Answer:
Az2Cy4
Explanation:
Ionic substances are composed of an ion pair. We arrive at the formula of an ionic substance by exchange of valency between the two ions involved in the compound.
In this case we have Az +4 and Cy-2. If we ignore the charges and the two ions and exchange the valency of the ions, the exchanged valencies are written as subscripts hence we arrive at the formula; Az2Cy4 as the formula of the ionic compound formed by the two ions.
Ideally, the van 't Hoff factor should be equal to the number of ions that make up a compound. In reality, van 't Hoff factors tend to be lower due to ion-pairing. Select all conditions that would increase the effect of ion- pairing and decrease the observed van 't Hoff factor.
A. Lower charge on the ions
B. High concentration
C. Low concentration
D. Higher charge on the ions
Answer:
High concentration
Higher charge on the ions
Explanation:
Ideally, the Van't Hoff factor is defined as the ratio between the actual concentration of particles produced when the substance is dissolved in a solution and the concentration of a substance as calculated from its mass(Wikipedia).
The Van't Hoff factor is influenced by the concentration of ions in solution as well as the magnitude of charge on the ions in solution.
Highly charged ions tend to remain paired in solution thereby leading to a lower value of Van't Hoff factor. Also, in highly concentrated solutions, the Van't Hoff factor is lower than in dilute solutions due to the pairing of ions
The conditions that would increase the effect of ion-pairing and decrease the observed van 't Hoff factor are a high concentration of solute and a higher charge on the ions.
Explanation:
A number of particles are formed by dissolving a unit molecule of a solute in a solvent.The higher concentration of solution lowers the value of the van 't Hoff factor as ionic compounds do not get completely dissociated in their aqueous solution.Also, some ions form ion pairs (pairing of opposite charges in the aqueous state) and exist as a single particle which decreases the value of the van 't Hoff factor.The ions with higher charges have a greater tendency to form ion-pair due to their high electrostatic interaction.So, from this, we can conclude that conditions that would increase the effect of ion-pairing and decrease the observed van 't Hoff factor are a high concentration of solute and a higher charge on the ions.
Learn more about the van 't Hoff factor here:
brainly.com/question/2907004?referrer=searchResults
brainly.com/question/13862200?referrer=searchResults
4. Cuanto electrones se necesitan para
pesarlo mismo que un proton?
Answer:
aproximadamente dos mil
Explanation:
masa_proton/masa_electron=
1.673e-24 / 9.11e-28 = 1836.443468715697
2 AICI3 + 3 Ca - 3 CaCl2 + 2 Al
You react aluminum chloride with calcium metal. You want to produce 40.00 grams of aluminum. How many grams of calcium do
you need?
Answer:
50 gram calcium do you need
Explanation:
please make me brainlist answer
Define pure substance. How is it classified on the basid of chemical properties?
Answer:
if it is pure, the substances is either an element or a compound. if a substance is not chemically pure, it is either a heterogeneous mixture or a homogeneous mixture. if its composition is uniform throughout, it is a homogeneous.
what is the answer to this?
Answer:
5-Ethyl3-Methyloctane
Explanation:
Step in the naming of organic compound
Step 1: Take the longest continous carbon chain as the root hydrocarbon and name it according to the number of carbon atoms it contains, adding appropriate suffix to indicate the principal substituent group
Step 2: Number the carbon atoms in the root hydrocarbons from the end which give the lowest number to the suffix, and then the prefix
Step 3: Indicate other substituents by prefixes proceed by numbers to show their positions on the carbon chain
Applying the step above,
The longest carbon chain is 8, and the fuctional group is the single chain (alkane),
5-Ethyl3-Methyl,octane
What element provides strength to the exoskeleton of Clams and oysters
Identify the number of core and valence electrons for each atom. XeXe : core electronscore electrons XeXe : valence electronsvalence electrons CaCa : core electronscore electrons CaCa : valence electronsvalence electrons II : core electronscore electrons II : valence electrons
Answer:
See explanation
Explanation:
In writing the electron configuration of atoms, the core electrons are those electrons that occur in the inner shells. They do not participate in chemical reaction.
The valence electrons are those electrons that occur on the outermost shell of an atom and does participate in chemical reaction.
For Xe, the core electrons are; 1s2 2s2 2p6 3s2 3p6 4s2 3d10 4p6 4d10 while the valence electrons are; 5s25p6
For Ca, the core electrons are; 1s2 2s2 2p6 3s2 3p6 while the valence electrons are 4s2.
Hence, there are 18 core electrons and 2 valence electrons for Ca and 46 core electrons for Xe and 8 valence electrons
22
Which of these best describes atoms of the same element?
An atom consists of three sub atomic particles which are protons, neutrons, and electrons. ... This nucleus is surrounded by the electrons as electrons revolve around the nucleus. Thus, we can conclude that out of the given options, a core of protons and neutrons surrounded by electrons best describes an atom.
and y'all still In school?
How much water, in grams, can be made from
2.44 × 10^24 hydrogen molecules?
Answer in units of g.
Answer:
[tex]m_{H_2O}=73.0gH_2O[/tex]
Explanation:
Hello there!
In this case, since the formation of water from hydrogen and oxygen is:
[tex]2H_2+O_2\rightarrow 2H_2O[/tex]
Whereas we find a 2:2 mole ratio of hydrogen to water. In such a way, by using the Avogadro's number, the aforementioned mole ratio and the molar mass of water (18.02 g/mol), we obtain the following grams of water product:
[tex]m_{H_2O}=2.44x10^{24}molec*\frac{1molH_2}{6.022x10^{23}molec}*\frac{2molH_2O}{2molH_2}*\frac{18.02gH_2O}{1molH_2O}\\\\ m_{H_2O}=73.0gH_2O[/tex]
Regards!
How much heat is evolved in converting 1.00 mol of steam at 160.0 ∘C to ice at -55.0 ∘C? The heat capacity of steam is 2.01 J/(g⋅∘C) and of ice is 2.09 J/(g⋅∘C).
Answer:
the heat capacity of steam is 2.01 J/(g⋅∘C) and of ice is 2.09 J/(g⋅∘C). 1. See answer.
Calculate the energy of the orange light emitted, per photon, by a neon sign with a frequency of 4.78 × 1014 Hz.
Answer:
Explanation:
[tex]E=h\nu=6.62606957 *10^{-34}\frac{Kg~m^2}{s}4.78*10^{14}\frac{1}{s}=316.7261*10^{-21}J[/tex]
how many joules of heat are required to heat 100.0g of room temperature water to the boiling point
Answer:
To convert 100.0 g of water at 20.0 °C to steam at 100.0 °C requires 259.5 kJ of energy. Let me know if this helped?
Calculate ΔG° for the following reactions at 25 °C using the provided appendix
calculate the pH of a 0.2 M * 4 solution for which Kb = 1.8*10^-5 at 26 c . The equation for the reaction
Nh3+H2O->NH4+oh
Answer: The pH of the solution is 11.24
Explanation:
We are given:
Molarity of ammonia = 0.2 M
[tex]K_b=1.8\times 10^{-5}[/tex]
The given chemical equation follows:
[tex]NH_3+H_2O\rightleftharpoons NH_4^++OH^-[/tex]
I: 0.2
C: -x +x +x
E: 0.2-x x x
The expression for equilibrium constant follows:
[tex]K_b=\frac{[NH_4^+][OH^-]}{[NH_3]}[/tex]
Putting values in above expression, we get:
[tex]1.8\times 10^{-5}=\frac{x^2}{0.2-x}\\\\1.8\times 10^{-5}(0.2-x)=x^2\\\\x^2+(1.8\times 10^{-5}x)-(0.36\times 10^{-5})=0\\\\x=1.88\times 10^{-3}, 1.9\times 10^{-3}[/tex]
Neglecting the negative value of x as concentration cannot be negative.
So, [tex][OH^-]=x=1.88\times 10^{-3}M[/tex]
pOH is defined as the negative logarithm of hydroxide ion concentration present in the solution.
[tex]pOH=-\log [OH^-][/tex]
Putting values in above equation, we get:
[tex]pOH=-\log (1.88\times 10^{-3})\\\\pOH=2.76[/tex]
We know:
[tex]pH+pOH=14\\\\pH=14-2.76\\\\pH=11.24[/tex]
Hence, the pH of the solution is 11.24
HELPPPPPPPPPPPPMEEEEEEEEEE
Answer:
25%
Explanation:
Cystic fibrosis is a recessive allele, meaning that the child must be aa to suffer the symptoms. Only 1/4 of the paired alleles is aa, so the probability of getting cystic fibrosis would be 25%.
Compound X has the formula C8H14.
X reacts with one molar equivalent of hydrogen in the presence of a palladium catalyst to form a mixture of cis- and trans-1,2-dimethylcyclohexane. Treatment of X with ozone follwed by zinc in aqueous acid gives a ketone plus formaldehyde (CH2=O). What is the structure of X?
Answer:
Compound X has the formula C8H14.
X reacts with one molar equivalent of hydrogen in the presence of a palladium catalyst to form a mixture of cis- and trans-1,2-dimethyl cyclohexane. Treatment of X with ozone followed by zinc in aqueous acid gives a ketone plus formaldehyde (CH2=O). What is the structure of X?
Explanation:
The degree of unsaturation in the given molecule C8H14 is:
DU=(Cn+1)-Hn/2-Xn/2+Nn/2
where,
Cn=number of carbon atoms
Hn=number of hydrogen atoms
Xn=number of halogen atoms
Nn=number of nitrogen atoms
C8H14:
DU=(8+1)-14/2
=>DU=9-7 =2
Hence, the given molecule will have either two double bonds or one double bond and one ring or two rings.
X reacts with one molar equivalent of hydrogen in the presence of a palladium catalyst to form a mixture of cis- and trans-1,2-dimethylcyclohexane.
This indicates that the molecule X has one double bond and one ring that is cyclohexane ring.
Treatment of X with ozone follwed by zinc in aqueous acid gives a ketone plus formaldehyde (CH2=O).
So, the molecule has a ring and double bond CH2.
Based on the given data the structure of compound X is shown below:
The reaction sequence is shown below:
Calculate total ATP produced from a fatty acid of 32 carbons
Answer:
Total number of ATP molecules generated from a 32-carbon fatty acid = 206 ATP molecules
Explanation:
A 32 carbon fatty acid which undergoes complete beta-oxidation assuming that the fatty acid is fully saturated will pass through the beta-oxidation cycle 14 times to produce the following:
15 molecules of acetylCoA, 14 molecules of FADH₂, and 14 molecules of NADH.
Each of the 15 acetylCoA molecules can be further oxidized in the citric acid cycle to yield the following: 15 × 3 NADH; 15 × 1 FADH₂, and 15 ATP molecules from the substrate level phosphorylation occuring at the succinylCoA synthetase catalyzed-reaction.
Total FADH₂ produced = 15 + 14 = 29 molecules of FADH₂
Total NADH produced = 45 + 14 = 59 molecules of NADH
The FADH₂ and NADH will each donate a pair of electrons to the electron transfer flavoprotein and mitochondrial NADH dehydrogenase respectively of the electron transport chain, and about 1.5 and 2.5 molecules of ATP are generated respectively when these electrons are transfered to molecular oxygen.
Thus, number of molecules of ATP generated by 29 molecules of FADH₂ = 1.5 × 29 = 43.5 molecules of ATP.
Number of molecules of ATP generated by 59 molecules of NADH = 2.5 × 59 = 147.5
Sum of ATP generated from FADH₂ and NADH = 43.5 + 147.5 = 191 ATP molecules
Total number of ATP molecules generated = 191 + 15 = 206 ATP molecules
Total number of ATP molecules generated from a 32-carbon fatty acid = 206 ATP molecules
When heated, magnesium combines readily with excess oxygen in the air to produce magnesium oxide, as shown in the following unbalanced equation.
Mg (s) + O2 (g) → MgO (s) + heat
What two types of reactions could this chemical equation be classified as?
Answer: The given chemical reaction can be classified as synthesis and exothermic.
Explanation:
A synthesis reaction is defined as the reaction where two small chemical species combine in their elemental state to form a single large chemical species.
Exothermic reactions are defined as the reactions in which heat is released by the reaction. The heat is written on the product side of the reaction.
For the given chemical reaction:
[tex]Mg(s)+O_2(g)\rightarrow MgO(s)+\text{heat}[/tex]
The above chemical reaction is a type of synthesis and exothermic as two substances in their elemental state are combining. Also, heat is getting released in the reaction.
Hence, the given chemical reaction can be classified as synthesis and exothermic.
A 3.06 gram sample of an unknown hydrocarbon with empirical formula CH2O was found to contain 0.0170 moles of the substance. What are the molecular mass and molecular formula, respectively, of the compound
Answer:
180 amu
C₆H₁₂O₆
Explanation:
Step 1: Determine the molecular mass of the compound
The sample has a mass (m) of 3.06 g and it contains (n) 0.0170 moles. The molar mass M is:
M = m/n = 3.06/0.0170 mol = 180 g/mol
Then, the molecular mass is 180 amu.
Step 2: Determine the molar mass of the empirical formula.
M(CH₂O) = 1 × M(C) + 2 × M(H) + 1 × M(O)
M(CH₂O) = 1 × 12 g/mol + 2 × 1 g/mol + 1 × 16 g/mol = 30 g/mol
Step 3: Determine the molecular formula
First, we will determine "n" according to the following expression.
n = molar mass molecular formula / molar mass empirical formula
n = 180 g/mol / 30 g/mol = 6
The molecular formula is:
n × CH₂O = 6 × CH₂O = C₆H₁₂O₆
True or false? Second level consumers may be carnivore or omnivores
Calculate [OH - ] given [H 3 O + ] = 5.69x10 -5 M.
Answer:
7
Explanation:
Which of the following would eat a hamburger with lettuce on it?
Omnivore
Detritivore
Herbivore
Carnivore
Answer:
Omnivore
Explanation:
i know
Answer:
Omnivore
Explanation:
The answer is Omnivore
A gas syringe contains 56.05 mL of a gas at 21.50C. Determine the volume that the gas will occupy if the temperature is increased to 44.30C at the same pressure.
Answer:
The volume the gas will occupy is 60.39mL
Explanation:
The gas law to be followed here is the Charles' law which states that the volume of a given mass of gas is inversely proportional to its temperature (in Kevin) provided that pressure remains constant. That is V∝T.
Equation thereof = V₁/T₁ = V₂/T₂
where V₁ is the initial volume (56.05mL)
V₂ is the final volume (unknown)
T₁ is the initial temperature (21.5°C + 273 = 294.5K)
T₂ is the final temperature (44.3°C + 273 = 317.3K)
Thus,
56.05/294.5 = V₂/317.3
V₂ = 56.05 x 317.3/294.5
V₂ = 60.39mL
What the correct answer
Answer:
none
Explanation:
the correct option would be Ar 3d3 4s2
I need help please ASAP
Answer:
A
Explanation:
because CO2 is carbon dioxide and CO is carbon monoxide. mono meaning one which in this case is monoxide.
g Using Newman projections, draw the most stable conformation for each of the following compounds. (a) 3-methyl pentane, viewed along the C2-C3 bond (b) 3,3-dimethyl hexane, viewed along the C3-C4 bond
Answer:
Using Newman projections, draw the most stable conformation for each of the following compounds.
(a) 3-methyl pentane, viewed along with the C2-C3 bond.
(b) 3,3-dimethyl hexane, viewed along with the C3-C4 bond.
Explanation:
(a) The structure of 3-methyl pentane is shown below:
In Newman projection, the most stable conformation is staggard conformation.
In staggard conformation, the torsional strain is very less compared to eclipsed conformation.
(b)3,3-dimethyl hexane, viewed along with the C3-C4 bond.
A liquid solvent is added to a flask containing an insoluble solid. The total volume of the solid and liquid together is 80.0 mL. The liquid solvent has a mass of 21.0 g and a density of 0.865 g/mL. Determine the mass of the solid given its density is 2.00 g/mL.
Answer:
Liquid: 38.7 g x 1 ml/0.865 g = ml of liquid
Vol of solid = 80.0 ml - ml of liquid
mass of solid = vol of solid x 2.75 g/ml
(100. g)
Explanation:
you can use this as a eg for this question
What is the purpose of the scientific method
Zinc sulfate is a 2-ion electrolyte,
dissociating 40% in a
certain concentration. Calculate its
dissociation (i) factor.
On the basis of 40% dissociation, 100
particles of zinc sulfate
will yield:
40zinc ions
40 sulfate ions
60undissociated particles
Jo 11:03
Answer: The value of i is 1.4 and 40% dissociation of 100 particles of zinc sulfate will yield 60 undissociated particles.
Explanation:
The equation used to calculate the Vant' Hoff factor in dissociation follows:
[tex]\alpha =\frac{i-1}{n-1}[/tex]
where,
[tex]\alpha [/tex] = degree of dissociation = 40% = 0.40
i = Vant' Hoff factor
n = number of ions dissociated = 2
Putting values in above equation, we get:
[tex]0.40=\frac{i-1}{2-1}\\\\0.40=i-1\\\\i=1.4[/tex]
The equation used to calculate the degee of dissociation follows:
[tex]\alpha =\frac{\text{Number of particles dissociated}}{\text{Total number of particles taken}}[/tex]
Total number of particles taken = 100
Degree of dissociation = 40% = 0.40
Putting values in above equation, we get:
[tex]0.40=\frac{\text{Number of particles dissociated}}{100}\\\\\text{Number of particles dissociated}=(0.40\times 100)=40[/tex]
This means that 40 particles are dissociated and 60 particles remain undissociated in the solution.
Hence, 40% dissociation of 100 particles of zinc sulfate will yield 60 undissociated particles.
A central idea in modern quantum mechanics is:
(4 Points)
A wave character exhibited by all particles.
The acceleration of charged particles moving around a nucleus.
The opportunity to locate the position of an electron exactaly.
The continuous range of energies that electrons can have.
Answer:
A wave character exhibited by all particles
Explanation:
The central idea in quantum mechanics is the paradox of wave-particle duality. In quantum mechanics, all particles are believed to also exhibit wavelike characters.
The electron is assumed to behave as a wave hence its position can not be precisely determined according the Heisenberg's uncertainty principle.
These are the underlying postulates that informed Erwin Schrödinger's wave mechanical model of the atom.
Hence, the basic postulate of quantum mechanics is that a wave character is exhibited by all particles.