i need help please help me​

I Need Help Please Help Me

Answers

Answer 1
84 I believe, a2+b2=c2 is the formula btw

Related Questions

Prove that (A intersect B) is a subset of A. Prove that A is a subset of (A union B). Suppose that A is a subset of (B union C), B is a subset of D, and C is a subset of E. Prove that A is a subset of (D union E). Prove for any natural number n and real number x that |sin(nx)| <= n |sin(x)|.

Answers

(A intersect B) is a subset of A, A is a subset of (A union B), A is a subset of (D union E), and |sin(nx)| <= n|sin(x)| for any natural number and real number x.

To prove that (A intersect B) is a subset of A, we need to show that every element in (A intersect B) is also in A. Let x be an arbitrary element in (A intersect B). This means x is in both A and B. Since x is in A, it follows that x is also in the union of A and B, which means x is in A. Therefore, (A intersect B) is a subset of A.

To prove that A is a subset of (A union B), we need to show that every element in A is also in (A union B). Let x be an arbitrary element in A. Since x is in A, it follows that x is in the union of A and B, which means x is in (A union B). Therefore, A is a subset of (A union B).

Given A is a subset of (B union C), B is a subset of D, and C is a subset of E, we want to prove that A is a subset of (D union E). Let x be an arbitrary element in A. Since A is a subset of (B union C), it means x is in (B union C). Since B is a subset of D and C is a subset of E, we can conclude that x is in (D union E). Therefore, A is a subset of (D union E).

To prove |sin(nx)| <= n |sin(x)| for any natural number n and real number x, we can use mathematical induction. For the base case, when n = 1, the inequality reduces to |sin(x)| <= |sin(x)|, which is true. Assuming the inequality holds for some positive integer k, we need to show that it holds for k+1. By using the double-angle formula for sin, we can rewrite sin((k+1)x) as 2sin(x)cos(kx) - sin(x). By the induction hypothesis, |sin(kx)| <= k|sin(x)|, and since |cos(kx)| <= 1, we have |sin((k+1)x)| = |2sin(x)cos(kx) - sin(x)| <= 2|sin(x)||cos(kx)| + |sin(x)| <= 2k|sin(x)| + |sin(x)| = (2k+1)|sin(x)| <= (k+1)|sin(x)|. Therefore, the inequality holds for all natural numbers n and real numbers x.

Know more about Induction here:

https://brainly.com/question/32376115

#SPJ11

Let X and Y be two random variables. Suppose that σ2 of X=4, and σ2 of Y=9.
If we know that the two random variables Z=2X−Y and W=X+Y are independent, find Cov(X,Y) and rho(X,Y)

Answers

Cov(X, Y) = -1/3 and ρ(X, Y) = -1/18.

Given data:X and Y are two random variables,

σ² of X=4,σ² of Y=9.Z=2X − Y and W = X + Y are independent

To find:

Cov(X, Y) and ρ(X, Y)

Solution:

We know that:

Cov(X, Y) = E(XY) - E(X)E(Y)ρ(X, Y) = Cov(X, Y) / σX σY

Let's find E(X), E(Y), E(XY)E(X) = E(W - Y) = E(W) - E(Y)E(W) = E(X + Y) = E(X) + E(Y)

From this equation, E(X) = E(W)/2 ------- (1)

Similarly, E(Y) = E(W)/2 ------- (2)

To find E(XY), we will use the following equation:

E(XY) = Cov(X, Y) + E(X)E(Y)Using equations (1) and (2) in the above equation:

E(XY) = Cov(X, Y) + E(W)²/4

Now, we will use the independence of Z and W to find Cov(X, Y).Cov(X, Y) = Cov((W - Z)/2, (W + Z)/3)= 1/6[Cov(W, W) - Cov(W, Z) + Cov(Z, W) - Cov(Z, Z)]= 1/6[Var(W) - Var(Z)]

Here,Var(W) = Var(X + Y) = Var(X) + Var(Y) [using independence]= 4 + 9 = 13Var(Z) = Var(2X - Y) = 4Var(X) + Var(Y) - 2 Cov(X, Y)= 4 + 9 - 2 Cov(X, Y)

Now, putting these values in Cov(X, Y),Cov(X, Y) = -1/3

Also,σX = 2 and σY = 3ρ(X, Y) = Cov(X, Y) / σX σY= -1/18

Hence, Cov(X, Y) = -1/3 and ρ(X, Y) = -1/18.

To know more about  random variables visit:

https://brainly.in/question/23723704

#SPJ11

Please help, thank you
y = x + 4 y = −2x − 2 Explain how you will solve the pair of equations by substitution. Show all the steps and write the solution in (x, y) form. Source StylesNormal

Answers

Answer:

6x

Step-by-step explanation:

Write a [tex]y=\frac{4}{5}x-2[/tex] in standard form using integers.

Answers

Answer:

4x-5y=10

Step-by-step explanation:

9 x 10^7 is how many times as large as 3 x 10^3

Answers

Answer:

30000 times

Step-by-step explanation:

3 x 10^3 x 30000 = 90000000

Answer:

30000

Step-by-step explanation:

9×10^7 =90000000

also

3×10^3 =3000

divide 90000000 by 3000

=30000

a team of 3 employees is preparing 20 reports. it takes mary 30 minutes to complete a report, and it takes matt 45 minutes to complete a report. all reports are completed in 4 1/2 hours. how long does it take the third team member to complete a report?

Answers

Given: A team of 3 employees is preparing 20 reports. Mary takes 30 minutes to complete a report. Matt takes 45 minutes to complete a report.

All reports are completed in 4 1/2 hours. To Find: How long does it take the third team member to complete a report?Solution: Let the third employee takes x minutes to complete a report work done by Mary in 1 minute = 1/30Work done by Matt in 1 minute = 1/45Work done by the third employee in 1 minute = 1/x Total work done by all three in 1 minute = 1/30 + 1/45 + 1/x (As all are working together) a Total number of reports to be prepared = 20Therefore, total work = 20Now,

we know that all reports are completed in 4 1/2 hours = 9/2 hours∴ Total time = 9/2 x 60 = 270 minutes according to the problem statement, Total work = Total time x Total work done by all three in 1 minute20 = 270 (1/30 + 1/45 + 1/x)Solving the above equation for x, we get :x = 90 minutes therefore, it takes the third team member 90 minutes to complete a report.

Answer: 90 minutes.

To know more about Team, visit:

https://brainly.com/question/28089760

#SPJ11

Let's represent the third team member as t. Mary takes 30 minutes to complete a report, while Matt takes 45 minutes to complete a report.

Thus, it takes the third team member 3 hours to complete a report.

Therefore, we can use the information given to form an equation. We are given that the team is preparing 20 reports, so:

30 minutes/report × M reports + 45 minutes/report × N reports + T minutes/report × O reports = 4.5 hours

To make the equation simpler, let the unit conversion 4.5 hours to minutes:

4.5 hours × 60 minutes/hour = 270 minutes

Thus:

30M + 45N + TO = 270

O= 20 - M - N

From the third team member: TO = T × 20

Therefore:

30M + 45N + T × 20 = 270

Solving for T:

30M + 45N + 20T = 270

T = (270 - 30M - 45N)/20

We know that there are only three members in the team, and that M and N have already been defined, so we can substitute these values:

T = (270 - 30(20) - 45(0))/20

T = 3

Thus, the time taken by the third team member is 3 hours to complete a report.

To know more about time taken visit

https://brainly.com/question/8806520

#SPJ11

Let g be a twice-differentiable function with g'(x) > 0 andg''(x) > 0 for all real numbers x, such that
g(4) = 12 and g(5) = 18. Of the following, which is apossible value for g(6)?
a. 15
b. 18
c. 21
d. 24
e. 27

Answers

A possible value for g(6) is 27. The only option greater than 18 is:

e. 27

To determine a possible value for g(6), we can make use of the given information and the properties of the function g(x).

Since g'(x) > 0 for all real numbers x, we know that g(x) is strictly increasing. This means that as x increases, g(x) will also increase.

Furthermore, since g''(x) > 0 for all real numbers x, we know that g(x) is a concave up function. This implies that the rate at which g(x) increases is increasing as well.

Given that g(4) = 12 and g(5) = 18, we can conclude that between x = 4 and x = 5, the function g(x) increased from 12 to 18.

Considering the properties of g(x), we can deduce that g(6) must be greater than 18. Since the function is strictly increasing and concave up, the increase from g(5) to g(6) will be even greater than the increase from g(4) to g(5).

Among the given answer choices, the only option greater than 18 is:

e. 27

Therefore, a possible value for g(6) is 27.

Learn more about greater here

https://brainly.com/question/21682757

#SPJ11

I'M GIVING BRAINLIEST TO WHOEVER ANSWERS FIRST! GOOD LUCK!

In the following problem, define the variable and then write an expression to represent the number of students at the elementary school. Finally, find the number of students at the middle school if the elementary school has 380 students: The middle school has 24 students less than 3 times the number of students at one of the elementary schools.

Answers

Answer:

3x - 24

Step-by-step explanation:

this is probably wrong

Answer:

1116

Step-by-step explanation:

Hey!

We can use the algebraic expression, 3x - 24, to solve.

Just substitute 380 in for x.

⇒3(380) - 24

⇒1140 - 24

1116

--------------------------------------------------------------------------------------------------------------

Hope I Helped, Feel free to ask any questions to clarify :)

Have a great day!

More Love, More Peace, Less Hate.

       -Aadi x

A ship sails 20 km due East, then 12 km due South.

Find the bearing of the ship from its initial position.

Give your answer correct to 2 decimal places.

Answers

Answer:

Step-by-step explanation:

20km east - 12km south= 8km east

Answer:

its 120.96

Step-by-step explanation:

i dont have any but i know that is the answer

I and my friends can't find the answer to this and we need help pls.

Answers

The answer is A
......

Write an equation for the linear function graphed above;​

Answers

Answer:

y = -1/4x + 16

Step-by-step explanation:

the slope is -1/4 and the y-intercept is 16

What is the function

Answers

The function for this problem is given as follows:

y = 0.25(x + 5)²(x - 4)²

How to define the function?

We are given the roots for each function, hence the factor theorem is used to define the functions.

The function is defined as a product of it's linear factors, if x = a is a root, then x - a is a linear factor of the function.

The roots of the function in this problem are given as follows:

x = -5 with a multiplicity of 2, as the graph touches the y-axis.x = 4 with a multiplicity of 2, as the graph touches the y-axis.

Hence the linear factors are given as follows:

(x + 5)².(x - 4)².

The function is:

y = a(x + 5)²(x - 4)²

In which a is the leading coefficient.

When x = 0, y = 100, hence the leading coefficient a is given as follows:

100 = a(5²)(-4)²

400a = 100

a = 0.25.

Hence the function is:

y = 0.25(x + 5)²(x - 4)²

More can be learned about the Factor Theorem at brainly.com/question/24729294

#SPJ1

WHICH ONE SHOULD I CHOOSE

Answers

The true statements are:a. Angle R is congruent to angle R'

b. (P' * Q')/(PQ) = 4

e. (C * Q')/(CQ) = 4

To determine which statements are true about triangle PQR and its image P' * Q' * R' after dilation, let's analyze each statement:

a. Angle R is congruent to angle R': This statement is true. When a triangle is dilated, the corresponding angles remain congruent.

b. (P' * Q')/(PQ) = 4: This statement is true. The scale factor of dilation is 4, which means the corresponding side lengths are multiplied by 4. Therefore, (P' * Q')/(PQ) = 4.

c. (QR)/(Q' * R') = 4: This statement is false. The scale factor of dilation applies to individual side lengths, not ratios of side lengths. Therefore, (QR)/(Q' * R') will not necessarily be equal to 4.

d. (C * P')/(CP) = 5: This statement is false. The scale factor of dilation is 4, not 5. Therefore, (C * P')/(CP) will not be equal to 5.

e. (C * Q')/(CQ) = 4: This statement is true. The scale factor of dilation is 4, so the corresponding side lengths are multiplied by 4. Therefore, (C * Q')/(CQ) = 4.

f. (C * P')/(CP) = (C * R')/(CR): This statement is false. The dilation does not guarantee that the ratios of the distances from the center C to the vertices will be equal.

For more such questions on congruent,click on

https://brainly.com/question/29789999

#SPJ8

Solve the LP problem using graphical method

Minimize and maximize objective function = 12x + 14y

–2x + y ≥ 6

x + y ≤ 15

x ≥ 0, y ≥ 0

Answers

The minimum value of the objective function 12x + 14y is 156 at point C(6, 9).Answer: 156.

Given:

Minimize and maximize objective function = 12x + 14y–2x + y ≥ 6x + y ≤ 15x ≥ 0, y ≥ 0.

The graphical method is a simple and easy method of solving a linear programming problem (LP).

LP issues are represented on a graphical scale using graphical method.

Let's plot the given inequalities on the graph. The graph of all inequalities must be in the first quadrant since x, y ≥ 0.Initially, let us consider x = 0 and y = 0 for (2) and (3) respectively.

(2) y ≤ 15 - x On plotting the line y = 15 - x in first quadrant, we get the following graph:

(3) x ≤ 15 - y On plotting the line x = 15 - y in first quadrant, we get the following graph:Now let's check for the first inequality, -2x + y ≥ 6.It can be written as y ≥ 2x + 6.

On plotting the line y = 2x + 6 in first quadrant, we get the following graph:The region containing common feasible points for all the three inequalities is shown in the figure below:Thus, the feasible region is OACD.The corner points of the feasible region are A(2, 13), B(3.8, 11.2), C(6, 9) and D(15, 0).

We need to determine the minimum and maximum values of the objective function 12x + 14y at each corner point as follows:At point A, 12x + 14y = 12(2) + 14(13) = 194At point B, 12x + 14y = 12(3.8) + 14(11.2) = 184.8At point C, 12x + 14y = 12(6) + 14(9) = 156At point D, 12x + 14y = 12(15) + 14(0) = 180.

To know more about function :

https://brainly.com/question/30721594

#SPJ11

To find the minimum and maximum values of the objective function 12x + 14y subject to the given constraints using graphical method.

Therefore, the minimum value of the objective function is 210 at (10.5, 3) and the maximum value of the objective function is not bounded.

We can follow these steps:

Step 1: Convert the inequality constraints into equation form by replacing the inequality signs with equality signs. So, -2x + y = 6 and

x + y = 15

Step 2: We find the values of x and y for each equation.

Step 3: Plot the two lines on the coordinate axis formed by the values obtained in Step 2.

Step 4: Determine the feasible region by identifying the portion of the plane where the solution satisfies all the constraints. In the present case, it is the region

above the line -2x + y = 6 and

below the line x + y = 15 and

to the right of the y-axis.

Step 5: Plot the objective function 12x + 14y on the same graph.

Step 6: Move the objective function line either up or down until it just touches the highest or lowest point of the feasible region. The point of contact is the solution to the linear programming problem. The graph of the feasible region and the objective function is shown below:

graph

y = 15 - x [-10, 20, -5, 25]

y = 2x + 6 [-10, 20, -5, 25]

y = -(6/7)x + 180/7 [-10, 20, -5, 25](-1/2)x+(1/14)

y = 0.5[0, 20, 0, 20](-1/2)x+(1/7)

y = 1[0, 20, 0, 20]12x + 14

y = 210[0, 20, 0, 20]

Therefore, the minimum value of the objective function is 210 at (10.5, 3) and the maximum value of the objective function is not bounded.

To know more about minimum visit

https://brainly.com/question/21426575

#SPJ11

If you need 4 eggs to make 12 Yorkshire puddings. How many do you need to make 18
Yorkshire puddings?

Answers

........................
6

Answer:

54

Step-by-step explanation:

First of all,

Cross multiplication

4 = 12

18 = x

Let the value of the number of eggs be represented by x

4x = 12×18

4x = 216

4. 4

(Same as 216÷4)

x = 54

Please consider the following linear congruence, and solve for x, using the steps outlined below. 57x + 13 = 5 (mod 17) (a) (4 points) Use the Euclidean algorithm to find the correct GCD of numbers 57 and 17.

Answers

The correct GCD of 57 and 17 is 1, obtained through the Euclidean algorithm.

To find the correct GCD (Greatest Common Divisor) of 57 and 17 using the Euclidean algorithm, we follow these steps:

1.) Divide the larger number (57) by the smaller number (17) and find the remainder:

57 ÷ 17 = 3 remainder 6

2.) Replace the larger number with the smaller number and the smaller number with the remainder:

17 ÷ 6 = 2 remainder 5

3.)  Repeat step 2 until the remainder is 0:

6 ÷ 5 = 1 remainder 1

5 ÷ 1 = 5 remainder 0

4.) The GCD is the last nonzero remainder, which is 1.

Therefore, the correct GCD of 57 and 17 is 1.

To know more about "Euclidean algorithm" refer here:

brainly.com/question/13425333#

#SPJ4

Use Newton's method with the specified initial approximation X1 to find x3, the third approximation to the solution of the given equation. (Round your answer to four decimal places.) x5 = x2 + 4, X1 = 1 X3 =

Answers

The is specified initial approximation X1  x3 is equal to 5.

We absolutely need to accentuate using the recipe in order to find x3 using Newton's method:

In this particular instance, we are informed that x5 is equal to x2 minus 4 and that X1 equals 1. Because we need to find x3, let's use the given equation to find x2.

We can solve for x2 because we have x5: x2 + 4

As of now we have x2 = x5 - 4 from x2 = x5 - 4. This ought to be added to the Newton's system recipe, and afterward we can find x3:

We ought to portray our ability f(x) and its subordinate f'(x) as Xn+1 = Xn - f(Xn)/f'(Xn).

We can now calculate x3 by using X1 = 1 as our underlying estimate: X2 = X1 - f(X1)/f'(X1) = 1 - ((1)2 + 4 - 1)/(- 1) = 1 - (1 + 4 - 1)/(- 1) = 1 + 4 = 5 In this way, x3 is the same as 5.

To know more about Newton's method refer to

https://brainly.com/question/30763640

#SPJ11

A dice has 6 sides numbered 1 to 6. What is the odds against rolling a 2 or a 4.

A. 4:2
B. 6:2
C. 2:4
D. 2:6

Answers

I think it’s A, 4:2.

In the standard (x, y) coordinate plane which equation represents a line through the point (6, 1) and perpendicular to the line with the equation =3/2 + 1?
A.) = −3/2 − 8
B. ) = −2/3 − 3
C.) = −2/3 + 1
D.) = −2/3 + 5
E.) = −3/2 + 10

Answers

Answer:

d. -2/3x+5

Step-by-step explanation:

Because the line is perpendicular, the slope must be the inverse of the original slope. The inverse of 3/2 is -2/3. To find the b value, you plug (6,1) into the equation y=-2/3x+b

1=-2/3(6)+b

1=-4+b

5=b

The final equation is y=-2/3x+5

Sketch the curve with the given vector equation. indicate with anarrow the direction in which t increases
r(t) = t^2i +t^4j +t^6k
I have no idea how to go about drawing the vector. I knowthat
x=t^2
y=t^4
z=t^6
and that a possible subsititution can be y=x^2and z=x^3

Answers

The vector equation r(t) = t^2i + t^4j + t^6k represents a parametric curve in three-dimensional space. To sketch the curve, we can substitute values of t and plot corresponding points in the coordinate system.

By examining the components of the vector equation, we can observe that x = t^2, y = t^4, and z = t^6. This implies that the curve lies in the x-y-z coordinate system, where the x-coordinate is determined by t^2, the y-coordinate is determined by t^4, and the z-coordinate is determined by t^6.

To start sketching, we can choose a range of values for t and substitute them into the equations. For example, for t = -1, 0, 1, we can calculate the corresponding x, y, and z values.

By plotting these points and connecting them, we can obtain an approximate shape of the curve. Additionally, we can observe that as t increases, the curve moves in the direction of increasing t, which can be indicated by an arrow along the curve.

Note that without specific values for t or a specific range, the sketch will be a general representation of the curve.

learn more about coordinate system here: brainly.com/question/4726772

#SPJ11

Given the Cauchy problem (utt - c²uxx = F(x, t), t> 0, x € (-[infinity]0,00) xe (-00,00) u(x,0) = f(x) (u₂(x,0) = g(x) x € (-00,00) (A) Prove that if f, g are even functions and for every t > 0 the function F(-, t) is even, then for every t > 0 the solution u(,t) is even (i.e. even w.r.t x). (B) Prove that if f, g are periodic functions and for every t≥ 0 the function F(.,t) is periodic, then for every t≥0 the solution u(.,t) is periodic. For part (A) - you can use the lecture notes for Lecture 5 (available in the course website). Write everything in your own words of course.

Answers

In part (A) of the problem, it is required to prove that if the initial conditions f(x) and g(x) are even functions and the forcing function F(x, t) is even for every t > 0, then the solution u(x, t) is also even with respect to x for every t > 0. In part (B), the task is to prove that if f(x) and g(x) are periodic functions and the forcing function F(x, t) is periodic for every t ≥ 0, then the solution u(x, t) is also periodic for every t ≥ 0.

To prove part (A), we can use the principle of superposition, which states that if the initial conditions and forcing function are even, then the solution will also possess the property of evenness.

To prove part (B), we can use the fact that if the initial conditions and forcing function are periodic, the solution will be a linear combination of periodic functions. The sum of periodic functions is also periodic, thus making the solution u(x, t) periodic for every t ≥ 0.

By leveraging these principles and the given assumptions about the initial conditions and forcing function, it can be shown that the solutions u(x, t) will also possess the specified properties of evenness or periodicity, depending on the case.

Note: The explanation provided is a general overview of the approach without delving into the mathematical details and formal proofs.

Learn more about mathematical click here;

https://brainly.in/question/33520724

#SPJ11

A glass bead has the shape of a rectangular prism with a smaller rectangular prism removed. What is the volume of the glass that forms the​ bead?

Thanks in advance!

Answers

Answer:

216 cm³

Step-by-step explanation:

large prism volume = 6 x 6 x 8 = 288 cm³

small cutout volume = 3 x 3 x 8 = 72 cm³

288- 72 = 216 cm³

solve the given differential equation by undetermined coefficients. y'' − 12y' 36y = 36x 4

Answers

The differential equation y'' - 12y' + 36y = 36[tex]x^4[/tex] is solved using the method of undetermined coefficients. The particular solution is found to be y_p = (1/72)[tex]x^6[/tex] - (1/12)[tex]x^4[/tex]+ (1/6)[tex]x^{2}[/tex].

To solve the given differential equation using the method of undetermined coefficients, we assume a particular solution of the form y_p = A[tex]x^6[/tex] + B[tex]x^4[/tex] + C[tex]x^{2}[/tex], where A, B, and C are constants to be determined. We differentiate y_p twice to find its derivatives: y_p' = 6A[tex]x^5[/tex] + 4B[tex]x^3[/tex]+ 2Cx and y_p'' = 30A[tex]x^4[/tex] + 12B[tex]x^{2}[/tex] + 2C.

Substituting these derivatives into the original differential equation, we have:

30A[tex]x^4[/tex] + 12B[tex]x^{2}[/tex] + 2C - 12(6A[tex]x^5[/tex] + 4B[tex]x^3[/tex] + 2Cx) + 36(A[tex]x^6[/tex] + B[tex]x^4[/tex] + C[tex]x^{2}[/tex]) = 36[tex]x^4[/tex].

Simplifying and equating the coefficients of like powers of x, we obtain the following equations:

36A = 0 (coefficient of x^6 term),

-72A + 36B = 0 (coefficient of x^4 term),

-36B + 36C = 36 (coefficient of x^2 term).

Solving these equations, we find A = 0, B = -1/12, and C = 1/6. Therefore, the particular solution is y_p = (1/72)[tex]x^6[/tex]- (1/12)[tex]x^4[/tex]+ (1/6)[tex]x^{2}[/tex].

The general solution of the given differential equation is the sum of the particular solution and the homogeneous solution. However, since the equation does not specify any initial conditions, we only provide the particular solution in this case.

Learn more about differential equation here:

https://brainly.com/question/25731911

#SPJ11

Given the following data set, calculate the values for the five-number summary and fill in the table below: -7, -5, -2, 0, 4, 6, 8, 8, 10, 22, 24 Name Number Minimum First Quartile Median Third Quartile Maximum

Answers

The five-number summary for the given data set is: Minimum = -7, First Quartile = 2, Median = 6, Third Quartile = 9, Maximum = 24.

To calculate the five-number summary for the given data set, we need to arrange the data in ascending order and then determine the minimum, first quartile (Q1), median (Q2), third quartile (Q3), and maximum values.

The given data set: -7, -5, -2, 0, 4, 6, 8, 8, 10, 22, 24

Arranged in ascending order: -7, -5, -2, 0, 4, 6, 8, 8, 10, 22, 24

Now, let's calculate the values for the five-number summary:

Minimum: The smallest value in the data set is -7.

First Quartile (Q1): This represents the median of the lower half of the data set. Since we have 11 data points, Q1 is the median of the first 5 data points. Q1 = (0 + 4) / 2 = 2.

Median (Q2): The median is the middle value of the data set. Since we have an odd number of data points, the median is the 6th value, which is 6.

Third Quartile (Q3): This represents the median of the upper half of the data set. Q3 is the median of the last 5 data points. Q3 = (8 + 10) / 2 = 9.

Maximum: The largest value in the data set is 24.

learn more about Median here:

https://brainly.com/question/28060453

#SPJ4

I need this done, please I need to pass these six weeks! Thanks

Answers

For page 1:
4. H
5. B
6. F, G and H

y=-2x-10
2x+5y=6
i need it solved with the substitution method.

Answers

Point form: ( -7,4)
Equation form: x = -7, y = 4

Can someone help with this question? I’m stuck.

Answers

Answer:

2

Step-by-step explanation:

2+2 is 4 so therefore the answer is 2.00.

Mrs.sorestam bought one ruler for 0.49$ one compass for 1.49$ and one mechanical pencil 0.49 at the price shown in the table for each of her 12 students

Answers

Answer:

12(x−2.57)=0.36

Step-by-step explanation:

Let x represent the initial amount of money Mrs. Sorenstam had to spend on each student.

The cost of the 3 items is:

1.49+0.59+0.49=2.57

The change left for each student will be:

x−2.57

For 12 students, the change left will be

12(x−2.57) which equals 36 cents, according to the problem

So, the equation to represent this situation will be:

12(x−2.57)=0.36

Find all the solutions to [x^3 - 1] = 0 in the ring Z/13Z. Make sure you explain why you have found all the solutions, and why there are no other solutions.

Answers

The solution to the equation [x³ - 1] = 0 is x = 1

How to determine the solutions to the equation

From the question, we have the following parameters that can be used in our computation:

[x³ - 1] = 0

Remove the square bracket in the equation

So, we have

x³ - 1 = 0

Add 1 to both sides

This gives

x³ = 1

Take the cube root of both sides

x = 1

Hence, the solution to the equation [x³ - 1] = 0 is x = 1

Read more about equation at

https://brainly.com/question/18831322

#SPJ4

The highway mileage (mpg) for a sample of 9 different models of a car company can be found below. 41 50 41 25 28 27 36 47 46 Find the mode: Find the midrange: Find the range: Estimate the standard deviation using the range rule of thumb: Now use technology, find the standard deviation: decimal places.) (Please round your answer to 2

Answers

For highway-mileages of 9 different models of car, the mode is 41, mid-range is 37.5, range is 25, and standard-deviation is 6.25.

⇒ To find the mode, we identify the value(s) that occur most frequently in the data set. In this case, the mode is 41, as it appears twice, more than any other value.

So, the mode is 41,

⇒ The midrange is calculated by finding the average of the maximum and minimum values in the data set. In this case, the maximum value is 50 and the minimum value is 25. So, the midrange is (50 + 25)/2 = 37.5,

⇒ The range is determined by subtracting the minimum value from the maximum value. In this case, the range is 50 - 25 = 25,

⇒ To calculate the standard-deviation using the range rule of thumb, we divide the range by 4. In this case, the range is 25, so the standard deviation would be 25/4 = 6.25.

Learn more about Mode here

https://brainly.com/question/28873873

#SPJ4

The given question is incomplete, the complete question is

The highway mileage (mpg) for a sample of 9 different models of a car company can be found below. 41, 50, 41, 25, 28, 27, 36, 47, 46.

Find the mode, midrange, range, and standard deviation.

Other Questions
While designing a management support system, it's important to remember that executives' main concern is O a. identifying unquantifiable benefits O b. getting the information they need in the simplest wayO c. getting support from all employees O d. getting the information they need in the most technically advanced way Help me with my bitwise op function in C please:/** replaceByte(x,n,c) - Replace byte n in x with c* Bytes numbered from 0 (LSB) to 3 (MSB)* Examples: replaceByte(0x12345678,1,0xab) = 0x1234ab78* You can assume 0 Question 3: (Answer in 200-400 words in total) Let's consider an economy where all firms are favouring remote work to favour physical distancing and avoid the spread of a virus. To achieve these goals all firms receive a subsidy to equip their workers with a laptop. Consider that the market for laptops is in perfect competition and initially at the equilibrium. Explain the impact of the pandemic on the supply, demand, equilibrium on market of computers. Give a graphical representation. (10 marks) why is the equilbrium constant of the dissociation of kht equal to the square of the bitartrate concentation Explain the role of securitization in modern banking system. An automobile computer gives a digital readout of fuel consumption in gallons per hour. During a trip, a passenger recorded the fuel consumption every 5 minutes for a full hour of travel, shown below. Use the Trapezoidal Rule to approximate the total fuel consumption during the hour.timegal/h02.552.4102.3152.4202.4252.5302.6352.5402.4452.3502.4552.4602.3Trapezoidal Rule:To find the area bounded by a curve, we divide the total area into several trapezoids of equal widths. This is a numerical method to find the integration.The following formula determines the area bounded by a function when the trapezoidal rule is applied: : Which of the following statement is most likely to be true? O The future value factor is always greater than 1, given that r>0. The future value factor is always greater than 1, given that r Suppose the global cost of raw materials used as inputs by firms falls. How does this cost shock affect (i) AD/AS curves and (ii) IS/LM curves?a.AD curve shifts left, IS curve shifts left.b.AS curve shifts left, IS curve shifts right.c.AS curve shifts right, LM curve shifts right.d.AD curve shifts right, LM curve shifts left. Use your CVP formulas to solve the following. Port Williams Basketball Company makes Basketballs that sell for $39.99 each. Its fixed costs are $22,000 per month, and variable cost per unit is $13.50. a) What is the contribution Margin? b) What is the break-even point in units? c) What is the Contribution Rate? d) What is the Break-even Sales Revenue? Create a scenario that describes a Pearson R correlationstatistical procedure and another scenario for the Chi-square testof independenceOnly give an example for each. do not solve the problem About 20 25 x = At 0.001,find the 2|220 Consider the following two mutually exclusive projects: Year Cash Flow (A) Cash Flow (B) 0 $427,000 $41,000 1 43,000 20,600 2 63,000 13,100 3 80,000 19,600 4 542,000 16,400 The required return on these investments is 13 percent. Required: (a) What is the payback period for each project? (Do not round intermediate calculations. Round your answers to 2 decimal places (e.g., 32.16).) (b) What is the NPV for each project? (Do not round intermediate calculations. Round your answers to 2 decimal places (e.g., 32.16).) (c) What is the IRR for each project? (Do not round intermediate calculations. Enter your answers as a percentage rounded to 2 decimal places (e.g., 32.16).) (d) What is the profitability index for each project? (Do not round intermediate calculations. Round your answers to 3 decimal places (e.g., 32.161).) When would you want to search by a specific field?Group of answer choicesWhen you have the citation for an articleWhen you know the title of an articleAll of theseWhen you know the author of a book many economists are critical of proposals to pass comparable worth legislation.T/F _____ are easy to understand, easy to track, and contribute real value to the organization. In at least 500 words, discuss which American Progressive from the Progressive era/movement (early 20th century) do you respect and why? (you have to choose 1 person--not a group or idea) What are valid reasons for preferring a high dividend payout? Check all that apply: Higher dividend payouts increase the stock price. Dividends have tax advantages compared to capital gains. An investor has a preferrence for current income over future income. Transaction costs for selling stocks for current income can be avoided. Submit Part 2 B Attempt 2/5 for 8 pts. What are valid reasons for preferring a low dividend payout? Check all that apply: It is costly for companies to raise new long-term capital. Investors can time their tax liabilities better. Taxes are lower for investors. Investors want to receive current income. The value of H for the oxidation of solid elemental sulfur to gaseous sulfur trioxide, 2S (s, rhombic) + 3O2 (g) 2SO3 (g) is ________ kJ/mol. Assume an economy is represented by the following:C = 200 + 0.85YdT = 1800G = 2000I = 200Suppose actual output is 3000. What is the level of planned expenditures at this level of output? What is the level of unplanned changes in inventories? Calculate the equilibrium level of output. Based on your analysis in Part (b), calculate the levels of consumption and saving that occur when the economy is in equilibrium. Now suppose that G decreases by 200 and T simultaneously decreases by 150. Calculate the new equilibrium level of income. Determine if the economy is operating with a deficit or surplus. saturn has a satellite called enceladus. enceladus is just a little over 500 km in diameter. what shape do you expect enceladus to be?\