sin2x=

please help!!

Sin2x=please Help!!

Answers

Answer 1

Answer:

A

Step-by-step explanation:

It is a double angle identity.

sin2x = 2sinxcosx

Answer 2

Answer: 2sinxcosx

Step-by-step explanation:


Related Questions

Adding measurements in feet and inches, please help ):

Answers

The total width for the figure is given as follows:

13 ft 2 in.

How to obtain the total width?

The total width for the figure is obtained applying the proportions in the context of the problem.

The measures are given as follows:

3 feet and 11 inches.4 feet and 5 inches.4 feet and 10 inches.

The sum of the measures is given as follows:

3 + 4 + 4 = 11 feet.11 + 5 + 10 = 26 inches.

Each feet is composed by 12 inches, hence:

26 inches = 2 feet and 2 inches.

Hence the sum is given as follows:

11 + 2 = 13 feet and 2 inches.

More can be learned about proportions at https://brainly.com/question/24372153

#SPJ1

A standard deck of 52 cards has 4 suits: clubs, spades, hearts, and diamonds. Each suit has number cards 2 through 10, a jack, a queen, a king, and an ace. The jack, queen, and king are considered "face cards".
What is the probability of drawing one card from a standard deck of cards and choosing a "face card"?
A. 1/3
B. 3/52
C. 1/4
D. 3/13

Answers

The probability of drawing one card from a standard deck of cards and choosing a "face card" is 3/13.

What is probability?

Probability is a measure of the likelihood or chance of an event occurring, expressed as a number between 0 and 1, where 0 indicates impossibility and 1 indicates certainty.

There are a total of 12 face cards in a standard deck of 52 cards (4 jacks, 4 queens, and 4 kings).

The probability of drawing a face card can be calculated by dividing the number of face cards by the total number of cards in the deck:

P(face card) = number of face cards / total number of cards

[tex]P(face \: card) = \frac{12}{52} \\ P(face \: card) = \frac{3}{13} [/tex]

Therefore, the probability is D. 3/13.

Learn more about probability here,

https://brainly.com/question/24756209

#SPJ1

A single letter from the word SLEEPLESS is chosen. What is the probability of choosing a P or an S? Express your answer as a fraction in lowest terms or a decimal rounded to the nearest millionth.

Answers

If a single letter from the word SLEEPLESS is chosen, the probability of choosing a P or an S as a fraction in lowest terms is 5/8.

To find the probability of choosing a P or an S from the word SLEEPLESS, we need to first determine the total number of letters in the word and then count how many of those letters are P's or S's.

There are 8 letters in the word SLEEPLESS, so there are 8 possible outcomes when selecting a single letter at random. Of these 8 letters, 2 are P's and 3 are S's.

Therefore, the probability of choosing a P or an S is the sum of the probabilities of choosing a P and choosing an S:

P(P or S) = P(P) + P(S)

P(P) = 2/8 = 1/4, since there are 2 P's out of 8 total letters.

P(S) = 3/8, since there are 3 S's out of 8 total letters.

P(P or S) = 1/4 + 3/8

P(P or S) = 5/8, which is the final probability expressed as a fraction in lowest terms.

Alternatively, we can convert the fraction to a decimal and round to the nearest millionth:

P(P or S) = 0.625

To learn more about probability click on,

https://brainly.com/question/29142178

#SPJ1

Which is an asymptote of the function h(x) = 9^x?

Answers

Answer:

The asymptote is 0.

Step-by-step explanation:

In [tex]f(x)=a^x+b[/tex], b is the asymptote.

Answer:

it's 0

Step-by-step explanation:

find the work done of a moving particle in the surface center c(0,0,3) of radiu r=5, on the plane z=3 if the force field F = (2x +y_2Z)i + (2x_4y+Z)j (x-2y-Z²) k​

Answers

Answer:

75 - 25π.

Step-by-step explanation:

To find the work done by a force field on a particle moving along a curve, we use the line integral of the force field over that curve.

In this case, the curve is a circle of radius 5 centered at (0, 0, 3) lying on the plane z = 3. We can parameterize this curve using polar coordinates as:

r(t) = (5cos(t), 5sin(t), 3), where t goes from 0 to 2π.

The differential of the curve, dr(t), is given by:

dr(t) = (-5sin(t), 5cos(t), 0) dt

Now we need to calculate the work done by the force field F along this curve. The line integral of F over the curve is given by:

W = ∫ F · dr = ∫ (2x +y²Z)dx + (2x-4y+Z)dy + (x-2y-Z²)dz

Substituting x = 5cos(t), y = 5sin(t), and z = 3, we get:

W = ∫ (10cos(t) + 25sin²(t)·3) (-5sin(t))dt

∫ (10cos(t) - 20sin(t) + 3) (5cos(t))dt

∫ (5cos(t) - 10sin(t) - 9) (0)dt

Simplifying, we get:

W = -75∫sin(t)cos(t)dt + 50∫cos²(t)dt + 0

Using the trigonometric identities sin(2t) = 2sin(t)cos(t) and cos²(t) = (1 + cos(2t))/2, we can simplify this further:

W = -75∫(1/2)sin(2t)dt + 25∫(1 + cos(2t))dt

= -75·(1/2)·(-cos(2t))∣₀^(2π) + 25·(t + (1/2)sin(2t))∣₀^(2π)

= 75 - 25π

Therefore, the work done by the force field F on the particle moving along the circle of radius 5 centered at (0, 0, 3) lying on the plane z = 3 is 75 - 25π.

A window is 8 2/3 feet wide and 5 3/4 feet high what is the area of the window

Answers

Answer:

I worked this out & I got a horribly messy number, but if you still want it, here you go.

The answer I got is 49.833333333333333333333333333333, or
49 833333333333333333333333333333/100000000000000000000000000000.

I could not simplify it. Hopefully, your teacher accepts this.

let's firstly convert the mixed fractions to improper fractions, then multiply.

[tex]\stackrel{mixed}{8\frac{2}{3}}\implies \cfrac{8\cdot 3+2}{3}\implies \stackrel{improper}{\cfrac{26}{3}}~\hfill \stackrel{mixed}{5\frac{3}{4}} \implies \cfrac{5\cdot 4+3}{4} \implies \stackrel{improper}{\cfrac{23}{4}} \\\\[-0.35em] ~\dotfill\\\\ \cfrac{26}{3}\cdot \cfrac{23}{4}\implies \cfrac{26}{4}\cdot \cfrac{23}{3}\implies \cfrac{13}{2}\cdot \cfrac{23}{3}\implies \cfrac{299}{6}\implies 49\frac{5}{6}~ft^2[/tex]

Invent examples of data with
(a) SS(between) = 0 and SS(within) > 0
(b) SS(between) > 0 and SS(within) = 0
For each example, use three samples, each of size 5.

Answers

The sample of given data is Sample 1: 1, 2, 3, 4, 5 Sample 2: 6, 7, 8, 9, 10

b)Sample 1: 1, 2, 3, 4, 5 Sample 2: 6, 7, 8, 9, 10

(a) An example of data with SS(between) = 0 and SS(within) > 0 could be the following:

Sample 1: 1, 2, 3, 4, 5

Sample 2: 6, 7, 8, 9, 10

Sample 3: 11, 12, 13, 14, 15

In this example, the means of each sample are all different from each other, but the grand mean (8) is equal to the mean of each sample. Therefore, there is no variability between the means of the samples, resulting in SS(between) = 0. However, there is still variability within each sample, resulting in SS(within) > 0.

(b) An example of data with SS(between) > 0 and SS(within) = 0 could be the following:

Sample 1: 1, 2, 3, 4, 5

Sample 2: 6, 7, 8, 9, 10

Sample 3: 11, 12, 13, 14, 15

In this example, the means of each sample are all the same (8), but the values within each sample are all different from each other. Therefore, there is variability between the means of the samples, resulting in SS(between) > 0. However, there is no variability within each sample, resulting in SS(within) = 0.

To know more about sample Visit:

https://brainly.com/question/28196409

#SPJ1

suppose mapping f : Z->Z is defined as f(x)=x^2 (Z denotes the set of integers). Show that f is a function

Answers

To show that f(x) = x^2 is a function, we need to show that for every element in the domain of f(x), there exists a unique element in the range of f(x). In this case, the domain of f(x) is Z (the set of integers) and the range of f(x) is also Z.

For any integer x, x^2 is also an integer. Therefore, for every element in the domain of f(x), there exists an element in the range of f(x).

Now we need to show that this element in the range is unique. Suppose there exist two elements a and b in Z such that a^2 = b^2. Then we have:

a^2 - b^2 = 0

(a - b)(a + b) = 0

Since a and b are integers, either a - b = 0 or a + b = 0. If a - b = 0, then a = b and hence the element in the range is unique. If a + b = 0, then a = -b and hence again the element in the range is unique.

Therefore, we have shown that for every element in the domain of f(x), there exists a unique element in the range of f(x), which means that f(x) = x^2 is indeed a function.

Sources you can check to learn more about it:

(2) Determining if a function is invertible (video) | Khan Academy. https://www.khanacademy.org/math/precalculus/x9e81a4f98389efdf:composite/x9e81a4f98389efdf:invertible/v/determining-if-a-function-is-invertible.
(3) How to find the range of a function (video) | Khan Academy. https://www.khanacademy.org/math/algebra/x2f8bb11595b61c86:functions/x2f8bb11595b61c86:introduction-to-the-domain-and-range-of-a-function/v/range-of-a-function.

Find the equation in standard form of the circle with center at (4, −1) and that passes through the point (−4, 1).

Answers

Answer:

The standard form of the equation of a circle with center at (h, k) and radius r is:

(x - h)^2 + (y - k)^2 = r^2

We are given that the center of the circle is (4, -1), so h = 4 and k = -1. We also know that the circle passes through the point (-4, 1), which means that the distance from the center of the circle to (-4, 1) is the radius of the circle.

The distance between two points (x1, y1) and (x2, y2) is given by the distance formula:

d = sqrt((x2 - x1)^2 + (y2 - y1)^2)

So the radius of the circle is:

r = sqrt((-4 - 4)^2 + (1 - (-1))^2) = sqrt(100) = 10

Now we can substitute the values of h, k, and r into the standard form equation of a circle:

(x - 4)^2 + (y + 1)^2 = 10^2

Expanding the equation gives:

x^2 - 8x + 16 + y^2 + 2y + 1 = 100

Simplifying and putting the equation in standard form, we get:

x^2 + y^2 - 8x + 2y - 83 = 0

Therefore, the equation in standard form of the circle with center at (4, −1) and that passes through the point (−4, 1) is:

x^2 + y^2 - 8x + 2y - 83 = 0

Can’t solve this please help urgent.

Answers

The value of the derivative of variable x with respect to parameter t is equal to dx / dt = - 1 / 2.

How to find the derivative of a parametric function

In this problem we need to find the derivative of variable x with respect to parameter t. This can be done by the following expression:

dy / dx = (dy / dt) / (dx / dt)

If we know that y = 4 · x² + 4, x = - 1 and dy / dt = 4, then the exact value of dy / dt is:

dy / dx = 8 · x

[8 · (- 1)] = 4 / (dx / dt)

- 8 = 4 / (dx / dt)

dx / dt = - 1 / 2

To learn more on derivatives of parametric equations: https://brainly.com/question/31388182

#SPJ1

A set of data items is normally distributed with a mean of 600 and a standard deviation of 30. Find the data item in this distribution that corresponds
to the given z-score.

Z=-3
The data item that corresponds to z= -3 is
s(Type an integer or a decimal.)

Answers

The data item in this distribution corresponding to a z-score of -7 will be 290.

Here, we have,

The standard score in statistics is the number of standard deviations that a raw score's value is above or below the mean value of what is being observed or measured.

Raw scores that are higher than the mean have positive standard scores, whereas those that are lower than the mean have negative standard scores.

The Z-score measures how much a particular value deviates from the standard deviation.

The Z-score, also known as the standard score, is the number of standard deviations above or below the mean for a given data point.

The standard deviation reflects the level of variability within a particular data collection.

Here,

z=(X-μ)/σ

-7=(X-500)/30

-210=X-500

X=290

The data item in this distribution that corresponds to we given z-score

z equals to -7 will be 290.

To know more about z-score,

brainly.com/question/25819936

#SPJ1

A rectangle's length is twice as long as it is wide. If the length is doubled and its breadth
is halved, the new rectangle will have a perimeter of 12 m longer than the original
rectangle's perimeter.
What are the dimensions of these rectangles?

Answers

Let's assume that the width of the original rectangle is "w". Therefore, the length of the original rectangle is "2w".

The perimeter of the original rectangle is given by:
P1 = 2(l + w) = 2(2w + w) = 6w

If the length is doubled and the width is halved, the new length becomes "4w" and the new width becomes "0.5w". Therefore, the new perimeter is given by:
P2 = 2(l + w) = 2(4w + 0.5w) = 9w

We know that the new perimeter is 12 meters longer than the original perimeter. Therefore:
P2 - P1 = 9w - 6w = 12
3w = 12
w = 4

Therefore, the width of the original rectangle is 4 meters and the length of the original rectangle is 2w = 8 meters.

The width of the new rectangle is 0.5w = 2 meters and the length of the new rectangle is 4w = 16 meters.

According to Thomson Financial, last year the majority of companies reporting profits had beaten estimates. A sample of 162 companies showed that 94 beat estimates, 29 matched estimates, and 39 fell short.
(a) What is the point estimate of the proportion that fell short of estimates? If required, round your answer to four decimal places.
pshort = .2407
(b) Determine the margin of error and provide a 95% confidence interval for the proportion that beat estimates. If required, round your answer to four decimal places.
ME =
(c) How large a sample is needed if the desired margin of error is 0.05? If required, round your answer to the next integer.
n* =

Answers

a)0.2407 is the point estimate of the proportion.

b) The 95% confidence interval for the proportion that beat estimates is (0.4858, 0.6746).

c) A sample size of 754 is needed to achieve a desired margin of error of 0.05.

(a) What is the point estimate of the proportion?

The point estimate of the proportion that fell short of estimates is 39/162 = 0.2407. Rounded to four decimal places, this is pshort = 0.2407.

(b) How to determine the margin of error and provide a 95% confidence interval for the proportion that beat estimates?

To determine the margin of error and provide a 95% confidence interval for the proportion that beat estimates, we need to first find the point estimate and standard error of the proportion that beat estimates.

The point estimate of the proportion that beat estimates is 94/162 = 0.5802.

The standard error can be calculated as:

SE = √(p×(1-p)/n)

where p is the point estimate of the proportion that beat estimates and n is the sample size. Substituting the values we get:

SE = √(0.5802×(1-0.5802)/162) = 0.0482

To calculate the margin of error, we use the formula:

ME = zSE

where z is the z-score corresponding to the desired confidence level. For a 95% confidence level, z* = 1.96 (from the standard normal distribution table).

Substituting the values we get:

ME = 1.96×0.0482 = 0.0944

Therefore, the margin of error is 0.0944. To find the 95% confidence interval, we add and subtract the margin of error from the point estimate of the proportion that beat estimates:

CI = 0.5802 ± 0.0944

CI = (0.4858, 0.6746)

Therefore, the 95% confidence interval for the proportion that beat estimates is (0.4858, 0.6746).

(c) How large a sample is needed if the desired margin of error is 0.05?

To find the sample size needed for a desired margin of error of 0.05, we use the formula:

n* = (z*/ME)² × p×(1-p)

where z* is the z-score corresponding to the desired confidence level (we use 1.96 for a 95% confidence level), ME is the desired margin of error (0.05), and p is an estimate of the proportion (we use the point estimate of 0.5802 for the proportion that beat estimates).

Substituting the values we get:

n* = (1.96/0.05)² × 0.5802×(1-0.5802) = 753.16

Rounding up to the next integer, we get n* = 754. Therefore, a sample size of 754 is needed to achieve a desired margin of error of 0.05.

Learn more about estimate of proportion here,

https://brainly.com/question/29436481

#SPJ1

30% of 26.5 is what number?

Answers

Answer:

7.95

Step-by-step explanation:

We can work percentage problems using the formula

P%x = y, where P is the percentage, x is the "of" value in the problem, and y is the "is" value in the problem.

First, we must convert the percentage to decimal form for an easier problem  We can either dividing the percentage by 100 since a percentage is always out of 100 (e.g., 30 / 100 = 0.30) Or we can imagine the percentage sign as a decimal and move it over two places to the right (30% = 30.00 = 0.30)

Thus, in the formula, our p value is 0.30, our x ("of") value is 26.5 and we're trying to find our y ("is") value:

0.30 * 26.5 = y

7.95 = y

Therefore, 30% of 26.5 is 7.95

There are four boards measuring 3 feet 4 inches, 27 inches, 1 1/2 yards, and 2 3/4 feet. What is the total length of all four boards?

Answers

On adding the measurement of "4-boards", the total length of the 'four-boards" is  154 inches.

In order to add the lengths of these four boards, we first need to convert all the measurements to the same units.

So, Let us convert all the measurements to inches:

(i) 3 feet 4 inches = (3×12) + 4 = 40 inches,    ...because 1 feet = 12 inch;

(ii) 27 inches = 27 inches;

(iii) 1(1/2) yards = (1.5 × 3 × 12) = 54 inches;

(iv) 2(3/4) feet = (2.75 × 12) = 33 inches;

Now, we can add the lengths of the four-boards:

⇒ 40 + 27 + 54 + 33 = 154 inches,

Therefore, the total length of all four boards is 154 inches.

Learn more about Length here

https://brainly.com/question/30200619

#SPJ1

Determine if each of the following relationships represents a proportional relationship or not.

SELECT ALL situations that represent a proportional relationship.

A). Natalia is selling fresh eggs at the local farmer's market. She sells 6 eggs for $3.12, a dozen eggs for $6.24, and eighteen eggs for $9.36.

B). Joey is training for a bicycle race and has been completing his longer training rides on Saturdays. Over the past month, Joey has ridden his bicycle 36 miles in 3 hours, 46 miles in 4 hours, and 22 miles in 2 hours.

C). graph 1 provided in the pictures

D). graph 2 provided in the pictures

E). Azul bought several different packages of 8-inch by 10-inch art canvases for craft project at her family reunion. The number of canvases in a package and the cost of the package is shown in the table. (TABLE PROVIDED IN PICTURES)

F). Kareem is comparing the cost of regular unleaded gasoline at three different gas stations near his home. Instead of filling up his car's gas tank at one station, he puts a few gallons in at each of the three different stations. The number of gallons of gasoline and the cost of the gasoline is shown in the table. (TABLE PROVIDED IN PICTURES)

Answers

The situations that represent a proportional relationship are:

A). Natalia is selling fresh eggs at the local farmer's market. She sells 6 eggs for $3.12, a dozen eggs for $6.24, and eighteen eggs for $9.36.

C). Graph 1 provided in the pictures. This graph shows a straight line passing through the origin, which indicates a proportional relationship.

D). Graph 2 provided in the pictures. This graph also shows a straight line passing through the origin, which indicates a proportional relationship.

E). Azul bought several different packages of 8-inch by 10-inch art canvases for a craft project at her family reunion. The number of canvases in a package and the cost of the package is shown in the table.

Therefore, the situations A, C, D, and E represent proportional relationships.

What is Proportional Relationship?

A proportional relationship is a relationship between two quantities where one quantity is a constant multiple of the other quantity. In other words, if one quantity increases or decreases by a certain factor, then the other quantity will increase or decrease by the same factor. This relationship can be represented by a straight line passing through the origin on a graph.

For example, if the price of gasoline is proportional to the number of gallons purchased, then buying twice as many gallons would cost twice as much money. Similarly, if the distance traveled is proportional to the time taken, then traveling twice as long would cover twice the distance.

Learn more about proportional relationship here: https://brainly.com/question/12242745

#SPJ1

Create a list of steps, in order, that will solve the following equation.
(x - 5)² = 25
Solution steps:
Add 5 to both sides
Multiply both sides by 5
Square both sides
Take the square root of both
sides

Answers

The solutions to the equation (x - 5)² = 25 are x = 10 and x = 0.

Define equation?

An equation is a mathematical statement that shows that two expressions are equal. It consists of two sides separated by an equal sign (=). Each side of the equation can contain variables, constants, and mathematical operations such as addition, subtraction, multiplication, and division.

What is Square?

It is a shape with four sides of equal length and four right angles. It is also a number multiplied by itself.

Solve the equation (x - 5)² = 25:

1. Take the square root of both sides of the equation to remove the exponent of 2 on the left side.

  √[(x - 5)²] = √25

2. Simplify the left side by removing the exponent of 2 and keeping the absolute value.

  |x - 5| = 5

3. Write two separate equations to account for both possible values of x when taking the absolute value.

  x - 5 = 5   or   x - 5 = -5

4. Solve for x in each equation.

x = 10   or   x = 0

  So the solutions to the equation (x - 5)² = 25 are x = 10 and x = 0.

Learn more about square root here:

https://brainly.com/question/29286039

#SPJ1

Given the function f(x) =3x^2-6x-9 is the point (1,-12) on the graph of f?

Answers

The point P ( 1 , -12 ) lies on the graph of the function f ( x ) = 3x² - 6x - 9

Given data ,

Let the function be represented as f ( x )

Now ,

Let the point be P ( 1 , -12 )

And , to determine if the point (1, -12) is on the graph of the function f(x) = 3x² - 6x - 9, we can substitute x = 1 and y = -12 into the equation and check if it satisfies the equation.

Plugging in x = 1 into the equation, we get:

f(1) = 3(1)² - 6(1) - 9

f(1) = 3 - 6 - 9

f(1) = -12

Hence , when x = 1, f(x) = -12. Since f(1) = -12 and the given point is (1, -12), the point (1, -12) does lie on the graph of the function f(x) = 3x² - 6x - 9

To learn more about function rule click :

https://brainly.com/question/3760195

#SPJ1

angles of a triangle

Answers

Answer:

x=70°

Step-by-step explanation:

angles on straight line add to 180 so...

180-120=60°

angles in triangle add to 180° so...

180°-50°-60°=70°

so x=70°

Using the graphs below, identify the constant of proportionality

Answers

The constant of proportionality for the graph given can be found to be 2 / 3.

How to find the constant of proportionality ?

A fixed numerical quantity that links two variables exhibiting direct proportionality is referred to as the constant of proportionality. This implies that when two factors are directly proportional, a stable ratio exists between them. The same value defines this figure and is identified as the constant of proportionality.

Pick a point on the graph such as ( 3 , 2 ) and ( 6, 4 ), the constant of proportionality would be:

= Change in y / Change in x

= ( 4 - 2) / ( 6 - 3 )

= 2 / 3

Find out more on constant of proportionality at https://brainly.com/question/1835116

#SPJ1

Evaluate the integral by changing to spherical coordinates:

Answers

The value of evaluating the integral expression [tex]\int\limits^a_{-a} \int\limits^{\sqrt{a^2 - y^2}}_{-\sqrt{a^2 - y^2}} \int\limits^{\sqrt{a^2 -x^2 - y^2}}_{-\sqrt{a^2 - x^2 - y^2}} (x^2z + y^2z + z^3) dz dx dy[/tex] is 0

Evaluating the integral using spherical coordinates

Given that

[tex]\int\limits^a_{-a} \int\limits^{\sqrt{a^2 - y^2}}_{-\sqrt{a^2 - y^2}} \int\limits^{\sqrt{a^2 -x^2 - y^2}}_{-\sqrt{a^2 - x^2 - y^2}} (x^2z + y^2z + z^3) dz dx dy[/tex]

To change to spherical coordinates, we need to express x, y, and z in terms of spherical coordinates: r, θ, and Φ .

In particular, we have

[tex]x &= r \sin\phi \cos\theta, \\y &= r \sin\phi \sin\theta, \\z &= r \cos\phi[/tex]

The Jacobian for the transformation is r² sin(Φ), and the limits of integration become

[tex]-a &\leq x \leq a \quad \Rightarrow \quad 0 \leq r \leq a, \\-\sqrt{a^2 - y^2} &\leq y \leq \sqrt{a^2 - y^2} \quad \Rightarrow \quad 0 \leq \phi \leq \frac{\pi}{2}, \\-\sqrt{a^2 - x^2 - y^2} &\leq z \leq \sqrt{a^2 - x^2 - y^2} \quad \Rightarrow \quad 0 \leq \theta \leq 2\pi.[/tex]

Substituting into the integral, we have

[tex]&\int_{0}^{a} \int_{0}^{\frac{\pi}{2}} \int_{0}^{2\pi} (r^2\sin^2\phi\cos\theta\cdot r\cos\phi + r^2\sin^2\phi\sin\theta\cdot r\cos\phi + r^3\cos^3\phi) r^2 \sin\phi,d\theta d\phi dr \[/tex]

[tex]&\quad = \int_{0}^{a} \int_{0}^{\frac{\pi}{2}} \int_{0}^{2\pi} (r^3\sin^2\phi\cos\theta\cos\phi + r^3\sin^2\phi\sin\theta\cos\phi + r^3\cos^3\phi) \sin\phi, d\theta d\phi dr[/tex]

[tex]&\quad = \int_{0}^{a} \int_{0}^{\frac{\pi}{2}} \int_{0}^{2\pi} r^3\sin\phi\cos\phi (\sin^2\phi\cos\theta + \sin^2\phi\sin\theta + \cos^2\phi) , d\theta d\phi dr \[/tex]

[tex]&\quad = \int_{0}^{a} \int_{0}^{\frac{\pi}{2}} \int_{0}^{2\pi} r^3\sin\phi\cos\phi (\sin^2\phi + \cos^2\phi) , d\theta d\phi dr \[/tex]

[tex]&\quad = \int_{0}^{a} \int_{0}^{\frac{\pi}{2}} \int_{0}^{2\pi} r^3\sin\phi\cos\phi, d\theta d\phi dr \[/tex]

[tex]&\quad = \int_{0}^{a} \int_{0}^{\frac{\pi}{2}} 0, d\theta d\phi dr \&\quad = 0[/tex]

Therefore, the value of the integral is 0.

Read more about derivatives at

https://brainly.com/question/5313449

#SPJ1

csc²x+cot²x/csc⁴x-cot⁴x=1

Answers

By putting the value it proved that csc²x+cot²x/csc⁴x-cot⁴x=1

What is Trigonometry mean ?

Trigonometry is a branch of mathematics that studies relationships between the sides and angles of triangles. Trigonometry is found all throughout geometry, as every straight-sided shape may be broken into as a collection of triangles.There are six type of Trigonometry

According to question,

we have prove that

(csc²x + cot²x) / (csc⁴x - cot⁴x) = 1

Now by manipulating the left-hand side of the equation using trigonometric identities.

Then, we can simplify the denominator using the identity:

a² - b² = (a + b)(a - b)

In this case we get , a = csc²x and b = cot²x, so:

csc⁴x - cot⁴x = (csc²x + cot²x)(csc²x - cot²x)

By substituting this expression into the given equation, we get:

(csc²x + cot²x) / [(csc²x + cot²x)(csc²x - cot²x)] = 1

By solving the numerator, we get:

1 / (csc²x - cot²x) = 1

Now, we can use the identity:

csc²x - cot²x = 1 / sin²x - cos²x / sin²x

= (1 - cos²x) / sin²x

= sin²x / sin²x

= 1

Substituting this expression back into the equation, we get:

1 / 1 = 1

Hence, we have proved that:

(csc²x + cot²x) / (csc⁴x - cot⁴x) = 1.

Learn more about Types of Trigonometry here

https://brainly.com/question/30283045

#SPJ1

2. A life insurance company will pay out $30,000 if a client dies, $10,000 if they are disabled, and $0 otherwise. The company's databases suggest that 1 out of 1,000 of its clients will die and 1 out of 250 of its clients will become disabled within the next year. To figure out how much to charge customers for each policy, they must figure out how much money they expect to lose per policy. Find the mean and standard deviation of the amount of money the insurance company can expect to lose on each policy.​

Answers

The mean amount of money the insurance company can expect to lose on each policy is $142.00 with a standard deviation of $1,243.67.

What is an insurance?

Let X be the random variable representing the amount of money the insurance company will lose on a policy. Then we can calculate the expected value (mean) of X and the standard deviation of X as follows:

Expected value:

E(X) = 30,000(1/1,000) + 10,000(1/250) + 0(1 - 1/1,000 - 1/250) = $142.00

The first term in the sum corresponds to the probability of a client dying (1/1,000) multiplied by the payout ($30,000), the second term corresponds to the probability of a client becoming disabled (1/250) multiplied by the payout ($10,000), and the third term corresponds to the probability of neither event occurring (1 - 1/1,000 - 1/250).

Standard deviation:

To calculate the standard deviation, we need to find the variance of X first:

Var(X) = [30,000 - E(X)]²(1/1,000) + [10,000 - E(X)]²(1/250) + [0 - E(X)]²(1 - 1/1,000 - 1/250)

= $1,547,797.56

The first term in the sum corresponds to the squared difference between the payout for a client dying and the expected payout, multiplied by the probability of a client dying, and so on for the second and third terms.

Then, we can take the square root of the variance to find the standard deviation:

SD(X) = √[Var(X)] = $1,243.67

Therefore, the mean amount of money the insurance company can expect to lose on each policy is $142.00 with a standard deviation of $1,243.67.

To know more about insurance, visit:

https://brainly.com/question/28015669

#SPJ1

The skid marks for a car involved in an accident measured 150ft. Use the formula s=24d−−−√ to find the speed s, in feet per second, of the car before the brakes were applied.

Answers

I’ll answer this later

The speed s, in feet per second, of the car before the brakes were applied is,

⇒ s = 67.5 m/s

What is Multiplication?

To multiply means to add a number to itself a particular number of times. Multiplication can be viewed as a process of repeated addition.

Given that;

Skid mark for the car = 150 ft

And, given equation of speed and distance is,

⇒ s = √24d

Where, d is the distance

And, s is the speed  

Hence, We get;

s = √ 24 × 150

s = √3600

s = 60 m/s

Thus, The speed of the car before it stop is equal to s = 60 m/s

Learn more about the multiplication visit:

https://brainly.com/question/10873737

#SPJ2

A particle moves along the x-axis so that at any time t >= 0 its position is given by x(t)= 1/2(a - t)^2, where a is a positive constant. For what values of t is the particle moving to the right?

Answers

If will be positive if:

-24(a-t) > 0

-(a-t) > 0

-a + t > 0

t > a

How to solve

Using derivatives, it is found that the particle is moving to the right for t > a , that is, values of t in the interval (a, ∞)

A particle is moving to the right if its velocity is positive.

The position of the particle is given by:

x(t) = 12(a -t)^2

The velocity is the derivative of the position, hence:

v(t) = -24(a-t)

If will be positive if:

-24(a-t) > 0

-(a-t) > 0

-a + t > 0

t > a

Read more about derivatives here:

https://brainly.com/question/28376218

#SPJ1

Janelys has a bag of candy full of 15 strawberry chews and 5 cherry chews that
she eats one at a time. Which word or phrase describes the probability that
she reaches in without looking and pulls out a strawberry chew?

Answers

The word that describes the probability that Janelys reaches in without looking and pulls out a strawberry chew is "the probability of selecting a strawberry chew randomly from the bag".

Calculating the phrase of the probability

The word or phrase that describes the probability of pulling out a strawberry chew without looking is "the probability of selecting a strawberry chew at random" or "the probability of picking a strawberry chew by chance".

This probability is calculated by dividing the number of strawberry chews in the bag by the total number of chews in the bag, since each chew is equally likely to be selected.

In this case, there are 15 strawberry chews and 5 cherry chews, so the probability of selecting a strawberry chew at random is 15/(15+5) or 3/4, which is approximately 0.75 or 75%.

Read more about probability at

https://brainly.com/question/251701

#SPJ1

What is the simplest form of the expression? 6x - 4y - 2x /2

Answers

The simplest form of the expression 6x - 4y - 2x / 2 is 5x - 4y.

What is Simplest form?

In mathematics, simplest form refers to the expression that has been simplified or reduced as much as possible. This means that no further simplification or reduction can be done without changing the value of the expression.

The expression 6x - 4y - 2x / 2 can be simplified using the order of operations (PEMDAS) as follows:

6x - 4y - 2x / 2

= 6x - 4y - x (since 2x / 2 = x)

= 5x - 4y

Therefore, the simplest form of the expression 6x - 4y - 2x / 2 is 5x - 4y.

To learn more about Simplest form visit the link:

https://brainly.com/question/564834

#SPJ1

simplify the expression using distributive property 5(3g - 5h)​

(Also if it says college Its not, I had set it to middle but it changed)

Answers

Answer: 15g-25h

Step-by-step explanation:

To use distributive property, you multiply 5x3g individually, and then 5x-5h individually.

You then add them.

So:

5(3g-5h)

=15h-25j

Step by step solution
5(3g - 5h)
= (5) (3g + - 5h)
= (5) (3g) + - (5) (-5h)

Answer:
15g - 25h

A construction worker throws a water bottle out of the basement to his friend, who did not catch it. The equation below can be used to determine h, the height of the bottle in feet, base on t, the time in seconds since the bottle was thrown. h=-16t^2+56t-24
When is the height of the thrown bottle equal to 0?

Answers

The height of the thrown bottle becomes zero at the t = 1/2 that is half a second and at t = 3 seconds

How do you form an equation?

An equation is formed by expressing the relationship between two or more mathematical expressions. It can be formed by using mathematical symbols, operations, and variables. Typically, equations are used to solve problems or find unknown quantities by setting up an equation that represents the problem and then manipulating the equation using algebraic operations until the solution is obtained. For example, to solve the equation 2x + 3 = 7, you would use algebraic operations to isolate the variable x on one side of the equation, giving you the solution x = 2.

To find when the height of the thrown bottle is equal to 0, we need to solve the given equation:

h = -16t² + 56t - 24 = 0

Takin -8 common out we get,

-8(2t² - 7t + 3) = 0

Now we can use the zero product property, which states that if the product of two factors is equal to zero, then at least one of the factors must be zero:

-8 = 0 or 2t² - 7t + 3 = 0

But -8 ≠ 0, so we only possible one is,

2t² - 7t + 3 = 0

(2t - 1)(t - 3) = 0

Using the zero product property, we get,

2t - 1 = 0 or t - 3 = 0

Solving for t we get,

t = 1/2 or t = 3

Therefore, the height of the thrown bottle is equal to 0 at t = 1/2 seconds and t = 3 seconds.

To know more about equations visit:

brainly.com/question/29538993

#SPJ1

The height of the thrown bottle becomes zero at the t = 1/2 that is half a second and at t = 3 seconds

How do you form an equation?

An equation is formed by expressing the relationship between two or more mathematical expressions. It can be formed by using mathematical symbols, operations, and variables. Typically, equations are used to solve problems or find unknown quantities by setting up an equation that represents the problem and then manipulating the equation using algebraic operations until the solution is obtained. For example, to solve the equation 2x + 3 = 7, you would use algebraic operations to isolate the variable x on one side of the equation, giving you the solution x = 2.

To find when the height of the thrown bottle is equal to 0, we need to solve the given equation:

h = -16t² + 56t - 24 = 0

Takin -8 common out we get,

-8(2t² - 7t + 3) = 0

Now we can use the zero product property, which states that if the product of two factors is equal to zero, then at least one of the factors must be zero:

-8 = 0 or 2t² - 7t + 3 = 0

But -8 ≠ 0, so we only possible one is,

2t² - 7t + 3 = 0

(2t - 1)(t - 3) = 0

Using the zero product property, we get,

2t - 1 = 0 or t - 3 = 0

Solving for t we get,

t = 1/2 or t = 3

Therefore, the height of the thrown bottle is equal to 0 at t = 1/2 seconds and t = 3 seconds.

To know more about equations visit:

brainly.com/question/29538993

#SPJ1

Trigonometry Question

Answers

Answer:  To show that the equation "3sin () tan () = 5cos () - 2" is equivalent to the equation "(4 cos() - 3)(2 cos () + 1) = 0", we need to simplify the first equation and check if it has the same solutions as the second equation.

Starting with the first equation:

3sin () tan () = 5cos () - 2

Using the identity tan () = sin () / cos (), we can write:

3sin () (sin () / cos ()) = 5cos () - 2

Multiplying both sides by cos (), we get:

3sin^2 () = (5cos () - 2)cos ()

Using the identity sin^2 () + cos^2 () = 1 and rearranging, we get:

3(1 - cos^2 ()) = 5cos^2 () - 2cos ()

Expanding and rearranging, we get:

5cos^2 () - 2cos () - 3 + 3cos^2 () = 0

Simplifying, we get:

8cos^2 () - 2cos () - 3 = 0

Now, we can use the quadratic formula to solve for cos ():

cos () = [2 ± sqrt(2^2 - 4(8)(-3))]/(2(8))

cos () = [2 ± sqrt(100)]/16

cos () = (1/4) or (-3/8)

Substituting these values back into the original equation, we can verify that they satisfy the equation.

Now, let's consider the second equation:

(4 cos() - 3)(2 cos () + 1) = 0

This equation is satisfied when either 4cos() - 3 = 0 or 2cos() + 1 = 0.

Solving for cos() in the first equation, we get:

4cos() - 3 = 0

cos() = 3/4

Substituting this value back into the original equation, we can verify that it satisfies the equation.

Solving for cos() in the second equation, we get:

2cos() + 1 = 0

cos() = -1/2

Substituting this value back into the original equation, we can also verify that it satisfies the equation.

Therefore, we have shown that the equation "3sin () tan () = 5cos () - 2" is equivalent to the equation "(4 cos() - 3)(2 cos () + 1) = 0".

Other Questions
A silicon wafer is covered by an SiO2 film 0.3 m thick. a. What is the time required to increase the thickness by 0.5 m by oxidation in H2O at 1200C? b. Repeat for oxidation in dry O2 at 1200C. Show that it is only the horizontal portion of the circuit board wire that contributes to the vertical magnetic force. In other words, show that the vertical portion of the wire does not vary the weight of the magnet assembly. what proportion of observed variation in removal efficiency can be attributed to the model relationship? the buret used to contain the HCl was wet with plain water before the HCl was added to it. Would the molarity of the NaOH be higher or lower as a result, or would there be no effect? Why? For the demand functionq = d(x) = 800 - x; find the following. a) The elasticity b) The elasticity at x = 3 in nmr spectroscopy, what are the advantages of using a magnet with as great a field strength as possible? a beam of light that is parallel to the optical axis (also known as the principal axis) is incident on a concave mirror. what happens to the reflected beam of light? Which bone of the axial skeleton joins with the hip bones of the appendicular skeleton? (Module 7.13A) O 5th lumbar vertebra ococcyx O axis O 12th thoracic vertebra O sacrum Submit Request Answer Provide Feedback 75% of flights arriving in Memphis are on time if the FAA Selects 60 random flights what is the probability that more than 80% of a simple flights are on time? Write a letter to your friend living abroad describing your role, your teachers' role and your school administration's role to improve your studies. find the area of the shaded region round to the nearest hundredth where necessary 23.8 21 15 A soft, silvery-white metal combines with a yellow gas to form a white crystal-like solid. What can be said about this change? The change is a physical change because the yellow gas changed into a solid. The change is a physical change because a new substance was not formed. The change is not a physical change because the color of the metal changed. The change is not a physical change because a new substance was formed First Read: Comprehension Identify the choice that best answers the question. In the selection from Mom & Me & Mom, Maya begins to get to know her mother. Which of the following is the most important lesson Maya learns from her mother at this time? A. She learns that people can never change their ways. B. She learns that her mother will always love Bailey more. C. She learns that being kind to other people can be very satisfying. D. She learns that dancing and singing to music can make you happy. Consider the following table.Weekly hours workedProbability1-30 (average=23)0.0831-40 (average=36)0.1041-50 (average=43)0.7451 and over (average=54)0.08Find the mean of this variable.O 41.6O 39.0O 31.8O 25.2 Write a function called rangeSum that takes two integers, and returns the sum of all integers from the first to the second, inclusive. I havent defined what the function will do if the second argument is larger, like for the case of rangeSum 5 3 . What would be sensible behaviour here? a stock has a beta of 1.17, the expected return on the market is 11.1 percent, and the risk-free rate is 4.9 percent. what must the expected return on this stock be? Consider the amplifier shown below. a) Draw the corresponding small signal model at high frequencies (with capacitors modeled as short circuits). b) Using the small signal model, perform small signal analysis and determine the voltage gain. Show your work! You may assume that the transistor has the following small signal parameters: gm = 0.032, rn = 3125, ro = 125K. When resistors combine in parallel, you may assume that one is much larger than another if it is 20 times bigger. 10V 10V 10V 4K 6K w HA VOQ =6.8 V 104k VinQ = 1.5 Ca HE w TI 2K 23k 1.2K Cb Let's count ternary digit strings, that is, strings in which each digit can be 0, 1, or 2. a. How many ternary digit strings contain exactly n digits? b. How many ternary digit strings contain exactly n digits and n 2's. c. How many ternary digit strings contain exactly n digits and n - 1 2's. When Caroline runs the 400 meter dash, her finishing times are normally distributed with a mean of 68 seconds and a standard deviation of 1.5 seconds. Using the empirical rule, determine the interval of times that represents the middle 99.7% of her finishing times in the 400 meter race. The balanced chemical equation for the combustion of hydrogen and oxygen to give water is 2 H2 + O2 --> 2 H2OComplete the following sentence to describe the number of moles of each reactant involved in the combustion of hydrogen:___ moles of hydrogen react with ___ moles of oxygen to give moles of water