Answer:
Prime numbers less than 20 are 2, 3, 5, 7, 11, 13, 17 and 19
Step-by-step explanation:
What is the answer to this equation
Answer:
[tex]x = - \frac{494}{3}[/tex] [tex]= - 164\frac{2}{3}[/tex]
Step-by-step explanation:
[tex]75 + \frac{3}{8} x = 13\frac{1}{4}\\\\75 + \frac{3}{8} x = \frac{53}{4}\\\\\frac{3}{8}x = \frac{53}{ 4} - 75\\\\\frac{3}{8}x = \frac{53-300}{4}\\\\\frac{3}{8}x = - \frac{247}{4}\\\\x = -\frac{247 \times 8}{4 \times 3} \\\\x = -\frac{494}{3}[/tex]
A country's population in 1993 was 204 million. In 2000 it was 208 million. Estimate the population in 2015 using the exponential growth formula. Round your answer to the nearest million. P- Aekt
Answer:
217
Step-by-step explanation:
Which of the following describes the end behavior of the function ƒ(x) = –5x3 + 3x2 + x – 9?
A)
As x → –∞, y → +∞ and as x → +∞, y → –∞
B)
As x → –∞, y → –∞ and as x → +∞, y → +∞
C)
As x → –∞, y → –∞ and as x → +∞, y → –∞
D)
As x → –∞, y → +∞ and as x → +∞, y → +∞
Answer:
A
Step-by-step explanation:
f(x)=-5x³+3x²+x-9
leading coefficient is negative and it is of odd degree.
so it starts from above onthe left and ends at the bottom ont he right.
What is the radius of a circular swimming pool with a diameter of 20 feet?
Answer:
10 feet
Step-by-step explanation:
The half of 20 is 10. So, hence it is 10 feet.
The radius of a circular swimming pool with a diameter of 20 feet will be 10 feet.
What is a circle?It is the close curve of an equidistant point drawn from the center. The radius of a circle is the distance between the center and the circumference.
Assume 'r' is the radius of the circle and 'd' is the diameter of the circle.
The radius of the circle is half of the diameter of the circle. Then the equation is given as,
r = d / 2
The diameter of the swimming pool is 20 feet. Then the radius of the swimming pool is given as,
r = 20 / 2
r = 10 feet
The radius of a roundabout pool with a measurement of 20 feet will be 10 feet.
More about the circle link is given below.
https://brainly.com/question/11833983
#SPJ2
In triangle ABC, AC = 4, BC = 5, and 1 < AB < 9. Let D, E and F be the
midpoints of BC, CA, and AB, respectively. If AD and BE intersect at G
and point G is on CF, how long is AB?
A. 2
B. 3
C. 4
D. 5
What is the slope of the linear relationship shown in this table of values?
Answer: -2 (b)
Step-by-step explanation:
So the slope of the line is the amount that the line changes as it goes along the x or y axis. Think of it like a ramp- goes up or down, steep or flat.
Take a pair of points like (-4, 11) and (2, -1)
{But you can use other points in the chart too. }
-4 to 2 is a distance of 6 --> that is the x
11 to -1 is a distance of -12 --> that is the y
We want the change in y over (or divided by) change in x.
-12 / 6 = -2
Answer:
B
Step-by-step explanation:
Calculate the slope m using the slope formula
m = [tex]\frac{y_{2}-y_{1} }{x_{2}-x_{1} }[/tex]
with (x₁, y₁ ) = (- 4, 11) and (x₂, y₂ ) = (2, - 1) ← 2 ordered pairs from the table
m = [tex]\frac{-1-11}{2-(-4)}[/tex] = [tex]\frac{-12}{2+4}[/tex] = [tex]\frac{-12}{6}[/tex] = - 2 → B
Executives from Six Flags, a well-known amusement park chain, had interest in constructing a Six Flags theme park in a location near Ames city limits. Experts believed that approximately 15% of the surrounding population would be interested in becoming season ticket holders. A random sample of 500 residents of Story County was collected (of the approximately 80,000 residents of Story County). Of the 500 people sampled, 124 said that they would be interested in purchasing season tickets to a Six Flags in Ames. The mean of the sampling distribution for the sample proportion when taking samples of size 500 from this population is equal to ___________.
Answer:
The mean of the sampling distribution for the sample proportion when taking samples of size 500 from this population is equal to 0.248.
Step-by-step explanation:
Central Limit Theorem
The Central Limit Theorem establishes that, for a normally distributed random variable X, with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex], the sampling distribution of the sample means with size n can be approximated to a normal distribution with mean [tex]\mu[/tex] and standard deviation [tex]s = \frac{\sigma}{\sqrt{n}}[/tex].
For a skewed variable, the Central Limit Theorem can also be applied, as long as n is at least 30.
For a proportion p in a sample of size n, the sampling distribution of the sample proportion will be approximately normal with mean [tex]\mu = p[/tex] and standard deviation [tex]s = \sqrt{\frac{p(1-p)}{n}}[/tex]
Of the 500 people sampled, 124 said that they would be interested in purchasing season tickets to a Six Flags in Ames.
This means that [tex]p = \frac{124}{500} = 0.248[/tex]
The mean of the sampling distribution for the sample proportion when taking samples of size 500 from this population is equal to
By the Central Limit Theorem, it is equal to the sample proportion of 0.248.
The diameter of the stem of a wheat plant is an important trait because of its relationship to breakage of the stem. An agronomist measured stem diameter in eight plants of a particular type of wheat. The mean of these data is 2.275 and the standard deviation is 0.238. Construct a 80% confidence interval for the population mean.
Answer:
7.79771≤x≤8.20229
Step-by-step explanation:
Given the following
sample size n = 8
standard deviation s = 0.238
Sample mean = 2.275
z-score at 980% = 1.282
Confidence Interval = x ± z×s/√n
Confidence Interval = 8 ± 1.282×0.238/1.5083)
Confidence Interval = 8 ± (1.282×0.15779)
Confidence Interval = 8 ±0.20229
CI = {8-0.20229, 8+0.20229}
CI = {7.79771, 8.20229}
Hence the required confidence interval is 7.79771≤x≤8.20229
Part B: Find an irrational number that is between 9.5 and 9.7. Explain why it is irrational. Include the decimal approximation of the irrational number to the nearest hundredth. (3 points)
Answer: Part A: Find a rational number that is between 9.5 and 9.7. Explain why it is rational.
Step-by-step explanation:
Part B: Find an irrational number that is between 9.5 and 9.7. Explain why it is irrational. Include the decimal approximation of the irrational number to the nearest hundredth
Somebody else has to comment for me to Mark u as BRAINLIEST!! It won't let me
Answer:
7.5 is the difference
Step-by-step explanation:
basketball mean
(13+22+23+24+36+37+42+43+58+69) ÷10 = 36.7
tennis mean
(14+23+24+38+47+48+57+58+66+67) ÷10 = 44.2
tennis mean - basketball mean
44.2 - 36.7= 7.5
Write the point-slope form of the equation for a line that passes through (-1, 4) with a slope of 2.
The value of xt is
The value of yn is
The point-slope form of the equation is
Answer:
67 f
Step-by-step explanation:
Is the triangle a right angle? Pythagorean Theorem.
Answer:
yes it is
Step-by-step explanation:
hopefully that helps
195ft i think because 10 x 19.5
because 39 divided by 2 is 19.5
so then 19.5 x 10 = 195ft
Which expression has the same value as the one below?
38 + (-18)
O A. 38
O B. 38 - 18
O C. 38 + 18
O D. 56
Answer:
answer is B 38-18
Step-by-step explanation:
38 + (-18)
38-18
Solve for d.
d + 67 = 87
р
Submit
Answer:
[tex]d=20[/tex]
Step-by-step explanation:
[tex]d+67=87[/tex]
Subtract 67 from both sides
[tex]d=20[/tex]
Hope this is helpful
Answer:
d = 20
Step-by-step explanation:
y=6x/5 +27 find y-intercept and slope
Answer:
General equation of a line is given by y = mx +c, where m is the gradient /slope, c is the intercept. To find for the intercept on y- axis, put x = 0.[tex]y = \frac{6(0)}{5 } + 27 \\ y = \frac{0}{5} + 27 \\ y = 27 \\ therefore \: the \: intercept \: on \: y \: is \: 27 \\ [/tex]By comparison, [tex]y = mx + \: c \\ y = \frac{6}{5} x \: +27 \\ m = \frac{6}{5 \: } \: \\ hence \: slope \: is \: \frac{6}{5} [/tex]Which of the following relations represents a function? (0, 3), (0.-3). (-3,0). (3.0)) (-2. 4). (-1.0), (2.0), (2.6) -1.-1), (0.0), (2, 2), (5, 5]] None of these
Answer:
(-1.0) (2.0) is the answer
A shoreline observation post is located on a cliff such that the observer is 280 feet above sea level. The observer spots a ship approaching the shore and the ship is traveling at a constant speed.
Requried:
a. When the observer initially spots the ship, the angle of depression for the observer's vision is 6 degrees. At this point in time, how far is the ship from the shore?
b. After watching the ship for 43 seconds, the angle of depression for the observer's vision is 16 degrees. At this point in time, how far is the ship from the shore?
Using the slope concept, it is found that the distances from the shore at each moment are given by:
a) 2664 feet.
b) 976 feet.
What is a slope?The slope is given by the vertical change divided by the horizontal change, and it's also the tangent of the angle of depression.
Item a:
The vertical distance is of 280 feet, with an angle of 6º. The distance from the shore is the horizontal distance of x. Hence:
[tex]\tan{6^\circ} = \frac{280}{x}[/tex]
[tex]x = \frac{280}{\tan{6^\circ}}[/tex]
x = 2664.
Item b:
The vertical distance is of 280 feet, with an angle of 16º. The distance from the shore is the horizontal distance of x. Hence:
[tex]\tan{16^\circ} = \frac{280}{x}[/tex]
[tex]x = \frac{280}{\tan{16^\circ}}[/tex]
x = 976.
More can be learned about the slope concept at https://brainly.com/question/18090623
PLEASE HELP WILL MARK BRAINLIEST.Write the log equation as an exponential equation. You do not need to solve for x.
In (5) = 2x
Answer:
10x ÷ 5x=2x
10x ÷ 5x = 2x
10x÷ 5x = 2x
Answer:
[tex]e^{2x}=5[/tex]
Step-by-step explanation:
Recall that [tex]\log_b a=c\implies b^c=a[/tex].
In this case, we need to find the base of the logarithm. The logarithm [tex]\ln[/tex] denotes natural [tex]\log[/tex] with a base of [tex]e[/tex], a mathematical constant.
Therefore, we can re-write the equation as:
[tex]\log_e5=2x[/tex]
To write the equation as an exponential equation, recall the definition of log (first sentence of explanation):
[tex]\boxed{e^{2x}=5}[/tex]
Answer ASAP! Please answer! please answer (NOT HARD)
Answer:
221
Step-by-step explanation:
5(3)2-4
Answer:
221
Step-by-step explanation:
Determine the relationship between the two triangles and whether or not they can be proven to be congruent.
Answer:
The relationship between the above two triangles is SAS and they are congruent
Find the value of x
Answer:
x = 40
Step-by-step explanation:
Two triangles are similar so we can use similarity ratio to find x
x/16 = 35/14 cross multiply expressions
14x = 560 divide both sides by 14
x = 40
A rectangular area is to be enclosed using an existing
wall as one side 100m of fencing are available for the
three side. It is desire to make the areas as large as
possible. Find the necessary dimension of the
enclosure and the maximum area.
Answer:
[tex]\text{Dimensions: 25 x 50},\\\text{Area: }1,250\:\mathrm{m^2}[/tex]
Step-by-step explanation:
Let the one of the side lengths of the rectangle be [tex]x[/tex] and the other be [tex]y[/tex].
We can write the following equations, where [tex]x[/tex] will be the side opposite to the wall:
[tex]x+2y=100,\\xy=\text{Area}[/tex]
From the first equation, we can isolate [tex]x=100-2y[/tex] and substitute into the second equation:
[tex](100-2y)y=\text{Area},\\-2y^2+100=\text{Area}[/tex]
Therefore, the parabola [tex]-2y^2+100y[/tex] denotes the area of this rectangular enclosure. The maximum area possible will occur at the vertex of this parabola.
The x-coordinate of the vertex of a parabola in standard form [tex]ax^2+bx+c[/tex] is given by [tex]\frac{-b}{2a}[/tex].
Therefore, the vertex is:
[tex]\frac{-100}{2(-2)}=\frac{100}{4}=25[/tex]
Plug in [tex]x=25[/tex] to the equation to get the y-coordinate:
[tex]-2(25^2)+100(25)=\boxed{1,250}[/tex]
Thus the vertex of the parabola is at [tex](25, 1250)[/tex]. This tells us the following:
The maximum area occurs when one side (y) of the rectangle is equal to 25The maximum area of the enclosure is 1,250 square meters The other dimension, from [tex]x+2y=100[/tex], must be [tex]50[/tex]And therefore, the desired answers are:
[tex]\text{Dimensions: 25 x 50},\\\text{Area: }1,250\:\mathrm{m^2}[/tex]
Fractions are hard... Or I'm just to lazy to try and do them.
Identify the restrictions on the domain.
x+1x+9÷xx−4
x≠−1,4
x≠−9,4
x≠−1,0
x≠−9,0
[tex]Identify the restrictions on the domain. x+1x+9÷xx−4x≠−1,4x≠−9,4x≠−1,0x≠−9,0[/tex]
The function y = sin 2 (x – π∕2) has a period of Question 2 options: A) 4π. B) π. C) 2π. D) π∕2.
Answer:
B) π
Step-by-step explanation:
y = sin 2 (x – π∕2)
y = sin (2x -π)
=> 2x = 2π
x = π
The period of function sin(2x−π) is π, which is correct option(B).
What is the period of the function?The period of the function is defined as the interval between repetitions of any function. A trigonometric function's period is the length of one one completed cycle.
What is the Trigonometric functions?The trigonometric functions defined as the functions which show the relationship between angle and sides of a right-angled triangle.
Given the function as :
y = sin 2 (x – π/2)
y = sin (2x − π)
Use the form asin(bx−c) + d to determine the variables used to find the amplitude, period, phase shift, and vertical shift.
a = 1
b = 2
c = π
d = 0
Determine the period of sin(2x−π).
y = sin (2x -π)
So, the period = c = π
Hence, the period of function sin(2x−π) is π.
Learn more about period of the function here:
https://brainly.com/question/26369761
#SPJ2
Get brainiest if right!!
Answer:
4 1/8 units
Step-by-step explanation:
I believe this to be so if these points were on a number line. You would add the two points together to get the distance between the two points.
I need this math problem to be solved ASAP!!! Solve for X.
-8x + 3 ≥ 27 AND −13x + 5 ≥ 57
Choose ONE and ONLY the CORRECT answer.
A: x ≤ −4
B: x ≤ −3
C: −4 ≤ x ≤ −3
D: There are NO solutions.
E: All values of X are solutions.
Answer:
A: x ≤ −4
Step-by-step explanation:
Hi there!
We're given the two inequalities -8x + 3 ≥ 27 and −13x + 5 ≥ 57
we need to find the set of solutions that make the two inequalities true (the intersection)
First, let's solve the two inequalities, starting with -8x + 3 ≥ 27
-8x + 3 ≥ 27
subtract 3 from both sides
-8x≥24
divide both sides by -8 and remember to FLIP the inequality sign, as we're dividing with a negative
x ≤ -3
now for the other inequality:
−13x + 5 ≥ 57
subtract 5 from both sides
-13x ≥ 52
divide both sides by -13 and remember to FLIP the sign
x ≤ -4
please see below for the graph to find the intersection, as well as the final answer
Hope this helps! :)
If ⃗ = + + is perpendicular to both ⃗ = 5 + − 2 and = 3 − 3 + 6 , find and .
Answer:
The values of [tex]m[/tex] and [tex]n[/tex] are 0 and 2, respectively.
Step-by-step explanation:
If [tex]\vec {c} = m\,\hat{i} + n\,\hat{j} + \hat{k}[/tex] is perpendicular to [tex]\vec {a} = 5\,\hat{i} + \hat{j} -2\,\hat{k}[/tex] and [tex]\vec {b} = 3\,\hat{i} - 3\,\hat{j} + 6\,\hat{k}[/tex], then the following relationships must be observed:
[tex]\vec {c}\,\bullet\,\vec {a} = 0[/tex] (1)
[tex]\vec{c}\,\bullet \,\vec{a} = 0[/tex] (2)
Then, we expand the previous expressions:
[tex](m, n, 1)\,\bullet\,(5, 1, -2) = 0[/tex]
[tex]5\cdot m + n = 2[/tex] (1b)
[tex](m, n, 1)\,\bullet\,(3, -3, 6) = 0[/tex]
[tex]3\cdot m - 3\cdot n = -6[/tex] (2b)
Then, we solve for [tex]m[/tex] and [tex]n[/tex]:
[tex]m = 0, n = 2[/tex]
The values of [tex]m[/tex] and [tex]n[/tex] are 0 and 2, respectively.
write a recursive formula for the following sequence 25,43,61,79,97
F(1)= 25
F(n)= F (n-1) +18
Given:
The sequence is:
25,43,61,79,97
To find:
The recursive formula for the given sequence.
Solution:
We have,
25,43,61,79,97
Here, the first term is 25. Now, the differences between the two consecutive terms are:
[tex]43-25=18[/tex]
[tex]61-43=18[/tex]
[tex]79-61=18[/tex]
[tex]97-79=18[/tex]
The differences between the two consecutive terms is common, i.e., 18. So, the given sequence is an arithmetic sequence.
The recursive formula of an arithmetic sequence is:
[tex]F(n)=F(n-1)+d[/tex]
Where, d is the common difference and F(1) is the first term.
Putting [tex]d=18[/tex], we get
[tex]F(n)=F(n-1)+18[/tex], where [tex]F(1)=25[/tex].
Therefore, the required recursive formula is [tex]F(n)=F(n-1)+18[/tex], where [tex]F(1)=25[/tex].
Solve for x. See the image below!
Answer:
x = 17
Step-by-step explanation:
in such a constellation (two beams from the same point of origin cut through the same circle) the relative relation between the segments of these beams to the overall length of the beam have to be the same :
7 × (7+x) = 8 × (8+13)
49 + 7x = 8 × 21 = 168
7x = 119
x = 17