From a group of 13 men, 6 women, 2 boys, and 4 girls, (a) In how many ways can a man, a woman, a boy, and a girl be selected? (b) In how many ways can a man or a girl be selected? (c) In how many ways can one person be selected?

Answers

Answer 1

(a) A man, a woman, a boy, and a girl can be selected in 312 ways.

(b) A man or a girl can be selected in 57 ways.

(c) One person can be selected in 25 ways.


(a) To select a man, a woman, a boy, and a girl, use the multiplication principle. There are 13 men, 6 women, 2 boys, and 4 girls, so the number of ways is 13 * 6 * 2 * 4 = 312 ways.


(b) To select a man or a girl, there are 13 men and 4 girls, so the number of ways is 13 + 4 = 17 ways.


(c) To select one person, there are a total of 13 men + 6 women + 2 boys + 4 girls = 25 people, so there are 25 ways to choose one person.

To know more about multiplication principle click on below link:

https://brainly.com/question/17514196#

#SPJ11


Related Questions

RSM, HELP:
FILL IN THE GRAPH

Answers

Answer:

  see attached

Step-by-step explanation:

You want the empty cells of the given table filled in.

Slope

The differences between the first In values are ...

  15 -7 = 8

  21 -15 = 6

The corresponding differences between the Out values are ...

  32 -16 = 16

  44 -32 = 12

The ratios of Out differences to In differences are ...

  16/8 = 2

  12/6 = 2

These are constant, so we can conclude the relation is linear with a slope of m = 2.

Intercept

We can find the y-intercept by ...

  b = y -mx

  b = 16 -2(7) = 2 . . . . . . using (x, y) = (7, 16) and m=2

Relation

Then the equation  of the output (y) in relation to the input (x) is ...

  y = mx +b

  y = 2x +2 . . . . . . . . . . . . . . table entry on 4th line from the bottom

Solving for x, we get ...

  y -2 = 2x

  (y -2)/2 = x

This tells us the input needed to give an output of y is (y -2)/2, the entry in the table on the 3rd line from the bottom.

Empty cells

We can use the equation for y when In is given:

2(25) +2 = 522(x) +2 = 2x +22(2x) +2 = 4x +22(x +3) +2 = 2x +6 +2 = 2x +8

And we can use the equation for x when Out is given:

(22 -2)/2 = 20/2 = 10 . . . input value for output = 22(y -2)/2 . . . . . . . . . . . . . . input value for output = y

The completed table is attached.

<95141404393>

Worth 20 points!!!! Little Maggie is walking her dog, Lucy, at a local trail and the dog accidentally falls 150 feet down a ravine! You must calculate how much rope is needed for the repel line. Use the image below to find the length of this repel line using one of the 3 trigonometry ratios taught (sin, cos, tan). Round your answer to the nearest whole number. The repel line will be the diagonal distance from the top of the ravine to Lucy. The anchor and the repel line meet to form angle A which forms a 17° angle. Include all of the following in your work for full credit.

(a) Identify the correct trigonometric ratio to use (1 point)

(b) Correctly set up the trigonometric equation (1 point)

(c) Show all work solving equation and finding the correct length of repel line. (1 point)

Answers

the length of the repel line needed is approximately 44 feet (rounded to the nearest whole number).

what is length ?

Length is a physical dimension that describes the extent of an object or distance between two points. In geometry, length refers to the distance between two points, and it is usually measured in units of length such as meters, centimeters, feet, inches,

In the given question,

(a) The correct trigonometric ratio to use in this problem is the sine ratio, which relates the opposite side to the hypotenuse in a right triangle. In this case, we are given the angle A and we want to find the length of the opposite side, which is the distance from the top of the ravine to Lucy. Therefore, we can use the sine ratio as follows:

sin(A) = opposite/hypotenuse

(b) We can set up the equation using the given information as follows:

sin(17°) = opposite/150

where opposite is the length of the repel line that we want to find.

(c) To solve for the length of the repel line, we can rearrange the equation as follows:

opposite = sin(17°) x 150

opposite = 0.2924 x 150

opposite ≈ 44

Therefore, the length of the repel line needed is approximately 44 feet (rounded to the nearest whole number).

To know more about length , visit:

https://brainly.com/question/30100801

#SPJ1

During 2003, a share of stock in Coca-Cola Company sold for $39. Michelle bought 300 shares. During 2008, the price hit $56 per share, but she decided to keep them. By 2016, the price of a share had fallen to $44, and she had to sell them because she needed money to buy a new home. Express the decrease in price as a percent of the price in 2008. Round to the nearest tenth of a percent.

Answers

Answer: 21.4%

Step-by-step explanation: Find the decrease in price per share from 2008 to 2016

=$56- $44

=$12 decrease

Divide by the price per share in 2008

=$12/$56

=0.2142

=21.4% decrease

A fair coin is tossed four times, and the random variable X is the number of heads in the first three tosses and the random variable Y is the number of heads in the last three tosses. (a) What is the joint probability mass function of X and Y ? (b) What are the marginal probability mass functions of X and Y ? (c) Are the random variables X and Y independent? (d) What are the expectations and variances of the random variables X and Y ? (e) If there is one head in the last three tosses, what is the conditional probability mass function of X? What are the conditional expectation and variance of X?

Answers

(a) The joint probability mass function of X and Y is:

P(X=3,Y=3) = 1/16; P(X=2,Y=3) = 1/16; P(X=2,Y=2) = 2/16; P(X=2,Y=1) = 1/16

(b) The marginal probability mass functions of X and Y are:

P(X=0) = 6/16, P(X=1) = 5/16, P(X=2) = 4/16, P(X=3) = 1/16

(c) X and Y are not independent.

(d) E(X) = 1.25; Var(X) = 0.9375; E(Y) = 1.25; Var(Y) = 0.9375

(e) P(X=0 | Y=1) = 0.2

(a) To find the joint probability mass function of X and Y, we need to consider all possible outcomes of the first four coin tosses and calculate the probability of each combination of values for X and Y. Let H denote heads and T denote tails. Then the possible outcomes of the first four tosses and their corresponding values of X and Y are:

HHHT: X = 3, Y = 3

HHTH: X = 2, Y = 3

HTHH: X = 2, Y = 2

THHH: X = 2, Y = 1

HHTT: X = 2, Y = 2

HTHT: X = 1, Y = 3

HTTH: X = 1, Y = 2

THHT: X = 1, Y = 1

TTHH: X = 1, Y = 0

HTTT: X = 1, Y = 1

THTH: X = 0, Y = 3

TTHT: X = 0, Y = 2

TTTH: X = 0, Y = 1

TTTT: X = 0, Y = 0

The probability of each outcome can be calculated as (1/2)⁴ = 1/16, since each toss is equally likely to be heads or tails. Therefore, the joint probability mass function of X and Y is:

P(X=3,Y=3) = 1/16

P(X=2,Y=3) = 1/16

P(X=2,Y=2) = 2/16

P(X=2,Y=1) = 1/16

P(X=1,Y=3) = 1/16

P(X=1,Y=2) = 2/16

P(X=1,Y=1) = 1/16

P(X=1,Y=0) = 1/16

P(X=0,Y=3) = 1/16

P(X=0,Y=2) = 1/16

P(X=0,Y=1) = 2/16

P(X=0,Y=0) = 1/16

(b) The marginal probability mass functions of X and Y are:

P(X=x) = ∑y P(X=x, Y=y) for x = 0,1,2,3

P(Y=y) = ∑x P(X=x, Y=y) for y = 0,1,2,3

Using the joint probability mass function from part (a), we get:

P(X=0) = 6/16, P(X=1) = 5/16, P(X=2) = 4/16, P(X=3) = 1/16

P(Y=0) = 6/16, P(Y=1) = 5/16, P(Y=2) = 4/16, P(Y=3) = 1/16

(c) To check if X and Y are independent, we need to compare the joint probability mass function from part (a) to the product of the marginal probability mass functions:

P(X=x, Y=y) ≠ P(X=x) * P(Y=y) for some values of x and y

For example, we have:

P(X=2, Y=2) = 2/16 ≠ (4/16) * (4/16) = P(X=2) * P(Y=2)

Therefore, X and Y are not independent.

(d) The expected value of X is:

E(X) = ∑x x * P(X=x) = 0*(6/16) + 1*(5/16) + 2*(4/16) + 3*(1/16) = 1.25

The variance of X is:

Var(X) = [tex]E(X^2) - (E(X))^2[/tex]

[tex]= \sum x x^2 * P(X=x) - (E(X))^2 = 0^2*(6/16) + 1^2*(5/16) + 2^2*(4/16) + 3^2*(1/16) - 1.25^2 = 0.9375[/tex]

Similarly, the expected value and variance of Y are:

E(Y) = ∑y y * P(Y=y) = 0*(6/16) + 1*(5/16) + 2*(4/16) + 3*(1/16) = 1.25

Var(Y) = [tex]E(Y^2) - (E(Y))^2[/tex] = [tex]\sum y y^2 * P(Y=y) - (E(Y))^2 = 0^2*(6/16) + 1^2*(5/16) + 2^2*(4/16) + 3^2*(1/16) - 1.25^2 = 0.9375[/tex]

(e) If there is one head in the last three tosses, the conditional probability mass function of X is:

P(X=x | Y=1) = P(X=x, Y=1) / P(Y=1) for x = 0,1,2,3

From the joint probability mass function in part (a), we have:

P(X=0, Y=1) = 1/16, P(X=1, Y=1) = 1/16, P(X=2, Y=1) = 1/16, P(X=3, Y=1) = 2/16

P(Y=1) = 5/16

Using these values, we get:

P(X=0 | Y=1) = (1/16) / (5/16) = 0.2

To know more about probability mass function, refer to the link below:

https://brainly.com/question/14263946#

#SPJ11

A particular two-player game starts with a pile of diamonds and a pile of rubies. On

your turn, you can take any number of diamonds, or any number of rubies, or an equal

number of each. You must take at least one gem on each of your turns. Whoever takes

the last gem wins the game. For example, in a game that starts with 5 diamonds and

10 rubies, a game could look like: you take 2 diamonds, then your opponent takes 7

rubies, then you take 3 diamonds and 3 rubies to win the game.

You get to choose the starting number of diamonds and rubies, and whether you go

first or second. Find all starting configurations (including who goes first) with 8 gems

where you are guaranteed to win. If you have to let your opponent go first, what are

the starting configurations of gems where you are guaranteed to win? If you can’t find

all such configurations, describe the ones you do find and any patterns you see

Answers

If your opponent goes first, you are guaranteed to win with 8 gems if

your opponent takes 1, 2, or 3 gems on their first turn.

In general, if there are n gems, you can guarantee a win if your opponent

takes n/2 or fewer gems on their first turn when you go second.

Let's consider the starting configuration of gems with 8 gems total.

If you go first, the maximum number of gems you can take on your first

turn is 4 (either 4 diamonds or 4 rubies or 2 of each).

If you take 4 diamonds, your opponent can take all 4 rubies, leaving you

with no choice but to take the remaining 4 diamonds on your next turn,

which means your opponent will take the last 4 rubies and win. Similarly,

if you take 4 rubies on your first turn, your opponent can take all 4

diamonds and win.

If you take 2 diamonds and 2 rubies on your first turn, your opponent can

mirror your move and take 2 diamonds and 2 rubies, leaving you with 2

diamonds and 2 rubies left. At this point, no matter what you do, your

opponent can take the remaining gems and win.

So, if you go first, there is no way to guarantee a win with 8 gems.

Now let's consider the case where your opponent goes first. If your

opponent takes 1, 2, or 3 gems on their first turn, you can mirror their

move and take the same number of gems, leaving 4, 5, or 6 gems left

respectively.

At this point, no matter what your opponent does, you can take enough

gems to ensure that you take the last gem and win. For example, if there

are 4 gems left, you can take 2 diamonds (or 2 rubies) to leave 2 gems,

and then take the remaining 2 gems on your next turn. Similarly, if there

are 5 gems left, you can take 1 diamond and 1 ruby to leave 3 gems, and

then take the remaining 3 gems on your next turn. And if there are 6

gems left, you can take 2 diamonds and 2 rubies to leave 2 gems, and

then take the remaining 2 gems on your next turn.

for such more questions on maximum number

https://brainly.com/question/29795588

#SPJ11

In a hostel 150 students have food enough for 90 days how many students should be added in the hostel so that the food is enough for only 75 days ?​

Answers

30 students needs to be added for the food to be enough for 75 days

How to calculate the number of students that can be fed for 75 days?

A hostel contains 150 students

They have food that will last them for 90 days

If the food is supposed to last for 75 days, the number of students that will be added can be calculated as follows

150= 90

1= x

cross multiply

x= 150×90

x= 13,500

= 13500/75

= 180

180 students will be fed for 75 days

We initially had 150 students, subtract 150 from 180

180-150

= 30

Hence 30 students needs to be added so the food lasts for 75 days

Read more on students here
https://brainly.com/question/31124500


#SPJ1

Write the following expression as a single summation in terms of k. m k Σ m + 1 Σ %3D k + 5 k = 1 m + 6 k = 1

Answers

The single summation expression in terms of k is:

\sum_[tex]{i=1}^{{m}}[/tex]i(i+1)(i+2) = 2k + 10

What is algebra?

Algebra is a branch of mathematics that deals with mathematical operations and symbols used to represent numbers and quantities in equations and formulas.

We can approach this problem by first expanding the summation expressions on both sides of the equation:

On the left-hand side:

m k Σ m + 1 Σ = ∑[tex]{i=1}^{{m}}[/tex]i{m} i ∑{j=1}^{i+1} j

On the right-hand side:

k + 5 k = 6k

Now, we can combine the two summations on the left-hand side by first fixing the value of i in the inner summation and then summing over all possible values of i:

m k Σ m + 1 Σ = ∑[tex]{i=1}^{{m}}[/tex]i i ∑{j=1}^{i+1} j = ∑_[tex]{i=1}^{{m}}[/tex]i i \left(\frac{(i+1)(i+2)}{2}\right)

Simplifying this expression, we get:

m k Σ m + 1 Σ = \frac{1}{2} \sum_[tex]{i=1}^{{m}}[/tex]ii(i+1)(i+2)

Now, we can express the right-hand side of the equation as a summation in terms of k:

k + 5 k = 6k = \sum_{i=1}^{k+5} 1

Therefore, the original equation can be written as:

\frac{1}{2} \sum_[tex]{i=1}^{{m}}[/tex] i(i+1)(i+2) = \sum_{i=1}^{k+5} 1

Simplifying further, we get:

\frac{1}{2} \sum_[tex]{i=1}^{{m}}[/tex] i(i+1)(i+2) = k + 5

Therefore, the single summation expression in terms of k is:

\sum_[tex]{i=1}^{{m}}[/tex]i(i+1)(i+2) = 2k + 10.

To learn more about algebra from the given link:

https://brainly.com/question/24875240

#SPJ1

Supposed you study family
income in a
random sample of 300 families. You find that the mean
family income is $55,000; the median is $45,000; and
the highest and lowest incomes are $250,000 and $2400,
respectively.

a. How many
families in the sample earned less than
$45,000? Explain how you know.

c. Based on the given information, can you determine how
many families earned more than $55,000? Why or why not?

Answers

a. 150 families in the sample earned less than $45,000.

b. We can nοt determine hοw many families earned mοre than $ 55,000 exactly.

What is incοme?

The term “incοme” generally refers tο the amοunt οf mοney, prοperty, and οther transfers οf value received οver a set periοd οf time in exchange fοr services οr prοducts.

Here, we have

Given:

Suppοsed yοu study family incοme in a randοm sample οf 300 families. Yοu find that the mean family incοme is $55,000; the median is $45,000; and the highest and lοwest incοmes are $250,000 and $2400, respectively.

a. 150 families in the sample earned less than $45,000 because the median is the middle value in the οrdered data.

Median = 45,000/300

=  150

b. We can nοt determine hοw many families earned mοre than $ 55,000 exactly. It will be less than half. Because $55,000 is the mean value, it is nοt based οn the οrder.

To learn more about the income from the given link

https://brainly.com/question/31415789

#SPJ1

Then write t2 as a linear combination of the In P2, find the change-of-coordinates matrix from the basis B{1 -5t,-2+t+ 1 1t,1+4t polynomials in B.

Answers

t2 as a linear combination of the In P2 can be written as:                                 t^2 = (-1/7)(1 - 5t) - (4/7)(-2 + t + t^2). The change-of-coordinates matrix from B to S is: [ -1/35 2/7 -1/7 ]

                        [ -1/35 1/7 -4/7 ]

                          [ -1/35 0 0 ]

Let P1(t) = 1 - 5t and P2(t) = -2 + t + t^2 be the basis polynomials for B.

To write t^2 as a linear combination of P1(t) and P2(t), we need to find constants a and b such that:

t^2 = a P1(t) + b P2(t)

Substituting in the expressions for P1(t) and P2(t), we get:

t^2 = a(1 - 5t) + b(-2 + t + t^2)

Rearranging terms, we get:

t^2 = (b - 5a) t^2 + (t + 5a - 2b)

Equating coefficients of t^2 and t on both sides, we get:

b - 5a = 1

5a - 2b = -2

Solving for a and b, we get:

a = -1/7

b = -4/7

Therefore, we can write t^2 as:

t^2 = (-1/7)(1 - 5t) - (4/7)(-2 + t + t^2)

To find the change-of-coordinates matrix from the basis B to the standard basis S = {1, t, t^2}, we need to express each basis vector of S as a linear combination of the basis polynomials in B.

We have:

1 = -1/35 (9 P1(t) - 20 P2(t))

t = 2/7 P1(t) + 1/7 P2(t)

t^2 = -1/7 P1(t) - 4/7 P2(t)

Therefore, the change-of-coordinates matrix from B to S is:

[ -1/35 2/7 -1/7 ]

[ -1/35 1/7 -4/7 ]

[ -1/35 0 0 ]

Know more about matrix here:

https://brainly.com/question/27929071

#SPJ11

3. Please write down the following equations in expanded forms (by replacing i,j,k,... by 1, 2,3):
3.1) Aijb j + fi =0
3.2) Aij
3.3) Aikk = Bij + Ckkδ ij = Bimm

Answers

The expanded form of equations, 3.1 is A11b1 + A12b2 + A13b3 + f1 = 0, A21b1 + A22b2 + A23b3 + f2 = 0, A31b1 + A32b2 + A33b3 + f3 = 0, 3.2 is A11, A12, A13, A21, A22, A23, A31, A32, and A33 and 3.3 is A11δ11 + A22δ22 + A33δ33 = B11m + B22m + B33m, where δ is the Kronecker delta function.

In mathematics and science, equations are frequently expressed in a compact form to represent complicated systems or connections. However, to comprehend their separate components or solve them numerically, these equations must frequently be expanded. To extend the equations and describe them more thoroughly, we substituted the variables i, j, and k with their corresponding values 1, 2, and 3.

We have enlarged the matrix equation Aijbj + fi = 0 in equation 3.1 to reflect three different equations, each corresponding to a row in the matrix. This allows us to separately solve the variables in each row and derive a solution for the full matrix.

We enlarged the equation Aikk = Bij + Ckkδij = Bimm in equation 3.3 to represent three independent equations, each corresponding to a diagonal element in the matrix. Here, δij is the Kronecker delta, which allows us to distinguish between diagonal and off-diagonal components. This is frequently beneficial in solving matrices-based problems since diagonal elements have specific features and can be solved more readily than off-diagonal elements.

Learn more about Expanded forms:

https://brainly.com/question/20511638

#SPJ11

I think of a number, take away 1 and multiply the result by 3

Answers

Answer:

3(x - 1)

Step-by-step explanation:

Let x be the number.

3(x - 1)

Answer:

y= what u get after calculation

x = number that u think

so

y=3(x-1)

Kiran has 16 red balloons and 32 white
balloons. Kiran divides the balloons into
8 equal bunches so that each bunch has
the same number of red balloons and
the same number of white balloons.
The total number of balloons is 16 + 32. Write an equivalent expression that
shows the number of red and white balloons in each bunch.
Use the form a(b + c) to write the equivalent expression, where a represents the
number of bunches of balloons.
Enter an equivalent expression in the box.
16 + 32 =

Answers

The equivalent expression to show the number of red and white balloons in each bunch is 8(2 + 4)

How to write equivalent expression?

Number of red balloons = 16

Number of white balloons = 32

Number of bunches of balloons = 8

Red balloons in each bunch = 16/8

= 2

White balloons in each bunch = 32/8

= 4

Where,

a = the number of bunches of balloons.

b = number of red balloons in each bunch

c = number of white balloons in each bunch

Equivalent expression in the form a(b + c)

So therefore, the equivalent expression can be written as;

8(2 + 4)

Read more on equivalent expression:

https://brainly.com/question/15775046

#SPJ1

CODES Use the following information to solve. A bank gives each new customer a 4-digit code number which
allows the new customer to create their own password. The code number is assigned randomly from the digits 1, 3,
5, and 7, and no digit is repeated.
8. What is the probability that the code number for a new customer will begin with a 7?

Answers

Answer:

Step-by-step explanation: There are four possible digits that the code number can begin with: 1, 3, 5, or 7. Since each of these digits is equally likely to be selected, the probability of the code number beginning with a 7 is 1/4 or 0.25. Therefore, the probability that the code number for a new customer will begin with a 7 is 0.25 or 25%.

Every year, Silas buys fudge at the state fair.He buys two types: peanut butter and chocolate.This year he intends to
buy $24 worth of fudge.If chocolate costs $4 per pound and peanut butter costs $3 per pound.
what are the different combinations of fudge that he can purchase if he only buys whole pounds of fudge?
O Chocolate
8
4
0
Chocolate
0
O Chocolate Peanut Butter
1
2
3
3
6
Peanut Butter
O Chocolate
6
3
1
0
3
6
6
3
0
Peanut Butter
8
0
Peanut Butter
1
2
3

Answers

The different combinations of fudge that Silas can purchase are:

8 pounds of peanut butter fudge and 0 pounds of chocolate fudge

6 pounds of peanut butter fudge and 4 pounds of chocolate fudge

4 pounds of peanut butter fudge and 8 pounds of chocolate fudge

2 pounds of peanut butter fudge and 12 pounds of chocolate fudge

0 pounds of peanut butter fudge and 16 pounds of chocolate fudge

How to find  the different combinations of fudge that he can purchase if he only buys whole pounds of fudge

Chocolate (x)  Peanut Butter (y)         Cost

0                              8                                  $24

4                              6                                  $24

8                              4                                  $24

12                              2                                  $24

16                               0                                  $24

We can see that there are five different combinations of fudge that Silas can purchase if he only buys whole pounds of fudge:

8 pounds of peanut butter fudge and 0 pounds of chocolate fudge

6 pounds of peanut butter fudge and 4 pounds of chocolate fudge

4 pounds of peanut butter fudge and 8 pounds of chocolate fudge

2 pounds of peanut butter fudge and 12 pounds of chocolate fudge

0 pounds of peanut butter fudge and 16 pounds of chocolate fudge

We can also verify that the cost of each combination is $24.

Learn more about combinations at https://brainly.com/question/4658834

#SPJ1

evaluate the iterated integral. /3 0 9 0 y cos(x) dy dx

Answers

The iterated integral evaluates to approximately 37.45.

To evaluate the iterated integral ∫(from 0 to 3) ∫(from 0 to 9) y*cos(x) dy dx:

1. Start with the inner integral, which is with respect to y: ∫(from 0 to 9) y*cos(x) dy. Integrate y, giving (1/2)y^2*cos(x). Evaluate this from y=0 to y=9, resulting in (1/2)*81*cos(x).

2. Now, move to the outer integral, which is with respect to x: ∫(from 0 to 3) (1/2)*81*cos(x) dx. Integrate cos(x), giving 40.5*sin(x). Evaluate this from x=0 to x=3, resulting in 40.5*(sin(3) - sin(0)).

3. Finally, calculate the value: 40.5*(sin(3) - 0) ≈ 37.45.

To know more about integral click on below link:

https://brainly.com/question/1603463#

#SPJ11

Use the Limit comparison test to determine the convergence or divergence of the series.[infinity]∑n=11n√n2+5

Answers

By Limit comparison test the series ∞∑n=11n√n²+5 converges.

To use the limit comparison test, we need to find a series whose convergence or divergence is known and that is similar to the given series.

Let's consider the series ∞∑n=11n√n²+5 and choose a series that we know converges, such as ∞∑n=1 1/n².

We can now take the limit as n approaches infinity of the ratio of the nth term of the given series to the nth term of the chosen series:

limₙ→∞ (n√(n²+5))/(1/n²)

Simplifying the expression inside the limit, we get:

limₙ→∞ (n√(n²+5))/(1/n²) = lim(n→∞) n³√(1+5/n²)/1 = lim(n→∞) n³/√(n⁶+5n⁴)

Using L'Hopital's rule, we can take the derivative of the numerator and denominator separately with respect to n to get:

limₙ→∞n³/√(n⁶+5n⁴) = lim(n→∞) 3n²/3n⁵/²= lim(n→∞) 3n¹/²)/3n⁵/²) = 0

Since the limit is finite and nonzero, the given series and the chosen series have the same convergence behavior. Therefore, since we know that ∞∑n=1 1/n² converges (by the p-series test with p=2),

we can conclude that the given series ∞∑n=11n√n²+5 also converges.

Learn more about L'Hopital's rule : https://brainly.com/question/30763940

#SPJ11

please answer and il give brainliest

Answers

Answer:

4

Step-by-step explanation:

the answer is 8 square root 2

show that each subfield of z contains q

Answers

Each subfield of Z, which is the set of integers, contains the field of rational numbers (Q).

To show that each subfield of Z contains Q, we can start by understanding what a subfield is. A subfield of a field is a subset that is also a field, meaning it must satisfy certain properties such as closure under addition, subtraction, multiplication, and division (except for division by zero), among others.

In this case, Z is the set of integers, which includes positive integers, negative integers, and zero. Q, on the other hand, is the set of rational numbers, which includes all numbers that can be expressed as the quotient of two integers, where the denominator is not zero.

Now, let's consider any subfield of Z. Since it is a field, it must contain the integers, including positive integers, negative integers, and zero. Since all integers are rational numbers (they can be expressed as the quotient of themselves divided by 1), any subfield of Z must contain all integers, and therefore it must also contain Q, which is the set of rational numbers.

Therefore, we can conclude that each subfield of Z contains Q, as Q is a subset of Z and is also a field, satisfying the properties of closure under addition, subtraction, multiplication, and division (except for division by zero).

To learn more about rational numbers here:

brainly.com/question/17450097#

#SPJ11

Find m angle v which is x from the picture

Answers

Answer: m∠V = 28°

Step-by-step explanation:

     We know that a triangle's angles add up to 180. We will create an equation to solve for x. Then, we will substitute it back into the expression for angle V and simplify.

Given:

(9x - 8) + (2x + 2) + (3x + 4) = 180°

Simplify:

9x - 8 + 2x + 2 + 3x + 4 = 180°

Reorder:

9x + 2x + 3x - 8 + 2 + 4 = 180°

Combine like terms:

14x - 2 = 180°

Add 2 to both sides of the equation:

14x = 182°

Divide both sides of the equation by 13:

x = 13

---

m∠V = 2x + 2

m∠V = 2(13) + 2

m∠V = 28°

Find a general solution to the given Cauchy-Euler equation for t > 0.
t2. d2y/dt2+8tdy/dt-18y=0
the general solution is y(t) =

Answers

The general solution for the Cauchy-Euler equation is a linear combination of the two solutions:

[tex]y(t) = C_1 * t^{-9} + C_2 * t^2[/tex]

To find the general solution to the given Cauchy-Euler equation for t > 0, first, we'll rewrite the equation using the given terms:

[tex]t^2 \frac{d^2y}{dt^2}+ 8t(dy/dt) - 18y = 0[/tex]

Now, we'll use the substitution y(t) = t^m, where m is a constant, to transform the equation into a simpler form:

By using this substitution, we get:

[tex]dy/dt = m * t^{m-1}\\d^{2}y/dt^2= m * (m-1) * t^{m-2}[/tex]

Substitute these expressions back into the original Cauchy-Euler equation:

[tex]t^2 * m * {m-1} * t^{m-2}+ 8t * m * t^{m-1} - 18 * t^m = 0[/tex]

Simplify by dividing both sides by t^(m-2):

[tex]m * (m-1) + 8m - 18t^2 = 0[/tex]

Now, we have a characteristic equation in terms of m:

[tex]m^2 + 7m - 18 = 0[/tex]

Factoring this equation gives:

(m+9)(m-2) = 0

This yields two possible values for m: m1 = -9, m2 = 2

Therefore, the general solution for the Cauchy-Euler equation is a linear combination of the two solutions:

[tex]y(t) = C_1 * t^{-9} + C_2 * t^2[/tex]

Where C1 and C2 are constants determined by any initial conditions.

learn more about the Cauchy-Euler equation,

https://brainly.com/question/12976304

#SPJ11

For the following variables, determine whether r is a function of s, s is a function of r. or neither. r is the denomination of any piece of U.S. paper currency and s is its thickness. Choose the correct answer below. O A. s is a function of r. OB. Neither r nors are functions of each other. O C. ris a function of s. OD. Both r and s are functions of each other.

Answers

The correct answer is: A s is a function of r as the thickness of the paper currency depends on its denomination.

Based on the given information, s is a function of r.

The thickness (s) of any piece of U.S. paper currency is determined by its denomination (r). This means that for a given denomination (r), there is a specific thickness (s) associated with it. However, the reverse may not be true as different denominations of U.S. paper currency can have the same thickness. For example, a $1 bill and a $100 bill may have the same thickness, but they have different denominations.

Therefore, s is a function of r as the thickness of the paper currency depends on its denomination.

Therefore, the correct answer is: A. s is a function of r.

To learn more about function here:

brainly.com/question/12431044#

#SPJ11

Urgently need help!

OAC is a sector of a circle, center O, radius 10m.
BA is the tangent to the circle at point A.
BC is the tangent to the circle at point C.

Angle AOC = 120°


Calculate the area of the shaded region.
Correct to 3 significant figures. (5 marks)

Answers

The area of the shaded region is 36.3  to 3  significant figures

What is the area?

A two-dimensional figure's area is the amount of space it takes up. In other terms, it is the amount that counts the number of unit squares that span a closed figure's surface.

Step one: find the two diagonals of the kite.

The Horizontal diagonal can be obtained using the cosine rule:

AC² = OA²- OC² - 2 *OA*OC* cosθ

       = 10²+ 10² - 2* 10 *10 * cos(120)

AC² = 200

=> AC=√200 = 14.1

The vertical diagonal of the kite can be obtained by Pythagoras' Theorem:

Please note the law in circle geometry which states that a radius and a tangent always meet at right angles.

This implies that triangle OBC is a right-angled triangle, with angle OCB being 90 degrees, and COB being 60 degrees. This is because the diagonal divides the 120-degree angle into half.

cos(60)= 10/OB

=> OB= 10/ cos(60) = 20 m

Step two: Use the dimensions of the two diagonals of the Kite to find the area:

The area of a Kite is obtained using this formula:

area = pq/2, , where p and q are the two diagonals.

area =( 14.1*20)/2 = 141 m²

Step three: Calculate the area of the sector of the circle.

Area of the sector is obtained using this formula

Area =θ/360 * πr²  = 120/360 * 3.14 * 10²  = 104.66 m²

Step Four: Subtract the area of the sector from the area of the kite:

Area of the shaded region will be  141 m²  -  104.66 m²  = 36.34 m²

To learn more about the area from the given link

https://brainly.com/question/25292087

#SPJ1

the radius of a semicircle is 3 millimeters, whats the semicircles area?

Answers

Answer:

14.1mm² (to 1 d.p)

Step-by-step explanation:

area of a circle = πr²

so therefore the area of a semicircle is πr²/2 (because a semicircle is half of a circle)

radius = 3mm

area = π×3²/2

=9/2π

=14.13716....

=14.1mm² (to 1 d.p)

When verifying the stability of the potential coexistence points, you calculated the eigenvalues for each requested point. For x = 8.47*10-8 and the point (30568, 386008), choose the eigenvalue with the larger absolute value. What is the value of this eigenvalue, entering it as a negative number if it is negative? Round your answer to 4 decimal places.

Answers

The eigenvalue with the larger absolute value for the Jacobian matrix at the point (30568, 386008) is approximately 5269.407, which is positive. No need to enter it as a negative number.

The system of equations is

f(x,y) = 9x^2 + 3x + y - 30 = 0

g(x,y) = 3x^2 + xy - 10^6 = 0

The Jacobian matrix J is

J(x,y) = [ df/dx df/dy ]

[ dg/dx dg/dy ]

where

df/dx = 18x + 3

df/dy = 1

dg/dx = 6x + y

dg/dy = x

Evaluated at the point (30568, 386008), we have

df/dx = 18(30568) + 3 = 550149

df/dy = 1

dg/dx = 6(30568) + 386008 = 582216

dg/dy = 30568

So, J(30568, 386008) =

[550149    1]

[582216  30568]

The eigenvalues of J(30568, 386008) are the solutions to the characteristic equation

det(J - λI) = 0

where I is the identity matrix and det denotes the determinant.

The characteristic equation is

(550149 - λ)(30568 - λ) - 582216 = 0

Expanding and simplifying this expression, we get

λ^2 - 855717λ + 166573528 = 0

Using the quadratic formula, we get

λ = (855717 ± √(855717^2 - 4(166573528))) / 2

λ ≈ 5269.4073 or λ ≈ 315.5927

The eigenvalue with the larger absolute value is 5269.4073. Since it is positive, we don't need to enter it as a negative number. Rounding to 4 decimal places, we get

5269.4073 ≈ 5269.407

To know more about eigenvalues:

https://brainly.com/question/29749542

#SPJ4

--The given question is incomplete, the complete question is given

" When verifying the stability of the potential coexistence points, you calculated the eigenvalues for each requested point. For x = 8.47*10-8 and the point (30568, 386008), choose the eigenvalue with the larger absolute value. Here, f(x,y) = 9x^2 + 3x + y - 30 = 0 and g(x,y) = 3x^2 + xy - 10^6 = 0What is the value of this eigenvalue, entering it as a negative number if it is negative? Round your answer to 4 decimal places. Your Answer:"--

Trapezium: Parallel side 1 is 8m Parallel side 2 is 10m and area is 126m square. What is the Height? Show your working.

Answers

Answer:

the height is 14m

Step-by-step explanation:

[tex]h=2*\frac{A}{a+b} =2 *\frac{126}{8+10} =14[/tex]

indira makes a box-and-whisker plot of her data. she finds that the distance from the minimum value to the first quartile is greater than the distance between the third quartile and the maximum value. which is most likely true? the mean is greater than the median because the data is skewed to the right.

Answers

The most likely true statement is that the median is greater than the mean because the data is skewed to the left.

Based on the information provided, Indira makes a box-and-whisker plot of her data and finds that the distance from the minimum value to the first quartile is greater than the distance between the third quartile and the maximum value. Which is most likely true? The answer is: the median is greater than the mean because the data is skewed to the left.

Here's a step-by-step explanation,

1. The distance from the minimum value to the first quartile being greater than the distance between the third quartile and the maximum value indicates that there is more data spread out on the left side of the plot.

2. This spread causes the data to be skewed to the left.

3. When data is skewed to the left, the median (Q2) is typically greater than the mean (average), as the mean gets pulled towards the longer tail on the left side.

So, the most likely true statement is that the median is greater than the mean because the data is skewed to the left.

Learn more about median here,

https://brainly.com/question/10322721

#SPJ11

The graph of f(x) and (x) are shown below. For what interval is the value of (f-g) (x)

Answers

The interval the value of the function (f - g)(x) is negative is (-∞, 2]

What is a function?

A function is a rule or definition that maps an input variable unto an output such that each input has exactly one output.

The equations on the possible graphs in the question, obtained from a similar question posted online are;

f(x) = x - 3

g(x) = -0.5·x

(f - g)(x) = x - 3 - (-0.5·x) = 1.5·x - 3

(f - g)(x) = 1.5·x - 3

Therefore; The x-intercept of the function (f - g)(x) = 1.5·x - 3 is; (f - g)(x) = 0 1.5·x - 3

1.5·x - 3 = 0

1.5·x = 3

x = 3/1.5 = 2

x = 2

The y-intercept is the point where, x = 0, therefore;

(f - g)(0) = 1.5×0 - 3 = -3

The interval the function is negative is therefore;

-∞ < x ≤ 2, which is (-∞, 2]

The equations of the possible graphs of the function, obtained from a question posted online are;

f(x) = x - 3, g(x) = -0.5·x

The interval the function (f - g)(x) is negative is required

Learn more on the x- and y-intercept of a function here: https://brainly.com/question/29001994

#SPJ1

HELP PLEASE

A cylindrical can of cocoa has the dimensions shown at the right. What is
the approximate area available for the label?

Answers

If a cylindrical can of cocoa has the dimensions radius of 4 in , height of 3 in then the area of label is 75.36 square inches

We have a cylindrical can of cocoa.

The radius of the can R = 4 in

The height of the can H = 3 in

We know the formula for finding the lateral surface area of the cylinder is given by:

A = 2πRH

A = 2π×4×3

A = 24π

A=24×3.14

A=75.36 square inches

Hence, the approximate area available for the label is 75.36 square inches

To learn more on Three dimensional figure click:

https://brainly.com/question/2400003

#SPJ1

WE
L
!
At what rate per cent per annum will $400 yield an interest of $78 in 1/2
years?
Your answer​

Answers

$400 will yield an interest of $78 in 1/2 years at the rate of 39%  per annum. We can use the formula for simple interest to calculate the rate.

How can we use simple interest?

Simple interest is calculated based on the initial amount (principal) and time period, without considering any additional interest on the accumulated interest.

Using the formula for simple interest:

Given:

Principal amount (P) = $400

Simple interest (I) = $78

Time (T) = 1/2 years

To calculate the rate (R):

Simple Interest (I) = (Principal amount (P) × Rate (R) × Time (T)) / 100

Plugging in the given values:

$78 = ($400 × R × 1/2) / 100

Multiplying both sides by 100 to get rid of the fraction:

$78 * 100 = $400 * R * 1/2

7800 = $200 * R

Dividing both sides by $200 to isolate R:

R = 7800 / 200

R = 39

Thus, the rate of interest per annum is 39%.

Read more about simple interest at brainly.com/question/20690803

#SPJ1

Graph the integrand, and use area to evaluate the definite integral ∫4−4√16−x2dx.The value o f the definite integral ∫4−4√16−x2dx. as determined by the area under the graph of the integral, is _____.(Type an exact answer, using n as needed)

Answers

The value of the definite integral ∫(4 - 4√(16 - x^2)) dx, as determined by the area under the graph of the integral from x = -4 to x = 4, is 8π.

To evaluate the definite integral ∫(4 - 4√(16 - x^2)) dx:

We will first graph the integrand and then find the area under the curve.

Step 1: Graph the integrand
The integrand function is f(x) = 4 - 4√(16 - x^2).

This represents a semicircle with a radius of 4 and centered at the origin (0, 4).

The function is transformed from the standard semicircle equation by subtracting 4 from the square root term.

Step 2: Determine the limits of integration
The given integral is a definite integral with limits -4 to 4.

This means that we will find the area under the curve of the function f(x) from x = -4 to x = 4.

Step 3: Calculate the area under the curve
Since the function represents a semicircle, we can find the area of the whole circle and then divide by 2.

The area of a circle is given by A = πr^2, where r is the radius. In our case, r = 4.

A = π(4^2) = 16π

Now, we'll divide the area by 2 to get the area of the semicircle.

Area of semicircle = (1/2) * 16π = 8π

Step 4: Determine the value of the definite integral
The value of the definite integral ∫(4 - 4√(16 - x^2)) dx, as determined by the area under the graph of the integral from x = -4 to x = 4, is 8π.

To know more about Definite integrals:

https://brainly.com/question/29974649

#SPJ11

Other Questions
HELP! The line plot represents data collected from a used bookstore.Which of the following describes the spread and distribution of the data represented? The data is almost symmetric, with a range of 9. This might happen because the bookstore offers a sale price for all books over $6. The data is skewed, with a range of 9. This might happen because the bookstore gives away a free tote bag when you buy a book over $7. The data is bimodal, with a range of 4. This might happen because the bookstore sells most books for either $3 or $6. 3) Using Ampere's Law find the magnetic field as a function of the radial coordinater in the following regions for this co-axial wire system: 204 copper I i) ocrcal2 ii) a/2 Recently, Tom found he was a distant relative of General James Wolfe who died at the battle on the Plains of Abraham in 1759. When he died in 1759 he left $100 in his will which now belongs to Tom. The money has been in a savings account where it has been earning interest at 3.5% per year, compounded annually. How much will Tom have in the year 2022? Round to the nearest cent, do not put $ sign or commas in answer. Paulina sells beef in a competitive market where the price is $5 per pound. Her total revenue and total costs are given in the table below.Instructions: Round your answers to the nearest dollar and include a negative sign if appropriate.a. Fill out the table.b. At what quantity does marginal revenue equal marginal cost?_____________pounds. On a pro-forma balance sheet, the cash balance comes directly froma.the cash receipts budget.b.the general ledger.c.the cash budget.d.the bank statement. You have been provided with three test tubes. One of them contains distilled water and the other two contain an acidic solution and a basic solution, respectively. If you are giver only red litmus paper, how will you identify the contents of each test tube? Hey I really need help. How do I make a histogram with this information??APPLY YOUR KNOWLEDGE 1. 6 The Changing Fate of America. In 1980, approximately 20% of adults aged 1834 were considered minorities, reporting their ethnicity as other than non- Hispanic white. By the end of 2013, that percentage had more than doubled. How are minorities between the ages of 18 and 34 distributed in the United States? In the country as a whole, 42. 8% of adults aged 1834 are considered minorities, but the states vary from 8% in Maine and Vermont to 75% in Hawaii. Table 1. 2 presents the data for all 50 states and the District of Columbia. Make a histogram of the percents using classes of width 10% starting at 0%. That is, the first bar covers 0% to < 10%, the second covers 10% to < 20%, and so on. (Make this histogram by hand, even if you have software, to be sure you understand the process. You may then want to compare your histogram with your software's choice. ) The Venn diagram below shows plant and animal characteristicsPlants- Make theirown food- Have cell wallsBothXAnimals-Consumeother organismsfor food -Do not havecell wallsWhich characteristic shared by plants and animals belongs in the space marked X? calculate the minimum safety factor for the cylinder if it is made of class 50 gray cast iron with a tensile ultimate strength (ut)of 362 mpa and a compressive ultimate strength (uc)of -1130 mpa Tyson Company has a pre-tax net cash inflow of $1,200,000. The company can claim depreciation expense of $800,000 this year, and is subject to a combined income tax rate of 24%. What is the after-tax cash inflow for the year?$1,104,000.$456,000.$1,200,000.$400,000.$96,000. Please help my career is a veterinarian!4. What path could you take in high school to help prepare you for this career? For example: AP courses, career and technical education, etc. Which is most appropriate and why?5. What post-secondary routes (education after high school) could also help you to prepare for this career? Explain or describe. select the choice that correctly ranks the anions in order of leaving group ability (worst to best).methoxide < chloride < acetate < tosylate tosylate < acetate < chloride < methoxide tosylate < chloride < acetate < methoxide methoxide < acetate < chloride < tosylate Given this information, which of the following is an appropriate projection that would test the hypothesis that there is a link between nitrates in drinking water and methemoglobinemia? O Methemoglobinemia will have no effect on infants who live near private wells or public wells. O The number of cases of methemoglobinemia will be lower among infants who drink from public wells compared to infants who drink from private wells. O Infant diseases are caused by living in areas that have public and private wells. how do french speakers describe the household chores they do? how do french speakers describe their houses? how do they ask where things are located in a house? When computing complexity, long running operations that occur infrequently may beA. amortizedB. make the complexity non-linear.C. made available to static membersD. ignoredE. None of the above. Why is the Grignard reagent prepared in excess relative to the aldehyde?a) Preparing the Grignard is the purpose of the experimentb) The Grignard reagent is fragile, and some may be lost to moisture.c) The Grignard reagent is less expensive to prepare. A company applies for a 170,000 mortgage loan to be repaid with fixed monthly installments at a 2,25% annual nominal interest rate compounded over 25 years. Please, find the amounts that would correspond to the following items:a) The amount of the monthly installments, the total amount paid, and the interest to be paid over those 30 years.b) The principal pending at the end of year 10 and the amount of interest paid in those 10 years.c) The amounts corresponding to the first 4 years of the loan amortization schedule. joe slam, the owner of slam supplies, withdrew cash from the business for personal use. the general journal entry made by slam supplies will include a: A firm that chooses Strategy C, as portrayed in Chapter 29, should plan toMultiple Choice(A)have a permanent need for short-term borrowing.(B)have high current cash holdings.(C)use low or no short-term debt and more long-term financing.(D)increase its dividend soon. A net of a rectangular prism is shown.A net of a rectangular prism with dimensions 7 centimeters by 3 and three-fifths centimeters by 2 and two-fifths centimeters.What is the surface area of the prism? four hundred five and three twenty-fifths cm2 two hundred two and fourteen twenty-fifths cm2 one hundred one and seven twenty-fifths cm2 fifty and sixteen twenty-fifths cm2