Mr. Stevenson wants to cover the patio with concrete sealer. What is the area he will need to cover with concrete sealer? Find the approximation using 3.14

Answers

Answer 1

Mr. Stevenson will need to cover approximately 314 square feet of the patio with concrete sealer.

How to solve

To calculate the area of a circle, we can use the formula:

Area = π * r^2

where π (pi) is around 3.14, and r is the radius of the circle. In this example, the radius is 10 feet.

Area = 3.14 * (10 ft)^2

Area = 3.14 * 100 sq ft

Area ≈ 314 sq ft

So, Mr. Stevenson will need to cover approximately 314 square feet of the patio with concrete sealer.

Read more about area here:

https://brainly.com/question/25292087

#SPJ1

What is the area of a circular patio with a radius of 10 feet, using the approximation of pi as 3.14?


Related Questions

Use the given information to find the exact value of a. sin 2 theta, b. cos 2 theta, and c. tan 2 theta. cos theta = 21/29, theta lies in quadrant IV a. sin 2 theta =

Answers

The values we have found, we get:

a. sin(2theta) = 2(-20/29)(21/29) = -840/841

b. cos(2theta) = (21/29)² - (-20/29)² = 441/841 - 400/841 = 41/841

c. tan(2theta) = (2(-20/29))/(1 - (-20/29)²) = 40/9

What is trigonometry?

Trigonometry is a branch of mathematics that deals with the relationships between the sides and angles of triangles.

Since cos(theta) is positive and lies in quadrant IV, we know that sin(theta) is negative. We can use the Pythagorean identity to find sin(theta):

sin²(theta) + cos²(theta) = 1

sin²(theta) = 1 - cos²(theta)

sin(theta) = -sqrt(1 - cos²(theta))

Substituting cos(theta) = 21/29, we get:

sin(theta) = -sqrt(1 - (21/29)²) = -20/29

Now, we can use the double angle formulas to find sin(2theta), cos(2theta), and tan(2theta):

sin(2theta) = 2sin(theta)cos(theta)

cos(2theta) = cos²(theta) - sin²(theta)

tan(2theta) = (2tan(theta))/(1 - tan²(theta))

Substituting the values we have found, we get:

a. sin(2theta) = 2(-20/29)(21/29) = -840/841

b. cos(2theta) = (21/29)² - (-20/29)² = 441/841 - 400/841 = 41/841

c. tan(2theta) = (2(-20/29))/(1 - (-20/29)²) = 40/9

To learn more about trigonometry from the given link:

https://brainly.com/question/29002217

#SPJ1

in computing the determinant of the matrix A= [ -9 -10 10 3 0]0 1 0 9 -3-7 -3 1 0 -50 7 9 0 20 9 0 0 0by cofactor expansion, which, row or column will result in the fewest number of determinants that need to be computer in the second step?Row 5Column 1 Column 4 Column 2 Row 1

Answers

Therefore, we can use cofactor expansion along column 3 to calculate the determinant of matrix A.

The determinant of a 5x5 matrix can be calculated by expanding along any row or column. However, we can try to minimize the number of determinants that need to be computed in the second step by selecting the row or column with the most zeros.

In this case, we can see that column 3 has three zeros, which means that expanding along this column will result in the fewest number of determinants that need to be computed in the second step. Therefore, we can use cofactor expansion along column 3 to calculate the determinant of matrix A.

To learn more about determinant visit:

https://brainly.com/question/13369636

#SPJ11

Find the general solution to the following system of equations by reducing the associated augmented matrix to row-reduced echelon form: 2x+y + 2z = 5 2x+2y + z = 5 4x + 3y + 3z=10 Also, find one particular solution to this system. Find the general solution to the matrix equation: 111 x° 10 1|y - 0 10 Z 0

Answers

We can see that the third equation gives us z = 0. Substituting this into the second equation gives us y = 0. Substituting z = 0 and y = 0 into the first equation gives us x = (1-y)/111 = -1/111. Thus, the general solution is:

[tex]\begin{aligned} x &= -1/111 \ y &= 0 \ z &= 0 \end{aligned}[/tex]

For the first system of equations, the associated augmented matrix is:

[tex]\begin{bmatrix} 2 & 1 & 2 & 5 \ 2 & 2 & 1 & 5 \ 4 & 3 & 3 & 10 \end{bmatrix}[/tex]

We perform elementary row operations to obtain the row-reduced echelon form:

[tex]\begin{bmatrix} 1 & 0 & 1/2 & 1 \ 0 & 1 & 1/2 & 2 \ 0 & 0 & 0 & 0 \end{bmatrix}[/tex]

From this, we see that the system has two free variables, say z and w. We can write the solution in terms of these variables as:

x = 1/2 - z/2 - w

y = 2 - z/2 - w

z = z

w = w

Thus, the general solution is:

[tex]\begin{aligned} x &= 1/2 - z/2 - w \ y &= 2 - z/2 - w \ z &= z \ w &= w \end{aligned}[/tex]

For a particular solution, we can set z and w to zero to obtain:

[tex]\begin{aligned} x &= 1/2 \ y &= 5/2 \ z &= 0 \ w &= 0 \end{aligned}[/tex]

Thus, one particular solution is:

[tex]\begin{aligned} x &= 1/2 \ y &= 5/2 \ z &= 0 \end{aligned}[/tex]

For the second matrix equation, we first write it in augmented form:

[tex]\begin{bmatrix} 111 & 10 & 1 \ 0 & 1 & y \ 0 & 0 & z \end{bmatrix}[/tex]

[tex]\begin{aligned} x &= -1/111 \ y &= 0 \ z &= 0 \end{aligned}[/tex]

Learn more about general solution visit: brainly.com/question/17004129

#SPJ4

if people are born with equal probability on each of the 365 days, what is the probability that three randomly chosen people have different birthdates?

Answers

The probability that three randomly chosen people have different birth date is 0.9918.

To calculate the probability that three randomly chosen people have different birthdates, we can first consider the probability that the second person chosen does not have the same birth day as the first person.

This probability is (364/365), since there are 364 possible birthdates that are different from the first person's birthdate, out of 365 possible birthdates overall.

Similarly, the probability that the third person chosen does not have the same birthdate as either of the first two people is (363/365), since there are now only 363 possible birthdates left that are different from the first two people's birthdates.

To find the overall probability that all three people have different birthdates, we can multiply these individual probabilities together:

(364/365) x (363/365) = 0.9918

So the probability that three randomly chosen people have different birth date is approximately 0.9918, or about 99.2%.

Learn more about probability here,

https://brainly.com/question/31370975

#SPJ11

The probability that three randomly chosen people have different birthdates is approximately 0.9918, or 99.18%.

The counting principle can be used to determine how many different birthdates can be selected from a pool of 365 potential dates. As we assume that people are born with equal probability on each of the 365 days of the year (ignoring leap years).

The first individual can be born on any of the 365 days. The second individual can be born on any of the remaining 364 days. The third individual can be born on any of the remaining 363 days. Therefore, the total number of ways to choose three different birthdates is:

365 x 364 x 363

Let's now determine how many different ways there are to select three birthdates that are not mutually exclusive (i.e., they can be the same). The number of ways to select three birthdates from the 365 potential dates is simply this:

365 x 365 x 365

Consequently, the likelihood that three randomly selected individuals have different birthdates is:

(365 x 364 x 363) / (365 x 365 x 365) ≈ 0.9918

Therefore, the likelihood is roughly 0.9918, or 99.18%.

To know more about Probability visit:

https://brainly.com/question/30034780

The point b is a reflection of point a across which axis?

Point b (7, 8) Point a (-7, -8).

A.The x-axis
B. The y-axis
C. The x-axis and then the y-axis

Answers

To find the reflection of point A (-7, -8) across an axis that results in point B (7, 8), we can observe that the x-coordinates of the two points have opposite signs, and the y-coordinates of the two points also have opposite signs. This suggests that point B is a reflection of point A across both the x-axis and the y-axis.

However, reflecting a point across the x-axis and then the y-axis is equivalent to reflecting the point across the origin. Therefore, point B is a reflection of point A across the origin.

So the correct option is:

C. The x-axis and then the y-axis

find the value of the constant c for which the integral ∫[infinity]0(xx2 1−c3x 1)dx converges. evaluate the integral for this value of c. c= value of convergent integral =

Answers

The value of the constant c for which the integral converges is c > 2.

The value of the convergent integral for this value of c is π/4c.

To find the value of the constant c for which the integral converges, we need to determine the range of values for c that makes the integral finite.

Using the limit comparison test, we compare the given integral with the integral ∫[infinity]0 xx^2 dx, which is known to converge.

lim x→∞ [(xx^2 1−c3x 1) / xx^2] = lim x→∞ [1/(x^(c-1))]

This limit converges if and only if c-1 > 1, or c > 2. Therefore, the integral converges for c > 2.

To evaluate the integral for this value of c, we need to use partial fractions.

(xx^2 1−c3x 1) = A/x + Bx + C/(x^2+1)

Multiplying both sides by x(x^2+1) and equating coefficients, we get

A = 0
B = -c/3
C = 1/2

Substituting these values into the partial fraction decomposition and integrating, we get

∫[infinity]0 (xx^2 1−c3x 1) dx = ∫[infinity]0 [-c/3 x + 1/2 (arctan x)] dx

Evaluating this integral from 0 to infinity, we get

-c/6 [x^2]0∞ + 1/2 [arctan x]0∞ = π/4c

Therefore, the value of the constant c for which the integral converges is c > 2, and the value of the convergent integral for this value of c is π/4c.

To learn more about integrals visit : https://brainly.com/question/22008756

#SPJ11

The value of the constant c for which the integral converges is c > 2.

The value of the convergent integral for this value of c is π/4c.

To find the value of the constant c for which the integral converges, we need to determine the range of values for c that makes the integral finite.

Using the limit comparison test, we compare the given integral with the integral ∫[infinity]0 xx^2 dx, which is known to converge.

lim x→∞ [(xx^2 1−c3x 1) / xx^2] = lim x→∞ [1/(x^(c-1))]

This limit converges if and only if c-1 > 1, or c > 2. Therefore, the integral converges for c > 2.

To evaluate the integral for this value of c, we need to use partial fractions.

(xx^2 1−c3x 1) = A/x + Bx + C/(x^2+1)

Multiplying both sides by x(x^2+1) and equating coefficients, we get

A = 0
B = -c/3
C = 1/2

Substituting these values into the partial fraction decomposition and integrating, we get

∫[infinity]0 (xx^2 1−c3x 1) dx = ∫[infinity]0 [-c/3 x + 1/2 (arctan x)] dx

Evaluating this integral from 0 to infinity, we get

-c/6 [x^2]0∞ + 1/2 [arctan x]0∞ = π/4c

Therefore, the value of the constant c for which the integral converges is c > 2, and the value of the convergent integral for this value of c is π/4c.

To learn more about integrals visit : https://brainly.com/question/22008756

#SPJ11

Cigarette Consumption Data: A national insurance organization wanted to study the consumption pattern of cigarettes in all 50 states and the District ofColumbia. The variables chosen for the study are given in Table 3.16. The data from 1970 are given in Table 3.17. The states are given in alphabetical order.In (a)(b) below, specify the null and alternative hypotheses, the test used, and your conclusion using a 5% level of significance.a).Test the hypothesis that the variable Female is not needed in the regression equation relating Sales to the six predictor variables.b).Test the hypothesis that the variables Female and HS are not needed in the above regression equation.c).Compute the 95% confidence interval for the true regression coefficient of the variable Income.d)What percentage of the variation in Sales can be accounted for when Income is removed from the above regression equation? Explain.e)What percentage of the variation in Sales can be accounted for by thethree variables: Price, Age, and Income? Explain.f)What percentage of the variation in Sales that can be accounted for by the variable Income, when Sales is regressed on only Income? Explain.

Answers

(a) Null hypothesis: The variable Female is not significant in the regression equation relating Sales to the six predictor variables.

Alternative hypothesis: The variable Female is significant in the regression equation relating Sales to the six predictor variables.

Test used: F-test

Conclusion: At a 5% level of significance, the F-statistic is less than the critical value. Therefore, we fail to reject the null hypothesis and conclude that the variable Female is not significant in the regression equation.

(b) Null hypothesis: The variables Female and HS are not significant in the regression equation relating Sales to the six predictor variables.

Alternative hypothesis: The variables Female and HS are significant in the regression equation relating Sales to the six predictor variables.

Test used: F-test

Conclusion: At a 5% level of significance, the F-statistic is greater than the critical value. Therefore, we reject the null hypothesis and conclude that the variables Female and HS are significant in the regression equation.

(c) The 95% confidence interval for the true regression coefficient of the variable Income can be computed using the t-distribution. The formula for the confidence interval is:

b1 ± t*(s / sqrt(SSx))

where b1 is the estimate of the regression coefficient, t is the t-value from the t-distribution with n-2 degrees of freedom and a 95% confidence level, s is the estimated standard error of the regression coefficient, and SSx is the sum of squares for the predictor variable.

Assuming that the assumptions for linear regression are met, we can use the output from the regression analysis to find the values needed for the formula. Let b1 be the estimate of the regression coefficient for Income, t be the t-value with 48 degrees of freedom and a 95% confidence level, s be the estimated standard error of the regression coefficient for Income, and SSx be the sum of squares for Income. Then the confidence interval for the true regression coefficient of the variable Income is:

b1 ± t*(s / sqrt(SSx))

(d) The percentage of the variation in Sales that can be accounted for when Income is removed from the regression equation can be found by comparing the sum of squares for the reduced model (without Income) to the total sum of squares for the full model (with all predictor variables). Let SSR1 be the sum of squares for the reduced model and SST be the total sum of squares for the full model. Then the percentage of variation in Sales that can be accounted for when Income is removed is:

(SSR1 / SST) * 100%

(e) The percentage of the variation in Sales that can be accounted for by the three variables Price, Age, and Income can be found by comparing the sum of squares for the full model with all six predictor variables to the sum of squares for the reduced model with only Price, Age, and Income as predictor variables. Let SSRf be the sum of squares for the full model and SSRr be the sum of squares for the reduced model. Then the percentage of variation in Sales that can be accounted for by the three variables is:

[(SSRr - SSRf) / SST] * 100%

(f) The percentage of the variation in Sales that can be accounted for by the variable Income when Sales is regressed on only Income can be found by comparing the sum of squares for the reduced model with only Income as a predictor variable to the total sum of squares for the full model with all predictor variables. Let SSRr be the sum of squares for the reduced model and SST be the total sum of squares for the full model. Then the percentage of variation in Sales that can be accounted for by Income is:

(SSRr / SST) * 100%

To learn more about Alternative visit:

https://brainly.com/question/29454589

#SPJ11

Calculate If Y has density function f(y) e-y y> 0 = LEP 0 y < 0 Find the 30th and 75th quantile of the random variable Y.

Answers

To find the 30th and 75th quantiles of the random variable Y, we first need to calculate the cumulative distribution function (CDF) of Y.

CDF of Y:
F(y) = ∫ f(y) dy from 0 to y (since f(y) = 0 for y < 0)
= ∫ e^(-y) dy from 0 to y
= -e^(-y) + 1

Now, to find the 30th quantile, we need to find the value y_30 such that F(y_30) = 0.3.
0.3 = -e^(-y_30) + 1
e^(-y_30) = 0.7
y_30 = -ln(0.7) ≈ 0.357

Similarly, to find the 75th quantile, we need to find the value y_75 such that F(y_75) = 0.75.
0.75 = -e^(-y_75) + 1
e^(-y_75) = 0.25
y_75 = -ln(0.25) ≈ 1.386

Therefore, the 30th quantile of Y is approximately 0.357, and the 75th quantile of Y is approximately 1.386.
Given the density function of Y as f(y) = e^(-y) for y > 0 and f(y) = 0 for y ≤ 0, we can find the 30th and 75th quantiles of the random variable Y.

First, let's find the cumulative distribution function (CDF) F(y) by integrating the density function f(y):

F(y) = ∫f(y)dy = ∫e^(-y)dy = -e^(-y) + C

Since F(0) = 0, C = 1. So, F(y) = 1 - e^(-y) for y > 0.

Now, we can find the quantiles by solving F(y) = p, where p is the probability:

1. For the 30th quantile (p = 0.3):

0.3 = 1 - e^(-y)
e^(-y) = 0.7
-y = ln(0.7)
y = -ln(0.7)

2. For the 75th quantile (p = 0.75):

0.75 = 1 - e^(-y)
e^(-y) = 0.25
-y = ln(0.25)
y = -ln(0.25)

So, the 30th quantile of the random variable Y is -ln(0.7), and the 75th quantile is -ln(0.25).

Visit here to learn more about cumulative distribution function brainly.com/question/30402457

#SPJ11

Evaluate the definite integral. (Give an exact answer. Do not round.) ∫3 0 e^2x dx

Answers

The value of the definite integral ∫(from 0 to 3) [tex]e^{(2x)[/tex] dx is [tex](1/2)(e^6 - 1).[/tex]

To evaluate the definite integral, you'll need to find the antiderivative of the function [tex]e^{(2x)[/tex] and then apply the limits of integration (0 to 3).

The antiderivative of  [tex]e^{(2x)[/tex] is [tex](1/2)e^{(2x)[/tex], since the derivative of [tex](1/2)e^{(2x)[/tex] with respect to x is [tex]e^{(2x)[/tex]. Now, you can apply the Fundamental Theorem of Calculus:

∫(from 0 to 3) [tex]e^{(2x)[/tex] dx = [tex][(1/2)e^{(2x)][/tex](from 0 to 3)

First, substitute the upper limit (3) into the antiderivative:

[tex](1/2)e^{(2*3)} = (1/2)e^6[/tex]
Next, substitute the lower limit (0) into the antiderivative:

[tex](1/2)e^{(2*0)} = (1/2)e^0 = (1/2)[/tex]

Now, subtract the result with the lower limit from the result with the upper limit:

[tex](1/2)e^6 - (1/2) = (1/2)(e^6 - 1)[/tex]

So, the exact value of the definite integral is:

[tex](1/2)(e^6 - 1)[/tex]

For more such questions on Definite integral.

https://brainly.com/question/31056014#

#SPJ11

Kite PQRS at the right is concave. If we have PQ = QR = 20, PS= SR= 15, and QS = 7, then what is the area of kite PQRS?

Answers

The area of Kite PQRS at the right is concave. If we have PQ = QR = 20, PS= SR= 15, and QS = 7 is  220 square units

How to find  the area of kite PQRS

First, we can find the length of the diagonal PR using the Pythagorean theorem:

PR² = PQ² + QR² = 20² + 20² = 800

PR = sqrt(800) ≈ 28.28

Similarly, we can find the length of the diagonal QS:

QS² = QR² + RS² = 20² + 15² = 625

QS = sqrt(625) = 25

Now, we can split the kite into two triangles, PQS and QRS, and use the formula for the area of a triangle:

area of PQS = (1/2) * PQ * QS = (1/2) * 20 * 7 = 70

area of QRS = (1/2) * QR * RS = (1/2) * 20 * 15 = 150

So the total area of the kite is:

area of PQRS = area of PQS + area of QRS = 70 + 150 = 220

Therefore, the area of kite PQRS is 220 square units

Learn more about kite at https://brainly.com/question/26870235

#SPJ1

the expression (3 8/2) (3 8/4) can be rewritten as 3k where k is a constant. what is the value of k

Answers

Using the associative property of multiplication on the given expression the value of k = 24.

What is the associative property of multiplication?

The associative property of multiplication is a property of numbers that states that the way in which numbers are grouped when they are multiplied does not affect the result. In other words, if you are multiplying more than two numbers together, you can group them in any way you like and the result will be the same.

Formally, the associative property of multiplication states that for any three numbers a, b, and c:

(a × b) × c = a × (b × c)

For example, consider the expression (2 × 3) × 4. Using the associative property of multiplication, we can group the first two numbers together or the last two numbers together and get the same result:

(2 × 3) × 4 = 6 × 4 = 24

2 × (3 × 4) = 2 × 12 = 24

According to the given information

We can simplify the expression (3 8/2) (3 8/4) as follows:

(3 8/2) (3 8/4) = (3×(8/2))×(3×(8/4)) (using the associative property of multiplication)

= (3×4)×(3×2) (simplifying the fractions)

= 12×6

= 72

Therefore, the expression (3 8/2) (3 8/4) is equal to 72. We are told that this expression can be rewritten as 3k, where k is a constant. So we have:

3k = 72

Dividing both sides by 3, we get:

k = 24

Therefore, the value of k is 24.

To know more about the associative property of multiplication visit:

brainly.com/question/28762453

#SPJ1

Answer: The value for k would be 24.

Step-by-step explanation: Using the associative property of multiplication on the given expression the value of k = 24. Formally, the associative property of multiplication states that for any three numbers a, b, and c: (a × b) × c = a × (b × c).

(3×4)×(3×2). If you solve this, you will then get 12×6. 12×6= 72. This therefore turns into 3k=72. Therefore you would have to isolate the k by dividing both sides by 3. This turns into k=24. This is why the value for k is 24.

Since A"(x) = -2 , , then A has an absolute maximum at x = 22. The other dimension of this rectangle is y = Thus, the dimensions of the rectangle with perimeter 88 and maximum area are as follows. (If both values are the same number, enter it into both blanks.) _____m (smaller value) ______m (larger value)

Answers

The dimensions of the rectangle with maximum area are x = 22 meters and y = 44 - x = 22 meters.

To find the dimensions of the rectangle with maximum area, we need to use the fact that the perimeter is 88. Let's use x to represent the length of the rectangle and y to represent the width.

We know that the perimeter is given by 2x + 2y = 88, which simplifies to x + y = 44.

We also know that the area of a rectangle is given by A = xy.

We are given that A"(x) = -2, which means that the second derivative of the area function is negative at x = 22. This tells us that the area function has a maximum at x = 22.

To find the corresponding value of y, we can use the fact that x + y = 44. Solving for y, we get y = 44 - x.

Substituting this into the area function, we get A(x) = x(44 - x) = 44x - x^2.

Taking the derivative, we get A'(x) = 44 - 2x.

Setting this equal to 0 to find the critical point, we get 44 - 2x = 0, which gives x = 22.

Therefore, the dimensions of the rectangle with maximum area are x = 22 meters and y = 44 - x = 22 meters.

To learn more about dimensions here:

brainly.com/question/18119030#

#SPJ11

Solve the system using substitution. Check your solution
4x-y=62
2y=x
The solution is _
(Simplify your answer. Type an integer or a simplified fraction. Type an ordered pair)

Answers

Refer to the photo taken. Comment any questions you may have.

The following table shows the Myers-Briggs personality preferences for a random sample of 400 people in the listed professions Extroverted ntroverted Occupation Clergy (all denominations) M.D. Lawyer Column Total Use the chi-square test to determine if the listed occupations and personality preferences are independent at alpha 0.1. Find the value of the chi-square statistic for the sample. Row Total 107 157 136 400 65 92 52 182 18
Select one:
a. 3.09 b. 13.99 C. 0.25 d. 12.01 e. 0.01 The following table shows the Myers-Briggs personality preferences for a random sample of 400 people in the listed professions Extroverted Occupation Clergy (all denominations) M.D. Lawyer Column Total Use the chi-square test to determine if the listed occupations and personality preferences are independent at the 0.01 level of significance. Find (or estimate) the P-value of the sample test statistic Introverted 91 81 216 Row Total 104 161 135 400 184 Select one:
a. 0.01 < P-value < 0.025
b. 0.10< P-Value0.25 C. 0.25 < P-Value <0.5 d. 0.005 < P-Value <0.01 e. 0.025 < P-Value < 0.05 The following table shows the Myers-Briggs personality preferences for a random sample of 409 people in the listed professions. xtroverted Introverted Occupation Clergy (all denominations) M.D Lawyer Column Total Use the chi-square test to determine if the listed occupations and personality preferences are independent at the 0.10 level of significance. Depending on the P-value, will you reject or fail to reject the null hypothesis of independence? Row Total 108 164 137 5 0 191 218 09 Select one a. Since the P-value is greater than α, we fail to reject the null hypothesis that the Myers-Briggs personality preference and profession are not independent. At 0.10 level of significance, we conclude that the Myers-Briggs personality preference and profession are independent. Since the P-value is greater than α, we reject the null hypothesis that the Myers-Briggs personality preference and profession are not independent. At 0.10 level of significance, we conclude that the Myers-Briggs personality preference and profession are independent. C. Since the P-value is less than α, we fail to reject the null hypothesis that the Myers-Briggs personality preference and profession are independent. At 0.10 level of significance, we conclude that the Myers-Briggs personality preference and profession are not independent. O d. Since the P-value is less than α, we reject the null hypothesis that the Myers Briggs personality preference and profession are independent. At 0.10 level of significance, we conclude that the Myers-Briggs personality preference and profession are not independent. e. Since the P-value is greater than α, we fail to reject the null hypothesis that the Myers-Briggs personality preference and profession are independent. At 0.10 level of significance, we conclude that the Myers-Briggs personality preference and profession are not independent.

Answers

For the first question, we need to find the chi-square statistic value. Using the given table, we can calculate the expected frequencies and then use the chi-square formula to get the value.

The calculated chi-square value is 13.99. Since alpha is 0.1, we compare this value to the critical chi-square value at 2 degrees of freedom (since we have 2 rows and 3 columns), which is 4.605. Since the calculated value is greater than the critical value, we reject the null hypothesis that the listed occupations and personality preferences are independent.


For the second question, we need to find the P-value of the sample test statistic. Using the given table, we can calculate the expected frequencies and then use the chi-square formula to get the chi-square value. The calculated chi-square value is 6.27. Since we have 2 degrees of freedom, we can find the P-value using a chi-square distribution table or calculator. The calculated P-value is 0.043, which is less than alpha (0.01). Therefore, we reject the null hypothesis that the listed occupations and personality preferences are independent.



For the third question, we need to find the P-value of the sample test statistic and then determine whether to reject or fail to reject the null hypothesis. Using the given table, we can calculate the expected frequencies and then use the chi-square formula to get the chi-square value.

The calculated chi-square value is 3.39. Since we have 2 degrees of freedom, we can find the P-value using a chi-square distribution table or calculator. The calculated P-value is 0.183, which is greater than alpha (0.1). Therefore, we fail to reject the null hypothesis that the listed occupations and personality preferences are independent at the 0.10 level of significance.

To know more about value click here

brainly.com/question/30760879

#SPJ11

Solve this. f(x, y) = 8y cos(x), 0 ≤ x ≤ 2.

Answers

To solve the equation f(x, y) = 8y cos(x), 0 ≤ x ≤ 2, means to find the values of y that satisfy the equation for each given value of x between 0 and 2. To do this.

we can isolate y by dividing both sides by 8cos(x): f(x, y)/(8cos(x)) = y So the solution for y is y = f(x, y)/(8cos(x)), for any given value of x between 0 and 2. you'll want to evaluate the function within this range of x values. However, since the function has two variables (x and y), we cannot provide a unique solution without additional constraints or information about the variable y.

To know more about variable click here

brainly.com/question/2466865

#SPJ11

an experiment consists of four outcomes with p(e1) = .2, p(e2) = .3, and p(e3) = .4. the probability of outcome e4 is _____.a. .900b. .100c. .024d. .500

Answers

The probability of outcome e4 is 0.1, which means the option (b). 0.100 is the correct answer.

To comprehend this response, keep in mind that the total probability for all outcomes in an experiment must equal 1. We now know the probability for e1, e2, and e3, which total 0.9 (0.2 + 0.3 + 0.4 = 0.9). Because the total of probabilities must equal one, we may remove 0.9 from one to get the chance of e4. As a result, the likelihood of e4 is 0.1 (1 - 0.9 = 0.1).

In other words, there are four possible outcomes in this experiment, with probabilities 0.2, 0.3, 0.4, and an unknown for e4. We may multiply the known probabilities by 0.9, leaving 0.1 for e4. This means that there is a 10% chance of outcome e4 occurring in this experiment.

To learn more about Probability, visit:

https://brainly.com/question/13604758

#SPJ11

Evaluate square roots and cube root simplify each expression

Answers

The square root and cube root of the given expression are:  √(16) = 4 ,∛O = 0, √(1) = 1

√(64) = 8× 8 √(144) = 12 × 12 = 144 --- 12√(100) = 10 × 10----- 10 √169 = 13 × 13---- 13 ∛8 = 2× 2×2 ----- 2√(49) = 7× 7----- 7∛27 = 3 × 3×3----- 3∛125 = 5 × 5×5----- 5√(121) = 11× 11------- 11∛ 64= 4× 4 ×4----- 4√(400) =20 × 20----- 20√(36) =6× 6----- 6

Give an explanation of the square and cube roots:

To find the square root of an integer, you need to find a number that, when multiplied by itself, equals the original number. As such, you really want to distinguish the number that, when duplicated without anyone else, approaches 25, to decide the square foundation of that number. Subsequently, 5 is the square base of 25.

To determine the cube root of an integer, you must find a number that, when multiplied twice by itself, equals the original number.

Learn more about square root:

brainly.com/question/428672

#SPJ1

Electricity Company: Discount Power
Write a verbal description (word problem) for
this electricity company:
Complete the graph to represent the cost for
this electricity company. Choose appropriate
axis intervals and labels.
Complete the table to represent the cost for
this electricity company. Label each column
and choose the appropriate intervals.
Write an algebraic equation to represent the
costs for this electricity company

Answers

The word problem for the company is:

An electricity company charges its customers a monthly service fee of $3.50 plus 8.3 cents per kWH. Find the total cost for a month if 250kW is used.

What is a Word Problem?

A word problem is a mathematical problem presented in the form of a story or a narrative, usually involving real-world scenarios or situations.

Word problems often require the use of arithmetic, algebra, geometry, or other mathematical concepts and methods to find a solution. They can range in complexity from simple arithmetic problems to multi-step equations involving multiple variables.

Read more about word problems here:

https://brainly.com/question/21405634

#SPJ1

1.
Find the missing side length. Round to the nearest
tenth if needed.
4
3

Answers

The missing side length. Round to the nearest tenth if needed is 10.2

How to determine the missing ?

Let the length of the missing side = "s" Applying the Pythagorean theorem to this right triangle gives:

4^2 + s^2 = 11^2  

 => 16 + s^2 = 121      

=>     ( 4*4 = 16, 11*11 = 121)

16 - 16  + s^2 = 121 - 16 =>     (subtract 16 from both sides)

s^2 = 105 =>

x = sqrt (105) which is approximately 10.2

Therefore the missing length is 10.2 units

Learn more about Pythagoras theorem on https://brainly.com/question/343682

#SPJ1

Pls help (part 4)
Give step by step explanation!

Answers

Larissa will need 289.665 cm³ of ceramic to make the pen holder.

How to calculate the value

It should be noted that the volume of the inner cylinder will be:

V = πr²h

= 3.14 * (3.5 cm)^2 * 9 cm

= 346.185 cm³

The volume of the ceramic used is the difference between the volumes of the outer and inner cylinders:

V of ceramic = V outer - V inner

= 635.85 cm^3 - 346.185 cm^3

= 289.665 cm³

Larissa will need 289.665 cm³ of ceramic to make the pen holder.

Learn more about volume on

https://brainly.com/question/27710307

#SPJ1

1/2 Marks
Find the gradients of lines A and B.

Answers

Answer:

Line A = 3

Line B = - 1

Step-by-step explanation:

To find the gradient, you need two points on a line right. The formula for gradient is

[tex] \frac{y2 - y1}{x2 - x1} [/tex]

So on line A, try to find 2 points (coordinates)

You have (-2,1) , (-1,4) , (0,7)

Choose any two

Let's say (-1,4) and (0,7)

Gradient =

[tex] \frac{7 - 4}{0 - - 1} = \frac{3}{1} = 3[/tex]

Gradient of line A is 3

For line B, let's take (1,7) and (2,6)

Gradient =

[tex] \frac{7 - 6 }{1 - 2} = \frac{1}{ - 1} = - 1[/tex]

Gradient of line B = - 1

Two golf balls are hit into the air at 66 feet per second ​( ​45 mi/hr), making angles of 35​° and 49​° with the horizontal. If the ground is​ level, estimate the horizontal distance traveled by each golf ball.

Answers

Answer:

Therefore, the estimated horizontal distance traveled by each golf ball is 122.4 feet and 147.7 feet, respectively.

Step-by-step explanation:

We can use the following kinematic equations to solve this problem:

Horizontal distance (d) = initial velocity (v) x time (t) x cosine(theta)

Vertical distance (h) = initial velocity (v) x time (t) x sine(theta) - (1/2) x acceleration (a) x time (t)^2

We know that the initial velocity is 66 feet per second for both golf balls, and the angles made by the golf balls with the horizontal are 35​° and 49​°. We also know that the acceleration due to gravity is 32.2 feet per second squared.

For the first golf ball, the angle with the horizontal is 35​°, so the horizontal distance traveled can be estimated as:

d = v x t x cos(theta)

d = 66 x t x cos(35​°)

For the second golf ball, the angle with the horizontal is 49​°, so the horizontal distance traveled can be estimated as:

d = v x t x cos(theta)

d = 66 x t x cos(49​°)

To find the time (t) for each golf ball, we can use the fact that the vertical distance traveled by each golf ball will be zero at the highest point of its trajectory. Therefore, we can set the vertical distance equation equal to zero and solve for time:

0 = v x t x sin(theta) - (1/2) x a x t^2

t = 2v x sin(theta) / a

Substituting the values for each golf ball, we get:

For the first golf ball:

t = 2 x 66 x sin(35​°) / 32.2 = 2.38 seconds

d = 66 x 2.38 x cos(35​°) = 122.4 feet

For the second golf ball:

t = 2 x 66 x sin(49​°) / 32.2 = 3.05 seconds

d = 66 x 3.05 x cos(49​°) = 147.7 feet

Therefore, the estimated horizontal distance traveled by each golf ball is 122.4 feet and 147.7 feet, respectively.

Answer:
La primera pelota recorrió una distancia horizontal de 128.44 pies y la segunda pelota recorrió una distancia horizontal de 125.93 pies.

Step-by-step explanation:

Primero, vamos a calcular la componente horizontal de la velocidad inicial. Para ello, utilizaremos la fórmula:

Vx = V0 * cos(θ)

donde V0 es la velocidad inicial y θ es el ángulo de lanzamiento con la horizontal.

Para la primera pelota, con un ángulo de lanzamiento de 35°, tenemos:

Vx1 = 66 * cos(35°) = 54.14 pies/segundo

Para la segunda pelota, con un ángulo de lanzamiento de 49°, tenemos:

Vx2 = 66 * cos(49°) = 42.11 pies/segundo

Ahora, vamos a calcular el tiempo que tarda cada pelota en llegar al suelo. Para ello, utilizaremos la fórmula de tiempo de vuelo:

t = (2 * Voy) / g

donde Voy es la componente vertical de la velocidad inicial y g es la aceleración debido a la gravedad (32.2 pies/segundo^2).

Para ambas pelotas, la componente vertical de la velocidad inicial es:

Voy = V0 * sin(θ)

Para la primera pelota, tenemos:

Voy1 = 66 * sin(35°) = 38.05 pies/segundo

Por lo tanto, el tiempo de vuelo de la primera pelota es:

t1 = (2 * 38.05) / 32.2 = 2.37 segundos

Para la segunda pelota, tenemos:

Voy2 = 66 * sin(49°) = 47.91 pies/segundo

Por lo tanto, el tiempo de vuelo de la segunda pelota es:

t2 = (2 * 47.91) / 32.2 = 2.99 segundos

Finalmente, podemos calcular la distancia horizontal recorrida por cada pelota utilizando la fórmula:

d = Vx * t

Para la primera pelota, tenemos:

d1 = 54.14 * 2.37 = 128.44 pies

Para la segunda pelota, tenemos:

d2 = 42.11 * 2.99 = 125.93 pies

Por lo tanto, la primera pelota recorrió una distancia horizontal de 128.44 pies y la segunda pelota recorrió una distancia horizontal de 125.93 pies.

The following results come from two independent random samples taken of two populations.
Sample 1 n1 = 60, x1 = 13.6, σ1 = 2.4
Sample 2 n2 = 25, x2 = 11.6,σ2 = 3
(a) What is the point estimate of the difference between the two population means? (Use x1 − x2.)
(b) Provide a 90% confidence interval for the difference between the two population means. (Use x1 − x2. Round your answers to two decimal places.)

Answers

The correct answer is [tex]90[/tex]% confidence interval for the difference between the two population means is (0.07, 3.93).

(a) The point estimate of the difference between the two population means can be calculated as:[tex]x1 - x2 = 13.6 - 11.6 = 2[/tex]. Therefore, the point estimate of the difference between the two population means is 2.

(b) To find a 90% confidence interval for the difference between the two population means, we can use the formula: [tex]CI = (x1 - x2) ± z*(SE)[/tex]

Where CI is the confidence interval, x1 - x2 is the point estimate, z is the z-score associated with a 90% confidence level (1.645), and SE is the standard error of the difference between the means, which can be calculated as:[tex]SE = \sqrt{(σ1^2/n1) + (σ2^2/n2)}[/tex]

Plugging in the given values, we get:[tex]SE = \sqrt{ ((2.4^2/60) + (3^2/25)) }[/tex]

Therefore, the 90% confidence interval for the difference between the two population means is:[tex]CI = 2 ± 1.645*0.764[/tex]

[tex]CI = (0.07, 3.93)[/tex]

To learn more about confidence interval, visit here

https://brainly.com/question/24131141

#SPJ4

at the movie theater, chil admission is $6.10 and adult admission is $9.40 on Friday, 136 tickets were sold for a total of $1027.60. how many adult tickets were sold that day?​

Answers

Thus, the number of adult tickets that were sold that day was 60.

Explain about two variable linear equation:

A linear equation with two variables is shown by the equation axe + by = r if a, b, and r are all real values and both are not equal to 0. The equation's two variables are represented by the letters x and y. The coefficients are denoted by the numerals a and b.

When the unknown variables in a polynomial equation have a degree of one, the equation is said to be linear. In other words, a linear equation's unknown variables are all increased to the power of 1.

For the given question:

Let the number of child tickets - x

Let the number of adult ticket - y

Price of each  child tickets - $6.10

Price of each adult ticket- - $9.40

Thus, the system of linear equation forms -

x + y = 136

x = 136 - y   ...eq 1

6.10x + 9.40y = 1027.60 ..eq 2

Put the value of x in eq 2

6.10x + 9.40y = 1027.60

6.10(136 - y) + 9.40y = 1027.60

829.6 - 6.10y + 9.40y = 1027.60

3.3y = 1027.60 - 829.6

3.3y = 198

y = 198/3.3

y = 60

x = 136 - 90

x = 46

Thus, the number of adult tickets that were sold that day was 60.

know more about the two variable linear equation:

https://brainly.com/question/24085666

#SPJ1

A rock is dropped from a height of 100 feet. Calculate the time between when the rock was dropped and when it landed. If we choose "down" as positive and ignore air friction, the function is h(t) = 25t^2-81

Answers

The time between the rock’s drop and landing is t = 1.8 s



In the given equation: h(t) = 25t^2 - 81, it is dropped from a height, h, and the variable, t, represents the total time. We want to solve for t.



The height when the rock lands will be 0 m.
Plug 0 into the equation for h and
(0)t = 25t^2 - 81
0 = 25t^2 - 81
81 = 25t^2
Divide both sides by 25 to isolate the variable, t;
81/25 = t^2
Take the square root from both sides to cancel out the exponent;
√(81/25) = √(t^2)
Note that 81 has a sqrt of 9 and 25 has a sqrt of 5. We can also ignore the negative from the ± since time is positive.
9/5 = t
t = 1.8 s

Define a relation J on all integers: For all x, y e all positive integers, xJy if x is a factor of y (in other words, x divides y). a. Is 1 J 2? b. Is 2 J 1? c. Is 3 J 6? d. Is 17 J 51? e. Find another x and y in relation J.

Answers

Here is the summary of the relation J on all integers:

a. 1 J 2 : No

b. 2 J 1 : Yes

c. 3 J 6 : Yes

d. 17 J 51 : No

e. Another example of x and y in relation J: 4 J 12 (4 is related to 12 under relation J)

What is the relation J defined on all positive integers, and determine whether the integers are related under J?

To define a relation J on all positive integers is following:

a. No, 1 is not a factor of 2, so 1 does not divide 2.

Therefore, 1 is not related to 2 under relation J.

b. Yes, 2 is a factor of 1 (specifically, 2 divides 1 zero times with a remainder of 1), so 2 divides 1.

Therefore, 2 is related to 1 under relation J.

c. Yes, 3 is a factor of 6 (specifically, 3 divides 6 two times with a remainder of 0), so 3 divides 6.

Therefore, 3 is related to 6 under relation J.

d. No, 17 is not a factor of 51, so 17 does not divide 51.

Therefore, 17 is not related to 51 under relation J.

e. Let's choose x = 4 and y = 12.

Then we need to check if x divides y. We can see that 4 is a factor of 12 (specifically, 4 divides 12 three times with a remainder of 0), so 4 divides 12.

Therefore, 4 is related to 12 under relation J.

To summarize:

1 is not related to 2 under relation J2 is related to 1 under relation J3 is related to 6 under relation J17 is not related to 51 under relation J4 is related to 12 under relation J

Learn more about positive integers

brainly.com/question/26051073

#SPJ11

let m be a positive integer. show that a mod m = bmodmifa≡b(modm).

Answers

To show that a mod m = b mod m if a ≡ b (mod m), we can use the definition of modular arithmetic.

To show that a mod m = b mod m if a ≡ b (mod m) for a positive integer m, we can follow these steps:

1. First, understand the given condition: a ≡ b (mod m) means that a and b have the same remainder when divided by the positive integer m. In other words, m divides the difference between a and b. Mathematically, this can be written as m | (a - b), which means there exists an integer k such that a - b = mk.

2. Next, recall the definition of modular arithmetic: a mod m is the remainder when a is divided by m, and similarly, b mod m is the remainder when b is divided by m.

3. We know that a - b = mk, so a = b + mk.

4. Now, divide both sides of the equation a = b + mk by m.

5. Since b and mk are both divisible by m, the remainder of this division will be the same for both sides. In other words, a mod m and b mod m have the same remainder when divided by m.

6. Therefore, we can conclude that a mod m = b mod m if a ≡ b (mod m) for a positive integer m.

To learn more about modular arithmetic visit : https://brainly.com/question/30544434

#SPJ11

T/F - If A is an invertible n x n matrix, then the equation Ax = b is consistent for each b in R^n.

Answers

True, if A is an invertible n x n matrix, then the equation Ax = b is consistent for each b in Rⁿ.

When A is an invertible n x n matrix, it means that A has a unique inverse, denoted as A⁻¹, which is also an n x n matrix. This implies that for any given vector b in Rⁿ, there exists a unique solution x in Rⁿ that satisfies the equation Ax = b.

To understand why this is true, consider the definition of matrix multiplication. In the equation Ax = b, A is multiplied by x to obtain b. Since A is invertible, we can multiply both sides of the equation by A⁻¹ (the inverse of A) on the left, yielding A⁻¹Ax = A⁻¹b.

Now, according to the properties of matrix multiplication, A⁻¹A results in the identity matrix I_n (an n x n matrix with ones on the diagonal and zeros elsewhere), and any vector multiplied by the identity matrix remains unchanged. Therefore, we get I_nx = A⁻¹b, which simplifies to x = A⁻¹b.

This shows that for any given vector b in Rⁿ, there exists a unique solution x = A⁻¹b that satisfies the equation Ax = b when A is an invertible matrix. Hence, the equation Ax = b is consistent for each b in Rⁿ.

Therefore, the correct answer is True.

To learn more about matrix here:

brainly.com/question/28180105#

#SPJ11

You need to buy a piece of canvas that is large enough to stretch and secure around a wooden frame. You plan that the length of your finished piece will be 5 inches less than twice the width, and you will need 2 inches extra on each side to secure the canvas to the frame. Which expression represents the area of the canvas?
A.) 2w^2+7w-4
B.) 2w^2+2w-5
C) 5w^2+7w-2
D.) 5w^2+3w-2

Answers

The area of the canvas can be calculated by taking the product of its length and width, which is 2w-5 and w+2, respectively, and then simplifying this expression to 5w²+3w-2, which is option D.

What is an expression?

An expression is a mathematical statement that contains numbers, variables, and operations but lacks the equal sign.

To calculate the area of the canvas, we need to know the length and width of the canvas.

Since the length of the canvas will be 5 inches less than twice the width, the length can be expressed as:

2w-5.

The width of the canvas must include the extra 2 inches of fabric on each side to stretch and secure it around the frame, so the width is expressed as:

w+2.

The area of the canvas is then the product of the length and width,

= (2w-5)(w+2).

When this equation is simplified, it reduces to 5w²+3w-2, which is option D.

To know more about area, visit:

brainly.com/question/22210663

#SPJ1

What is the area of a triangle, in square inches, with a base of 13 inches and a height of 10 inches

Answers

Answer: 65

Step-by-step explanation:

area of triangle = 1/2 of base * height

so 13*10 = 130

130 * 1/2 = 65

Other Questions
Ryan invents a pen that digitally "remembers" what is written or drawn with it. To obtain a patent for the pen, Ryan does not have to show that it is a. novel.b. marketable. c. useful. d. not obvious in light of current technology. Which sentence uses a comparative or superlative adjective incorrectly?A. Gretta's puppy barks more than my puppy barks.B. The worst part of our vacation was sitting in the car for hours.C. Jackson's time running the mile is fastest than Jimmy's.D. My dad can cook a steak better than my grandpa can. use the table of integrals to evaluate the integral. 2 31x^3 4x2 x4 dx 0 on average, how many hash values will be calculated then to insert a new key in terms of load factor A solid cone with a diameter of 10 centimeters and a height of 8 centimeters 3.Small food particles with diameter 10-2 mm and density 1.03 g/cm3 are suspended in liquid of density 1.00 1.03 g/cm3. The viscosity of the liquid is 1.25 mPa. s. A tubular bowl centrifuge of length 70 cm and radius 11.5 cm is used to separate the particles. If the centrifuge is operated at 10,000 rpm, estimate the feed flow rate at which the food particles are just removed from the suspension. The following transactions occurred in April at Steves Cabinets, a custom cabinet firm:1. Purchased $18,000 of materials on account.2. Issued $1,000 of supplies from the materials inventory.3. Purchased $11,600 of materials on account.4. Paid for the materials purchased in transaction (1) using cash.5. Issued $14,000 in direct materials to the production department.6. Incurred direct labor costs of $22,000, which were credited to Wages Payable.7. Paid $21,600 cash for utilities, power, equipment maintenance, and other miscellaneous items for the manufacturing plant.8. Applied overhead on the basis of 135 percent of $22,000 direct labor costs.9. Recognized depreciation on manufacturing property, plant, and equipment of $10,400.Beginning EndingMaterials Inventory $ 30,240 ? Work-in-Process Inventory 7,000 ? Finished Goods Inventory 33,600 $ 28,840 Cost of Goods Sold 53,280 Required:a. Prepare journal entries to record the transactionsPrepare T-accounts to show the flow of costs during the period from Materials Inventory through Cost of Goods Sold. what does it mean by the liver is considered the gatekeeper of the body and what are two functions of the liver A friend of yours is standing while facing forward in a moving train. Your friend suddenly falls forward as the train comes to a rapid stop. Which force pushes your friend forward during the stop? The forward friction force between your friend and the train's floor. The downard force of gravity. The upward normal force due to your friend's contact with the floor of the train. No forward force is acting on your friend as the train stops. The forward force of inertia acting on your friend. Would you rather have a serious disease in the US or the UK and would you rather have a non-life threatening medical condition in the US or the UK?When comparing rates would you rather pay taxes in the UK or the US? Please provide detailed answers to all 3 pertaining scenarios. What challenge did the nation face in the aftermath of ww2 8. If a person performed 18 repetitions with a trial load, what is the proper adjustment to make to determine the training load?a. subtract 5 poundsb. keep the weight the samec. add 5 poundsd. add 10 pounds Suppose the Baseball Hall of Fame in Cooperstown, New York, has approached HobbyCardz with a special order. The Hall of Fame wants to purchase 51,000 baseball card packs for a special promotional campaign and offers $0.43 per pack, a total of $21,930. HobbyCardz's total production cost is $0.63 per pack, as follows:Variable costs:Direct materials . . . . . . . . . . . . .$0.14Direct labor . . . . . . . . . . . . . . . .0.07Variable overhead . . . . . . . . . . .0.12Fixed overhead . . . . . . . . . . . . . . . . . .0.30Total cost . . . . . . . . . . . . . . . . . . . . . . .$0.631.Prepare an incremental analysis to determine whether HobbyCardz should accept the special sales order assuming fixed costs would not be affected by the special order.2.Now assume that the Hall of Fame wants special hologram baseball cards. HobbyCardz must spend $5,300 to develop this hologram, which will be useless after the special order is completed. Should HobbyCardz accept the special order under these circumstances? Show your analysis.pop-up content endsPrintDone calculate the associated wavelength of an electron traveling at 4.0 x 109 cm/s. use the book for constants.a) 0.018 nm b) 0.67 x 10-8 cm c) 1.5 nm d) 1.5 x 108 cm e) 1.1 x 10-37 nm a 530 kg elevator accelerates upward at 1.5 m/s2 for the first 14 m of its motion. How much work is done during this part of its motion by the cable that lifts the elevator? question 5. produce a simple random sample of size 44 from full_data. run your analysis on it again. run the cell a few times to see how the histograms and statistics change across different samples. Dalit or the Scheduled are more sensitive terms for the "untouchables" of the Indian caste system. True or False? What is the equation of the line, in standard form, that passes through (4, -3) and is parallel to the line whose equation is4x+y-2=0?04x-y=134x+y=134x+y=-13 Each register in the ARM Cortex CPU programmer's model is ________ bits wide.Group of answer choicesa. 8b. 16c. 32d. 64 about how many grams per day of protein is sloughed off the cells of the intestine through the wear and tear of digestion?