * 0.45 + 0.25 * 0.55 = 0.305

Now we can calculate the probability of being a science major given that the student is a graduate student:

P(Science | Graduate) = 0.35 * 0.45 / 0.305 = 0.515

Therefore, the probability that a student is a science major, given they are a graduate student, is approximately 0.515.

Answer:

0.72

Step-by-step explanation:

trust me

Solve for triangle Above

Answers

Answer:

X = 24.4

Step-by-step explanation:

for the triangle we use sin b/c it contain both hyp and opposite so

sin(35°) = 14/x

sin(35) × X = 14

X = 14 / (sin(35)

X = 24.4 ... it is the answer of hypotenus of the

triangle

Answer:

Step-by-step explanation:

(b) region r is the basRegion R is the base of a soli., each cross section perpendicular to the x axis is a semi circle. Write, but do not evaluate, an integral expression that would compute the volume of the solid
of a

Answers

An integral expression that would compute the volume of the solid is [tex]V = \int\limits^a_b {1/2 \pi [R(x)]^2} \, dx[/tex]

What is integral expression?

An integral expression is a mathematical statement that represents the area under a curve or the volume of a solid in three-dimensional space. It is written using integral notation, which involves an integral sign, a function to be integrated, and limits of integration.

According to given information:

If each cross section perpendicular to the x-axis is a semicircle, then the radius of each cross section depends on the x-coordinate of the center of the cross section. Let R(x) be the radius of the cross section at x.

To find the volume of the solid, we can integrate the area of the cross section over the interval of x that defines the base R. The area of each cross section is given by the formula for the area of a semicircle:

[tex]A(x) = (1/2)[/tex][tex]\pi[R(x)]^2[/tex]

The volume of the solid can be found by integrating A(x) over the base R:

[tex]V = \int\limits^a_b {1/2 \pi [R(x)]^2} \, dx[/tex]

where a and b are the limits of integration for x that define the base R.

Note that we are integrating with respect to x, so we need to express the radius R(x) in terms of x.

To know more about integral expression visit:

https://brainly.com/question/1859113

#SPJ1

Given: A_n = 30/3^n Determine: (a) whether sigma _n = 1^infinity (A_n) is convergent. _____
(b) whether {An} is convergent. _____
If convergent, enter the limit of convergence. If not, enter DIV.

Answers

As n increases, 3^n becomes larger, making the fraction 30/3^n approach zero. Therefore, the sequence {A_n} is convergent, and the limit of convergence is 0. (a) Σ(A_n) is convergent and (b) {A_n} is convergent with the limit of convergence equal to 0.

(a) To determine whether sigma _n = 1^infinity (A_n) is convergent, we need to take the sum of the sequence A_n from n=1 to infinity:
sigma _n = 1^infinity (A_n) = A_1 + A_2 + A_3 + ...
Substituting A_n = 30/3^n, we get:
sigma _n = 1^infinity (A_n) = 30/3^1 + 30/3^2 + 30/3^3 + ...
To simplify this, we can factor out a common factor of 30/3 from each term:
sigma _n = 1^infinity (A_n) = 30/3 * (1/3^0 + 1/3^1 + 1/3^2 + ...)
Now, we recognize that the expression in parentheses is a geometric series with first term a=1 and common ratio r=1/3. The sum of an infinite geometric series with first term a and common ratio r is:
sum = a / (1 - r)
Applying this formula to our series, we get:
sigma _n = 1^infinity (A_n) = 30/3 * (1/ (1 - 1/3)) = 30/2 = 15
Therefore, sigma _n = 1^infinity (A_n) is convergent, with a limit of 15.
(b) To determine whether {An} is convergent, we need to take the limit of the sequence A_n as n approaches infinity:
lim n->infinity (A_n) = lim n->infinity (30/3^n) = 0
Therefore, {An} is convergent, with a limit of 0.
(a) To determine if the series Σ(A_n) from n=1 to infinity is convergent, we can use the ratio test. The ratio test states that if the limit as n approaches infinity of the absolute value of the ratio A_(n+1)/A_n is less than 1, the series converges.
For A_n = 30/3^n, we have:
A_(n+1) = 30/3^(n+1)
Now let's find the limit as n approaches infinity of |A_(n+1)/A_n|:
lim(n→∞) |(30/3^(n+1))/(30/3^n)| = lim(n→∞) |(3^n)/(3^(n+1))| = lim(n→∞) |1/3|
Since the limit is 1/3, which is less than 1, the series Σ(A_n) converges.
(b) To determine if the sequence {A_n} is convergent, we need to find the limit as n approaches infinity:
lim(n→∞) (30/3^n)
As n increases, 3^n becomes larger, making the fraction 30/3^n approach zero. Therefore, the sequence {A_n} is convergent, and the limit of convergence is 0.


To learn more about limit of convergence, click here:

brainly.com/question/31402403

#SPJ11

What is the factored form of the polynomial?

x2 − 12x + 27?

(x + 4)(x + 3)
(x − 4)(x + 3)
(x + 9)(x + 3)
(x − 9)(x − 3)

Answers

Answer:

-9?

Step-by-step explanation:

Jamal measures the round temperature dial on a thermostat and calculates that it has a circumference of 87.92 millimeters. What is the dial's radius?

Answers




To find the radius of the round temperature dial on a thermostat, we need to use the formula for the circumference of a circle:

C = 2πr

where C is the circumference and r is the radius.

Given that the circumference of the dial is 87.92 millimeters, we can plug in this value for C and solve for r:

87.92 = 2πr

Divide both sides by 2π:

r = 87.92 / 2π

Using a calculator, we can evaluate this expression to find that:

r ≈ 13.997 millimeters

Therefore, the radius of the dial is approximately 13.997 millimeters.

To explain the reasoning behind this calculation, we can think about what the circumference of a circle represents. The circumference is the distance around the outside of the circle, or the total length of the circle's boundary. In this case, the temperature dial has a circular shape, so we can use the formula for the circumference of a circle to find its radius. By solving for the radius, wecircumferencewecircumferencewewecircumferencewwe can determine how far away from the center of the circle the outer edge of the dial is located. This information might be useful for understanding the physical design of the thermostat or for making measurements or calculations involving the dial's size or position.

To learn more about circumference click:
https://brainly.com/question/20489969

#SPJ1

The dial's radius is approximately 13.99 millimeters.

What is formula of  circumference?

The circumference of a circle is given by the formula:

C = 2πr

where C is the circumference, π is the constant pi (approximately equal to 3.14159), and r is the radius of the circle.

The circumference C in this instance is 87.92 millimeters. We can adjust the equation to address for the sweep:

r = C / 2π

Substituting the given value for C, we get:

r = 87.92 mm / (2π)

r ≈ 13.99 mm

As a result, the dial has a radius of about 13.99 millimeters.

know more about circle visit :

https://brainly.com/question/29142813

#SPJ1

Around the beginning of the 1800’s, the population of the U.S. was growing at a rate of about 1.33^t million people per decade, with "t" being measured in decades from 1810.
If the population P(t) was 7.4 million people in 1810, estimate the population in 1820 (one decade later) by considering the work in example 2.

Answers

We can determine the population in 1820 was 8.5753 using a linear equation.

What does a linear equation mean in mathematics?

A linear equation is one that has just a constant and a first order (linear) component, like y=mx+b, where m is the slope and b is the y-intercept.

When x and y are the variables, the aforementioned is sometimes referred to as a "linear equation of two variables."

dp/dt = [tex]1.37^{t}[/tex]

Integrate both sides.

p[h] = ( [tex]1.37^{t}[/tex])/In (1.37)   + c

1810 ⇒ t = 0

7.4 = 1/In (1.37) + C

C = 4.2235

p(H) = ( [tex]1.37^{t}[/tex])/In (1.37) + 4.2235

P (1) =  [tex]1.37^{t}[/tex]In (1.37) + 4.2235

= 8.5753

To know more about linear equations, visit:

brainly.com/question/11897796

#SPJ1

Other Questions
Given the following tables: students(sid,name,age,gpa) courses(cid,deptid, description) professors(ssn,name,address,phone,deptid) enrollment(sid,cid,section,grade). cid makes reference to the courses table. teaches(cid,section,ssn). cid, section makes reference to the enrollment tableProvide SQL instructions for each of the following questions10. Assume grades are A, B, C, D, F where D and F are failing grades. For each course (section) find the percentage of students that failed the course. What is the result of the following C code?# include #include < stdlib.h >inf main() {struct MYDATE {int a, b; char c;} x, y; struct MYDATE *p1, *p2; p1 = &x: p2 = &y; x.a = 1: x.b = 2; y.a = 3; y.b = 4; y.a = (p2 rightarrow b > pl rightarrow a): 5; x.a = x.b + pl rightarrow b; printf("x.a = %d. x.b = % d, y.a = % d, y.b = %d", pl rightarrow a, pl rightarrow b, p2 rightarrow a, p2 rightarrow b); return 0;} x.a = ______ x.b = ________y.a = _______ x.b = an electron moving at 3.75 103 m/s in a 1.1 t magnetic field experiences a magnetic force of 1.5 10-16 n. the von neuman model proposes among other things a city levied propety taxes of $5,010,000 for its General Fund and it offered a 1 percent discount for payment within the discount period. Based on experience, city finance officials estimated that $10,000 of discounts would be taken. However, when the discount period ended, $5,002,000 of cash had been collected and only $8,000 of discounts had been taken.What is the amount of property tax revenue that the city should record?a. $5,002,000b. $5,010,000c. $5,000,000d. $5,008,000 the keynesian model of aggregate demand includes:l.government purchases and taxes. ll.consumer spending and investment spending.lll. exports plus imports. multiprogramming systems are not necessarily timesharing systems. true or false formally prove that a union distributes over an intersection. true or false? what is/are the overall function(s) of photosystem i? During one week an overnight delivery company found that the weight of its parcels were normally distributed with a mean of 32 ounces and a standard deviation of 8 ounces.What percent of the parcels weighed between 16 ounces and 40 ounces? Round your answer to one decimal place. 72. Based on the information in"Earth's Eye," Walden Pond hasbeen influenced by all of thefollowing factors except Problem 6. [10 points] Show that the language L = {x#y| x, y {0,1}* and x + y} is context-free. (Hint: x + y iff either | x | # y | or the i-th bit of x is different than the i-th bit of y for some i.) Suppose that you borrow $10,000 for four years at 8% toward the purchase of a car. Use PMT=find the monthly payments and the total interest for the loan.The monthly payment is(Do not round until the final answer. Then round to the nearest cent as needed.)ampleGet more helpClear all-|CCheck answer Allport discussed the theory in regards to prejudice that states that a race may not be completely blameless in the hostility that they receive:A.earned reputationB.situationalC.realityD.equal rights Work the following problem with pencil and paper and upload a photo of your work. Make sure that your final answer is clearly visible, and that you've shown all of your work. You may email me the photo of your work if you run out of time before you are able to upload your photo.The organic compound 2nitrophenol is slightly acidic. It has an acid dissociation constant Ka = 6.3 x 108.What would be the pH of a 0.050 M solution of 2-nitrophenol? find the solubility of cui in 0.32 m kcn solution. the ksp of cui is 1.11012 and the kf for the cu(cn)2 complex ion is 11024 . Why did my teacher remove the negative from 2.9[tex]10^{-8}[/tex] in this problem:Determine the electrical force of attraction between two balloons with separate charges of +3.5[tex]10^{-8}[/tex] and -2.9[tex]10^{-8}[/tex] C when separated a distance of 0.65m.F=[tex]\frac{(9*10^{9} )(3.5*10^{-8})(2.9*10^{-8} )}{(0.65)^{2} }[/tex] A que se refiere "Que los hijos no sean motivo de preocupacin, rebelda y discordia" according to the universal soil loss equation, in order for soil loss to be low, factors r, k, l, s, c, and p all must be _______? you are to advise xyz corporation so that their bi and analytics efforts are fruitful. which among the following is the most crucial advice of all?