find x such that the matrix is equal to its own inverse. a = 5 x −6 −5

Answers

Answer 1

For the value of x = 4/5 (= 0.8) the matrix a = [tex]\left[\begin{array}{cc}5&x\\-6&-5\end{array}\right][/tex] is equal to its own inverse.

The matrix a is given as,

a = [tex]\left[\begin{array}{cc}5&x\\-6&-5\end{array}\right][/tex]

The value of x is such that a is equal to its inverse, that is,

a = [tex]a^{-1}[/tex] ___(1)

Inverse of an matrix, say a, can be calculated using the formula ,

[tex]a^{-1}\\[/tex] = (adjoint of matrix a) / (determinant of matrix a)

Therefore, Adjoint of matrix a = [tex]\left[\begin{array}{cc}-5&-x\\6&5\end{array}\right][/tex]

where,

As element of the adjoint matrix in row 1 and column 1 is cofactor of the matrix a in row 1 and column 1,  

As element of the adjoint matrix in row 1 and column 2 is cofactor of the matrix a in row 1 and column 2,  

As element of the adjoint matrix in row 2 and column 1 is cofactor of the matrix a in row 2 and column 1,

And  as element of the adjoint matrix in row 2 and column 2 is cofactor of the matrix a in row 2 and column 2.

Therefore, determinant of matrix a = (5)(-5) - (-6)(x) = -25 +30x

Thus from the formula of inverse of a matrix we get,

[tex]a^{-1}\\[/tex] = {1/( -25 +30x)} [tex]\left[\begin{array}{cc}-5&-x\\6&5\end{array}\right][/tex]

=[tex]\left[\begin{array}{cc}-5/ (-25 +30x)&-x/ (-25 +30x)\\6/ (-25 +30x)&5/ (-25 +30x)\end{array}\right][/tex] ___(2)

Therefore, equating equation (1) and (2) we get,

[tex]\left[\begin{array}{cc}-5/ (-25 +30x)&-x/ (-25 +30x)\\6/ (-25 +30x)&5/ (-25 +30x)\end{array}\right][/tex] = [tex]\left[\begin{array}{cc}5&x\\-6&-5\end{array}\right][/tex]

⇒ -5/ (-25 +30x) = 5,

-x/ (-25 +30x) = x,

6/ (-25 +30x) = -6,

and 5/ (-25 +30x) = -5

From any one of the above four equation we can equate for the value of x we get,

5/ (-25 +30x) = -5

⇒1/ (-25 +30x) = -1

⇒ 25 - 30x = 1

⇒ 30x = 24

⇒ x =24/30 = 4/5 (=0.8)

To know more about inverse of an matrix here

https://brainly.com/question/30550206

#SPJ4


Related Questions

Find the common ratio of the geometric sequence 16 , − 32 , 64

Answers

Answer:

common ratio r = - 2

Step-by-step explanation:

the common ratio r is calculated as

r = [tex]\frac{a_{2} }{a_{1} }[/tex] = [tex]\frac{-32}{16}[/tex] = - 2

Answer:

-2

Check:

16*-2 is -32

-32 * -2 is 64

Combining independent probabilities. fair six-sided die. You want to roll it enough times to en- sure that a 2 occurs at least once. What number of rolls k is required to ensure that the probability is at least 2/3 that at least one 2 will appear?

Answers

We need to roll the die at least 5 times to ensure that the probability is at least 2/3 that at least one 2 will appear.

To calculate the probability of rolling a 2 on a fair six-sided die, we first need to know the probability of rolling any number on a single roll, which is 1/6.

Since each roll of the die is independent of the previous roll, we can use the formula for the probability of independent events occurring together to find the probability of rolling a 2 at least once in a certain number of rolls.

Let's call the probability of rolling a 2 at least once in n rolls "P(n)". We can find P(n) using the complement rule, which states that the probability of an event occurring is equal to 1 minus the probability of the event not occurring. So, the probability of not rolling a 2 in n rolls is (5/6)^n, since there are 5 possible outcomes (1, 3, 4, 5, or 6) on each roll that is not 2. Therefore, we can write:

P(n) = 1 - (5/6)^n

We want to find the minimum number of rolls needed to ensure that P(n) is at least 2/3, or 0.667. In other words, we want to find the smallest value of n that satisfies the inequality:

P(n) ≥ 2/3

Substituting the formula for P(n), we get:

1 - (5/6)^n ≥ 2/3

By multiplying both sides by -1 and rearranging, we get:

(5/6)^n ≤ 1/3

Taking the natural logarithm of both sides, we get:

n ln(5/6) ≤ ln(1/3)

Dividing both sides by ln(5/6), we get:

n ≥ ln(1/3) / ln(5/6)

Using a calculator, we find that:

n ≥ 4.81

learn more about the probability: https://brainly.com/question/13604758

#SPJ11

(1 point) find the area lying outside =6sin and inside =3 3sin. area =

Answers

The area lying outside the circle r=6sin and inside the circle r=3+3sin is approximately 21.205 square units.

To solve this problem, we need to first understand what the equations =6sin and =3 3sin represent. These are actually equations of circles in polar coordinates, where r=6sin represents a circle with radius 6 units and centered at the origin, and r=3+3sin represents a circle with radius 3 units and centered at (-3,0) in Cartesian coordinates.

The area lying outside the circle r=6sin and inside the circle r=3+3sin can be found by integrating the equation for the area of a polar region, which is:

A = 1/2 ∫ [f(θ)]^2 - [g(θ)]^2 dθ

where f(θ) and g(θ) are the equations for the outer and inner boundaries of the region, respectively.

In this case, we have:

A = 1/2 ∫ (6sin)^2 - (3+3sin)^2 dθ

A = 1/2 ∫ 36sin^2 - (9+18sin+9sin^2) dθ

A = 1/2 ∫ 27sin^2 - 18sin - 9 dθ

To solve this integral, we can use the half-angle identity for sine, which is:

sin^2 (θ/2) = (1-cos θ)/2

Substituting this identity into our integral, we get:

A = 1/2 ∫ [27(1-cos θ)/2] - 18sin - 9 dθ

A = 1/2 ∫ (13.5-13.5cos θ) - 18sin - 9 dθ

A = 1/2 ∫ -18sin - 22.5cos θ - 9 dθ

Integrating each term separately, we get:

A = -9sin θ - 22.5sin θ - 9θ + C

where C is the constant of integration. To find the bounds of integration, we need to find the values of θ where the two circles intersect. Setting the equations equal to each other, we get:

6sin = 3+3sin

3sin = 3

sin θ = 1

θ = π/2

So the bounds of integration are 0 and π/2. Substituting these values into the equation for the area, we get:

A = -9sin(π/2) - 22.5sin(π/2) - 9(π/2) + C - (-9sin 0 - 22.5sin 0 - 9(0) + C)

A = -13.5π/2

Therefore, the area lying outside the circle r=6sin and inside the circle r=3+3sin is approximately 21.205 square units.

To learn more about equation visit;

brainly.com/question/29538993

#SPJ11

an observer views the space shuttle from a distance of x = 2 mi from the launch pad.(a) Express the height of the space shuttle as a function of the angle of elevation θ. (b) Express the angle of elevation as a function of the height h of the space shuttle.

Answers

The angle of elevation is a function of the height of the space shuttle given by θ = arctan(h / 2).

Angle of elevation calculation.

(a) To express the height of the space shuttle as a function of the angle of elevation θ, we can use trigonometry. Let h be the height of the space shuttle above the launch pad. Then, we have:

tan(θ) = h / x

Solving for h, we get:

h = x * tan(θ)

Substituting x = 2 mi, we get:

h = 2 * tan(θ) mi

Therefore, the height of the space shuttle is a function of the angle of elevation θ given by h = 2 * tan(θ) mi.

(b) To express the angle of elevation as a function of the height h of the space shuttle, we rearrange the equation we found in part (a) as follows:

tan(θ) = h / x

tan(θ) = h / 2

Taking the inverse tangent of both sides, we get:

θ = arctan(h / 2)

Therefore, the angle of elevation is a function of the height of the space shuttle given by θ = arctan(h / 2).

Learn more about angle of elevation below.

https://brainly.com/question/88158

#SPJ1

for what values of b are the given vectors orthogonal? (enter your answers as a comma-separated list.) −11, b, 2 , b, b2, b

Answers

The given vectors are:
Vector A = (-11, b, 2)
Vector B = (b, b^2, b)

The values of b for which the given vectors are orthogonal are 0, -3, and 3.

Dot product:


To find the values of b for which the given vectors are orthogonal, we need to use the dot product of the vectors.

To determine if two vectors are orthogonal, their dot product should be equal to zero.

The dot product is calculated as follows:

Dot Product (A, B) = A1 * B1 + A2 * B2 + A3 * B3

Substituting the components of Vector A and Vector B:

(-11 * b) + (b * b^2) + (2 * b) = 0

Now, simplify the equation:

-11b + b^3 + 2b = 0
b^3 - 9b = 0

Factor the equation:

b(b^2 - 9) = 0

Now, we can find the values of b:

b = 0
b^2 - 9 = 0
b^2 = 9
b = ±3

So, the values of b for which the given vectors are orthogonal are 0, -3, and 3.

To know more about Dot product:

https://brainly.com/question/29097076

#SPJ11

Mrs. Brown owns a cake shop where she bakes 30 cupcakes per day. In Christmas, as the demand for the cup cakes increases, she increased the number of cupcakes by 5 over the previous day.

Which equation can be used to find the recursive process that describes the number of cupcakes baked by Mrs. Brown after the mth day after 20th of December?
A.
To find the number of cupcakes baked by Mrs. Brown on the mth day, add 30 to the number of cupcakes baked on the (m-1)th day 20th of December. Am = A(m-1) + 30, where Ao = 5
B.
To find the number of cupcakes baked by Mrs. Brown on the mth day, subtract 2 from the number of cupcakes baked on the (m-2)th day 20th of December. Am = A(m-2) - 2, where Ao = 5
C.
To find the number of cupcakes baked by Mrs. Brown on the mth day, subtract 5 from the number of cupcakes baked on the (m-1)th day 20th of December. Am = A(m-1) - 5, where Ao = 30
D.
To find the number of cupcakes baked by Mrs. Brown on the mth day, add 5 to the number of cupcakes baked on the (m-1)th day 20th of December. Am = A(m-1) + 5, where Ao = 30

Answers

The correct equation is D. To find the number of cupcakes baked by Mrs. Brown on the mth day, add 5 to the number of cupcakes baked on the (m-1)th day 20th of December. Am = A(m-1) + 5, where Ao = 30.

This is because Mrs. Brown increases the number of cupcakes by 5 over the previous day, so each day the number of cupcakes baked increases by 5. The initial value is 30, which is Ao. Therefore, to find the number of cupcakes baked on any given day, we add 5 to the number baked on the previous day.

Therefore, the correct answer is D.

To know more about number of cupcakes:

https://brainly.com/question/13006008

#SPJ1

pls help me i’m struggling!!

Answers

Answer: DC
Explanation: DC intersects the center of the circle, as a radius does, and it intersects half the circle, unlike a diameter (BD), which would fully intersect the center of a circle.

There are seven people fishing at Lake Connor three have fishing license and four do not an inspector chooses to do two of the people are random what is the probability that the first person chosen does not have a license and the second one does

Answers

In a case whereby There are seven people fishing at Lake Connor three have fishing license and four do not an inspector chooses to do two of the people are random probability that the first person chosen does not have a license and the second one does is 2/7

How can the probability be determined?

Based on the given information, total number of the people = 7

those with fishing license =3

those without fishing license =4

chance of choosing someone without a license=4/7

chance of choosing someone with a license=3/6

Theerefore probability that the first person chosen does not have a license and the second one does= 4/7 * 3/6 =2/7

Learn more about probability at:

https://brainly.com/question/13604758

#SPJ1

find a parametrization of the tangent line to ()=(ln()) −7 15r(t)=(ln(t))i t−7j 15tk at the point =1.

Answers

The parametrization of the tangent line to the function f(x) = ln(x) - 7/15x^3 at the point (1,-46/15) is r(t) = <1, -46/15> + t<1, -2/3>.

To find the tangent line at a point, we need the slope of the tangent line, which is the derivative of the function evaluated at that point. So, we first find the derivative of f(x):

f'(x) = 1/x - 7/5 x^2

Then, we evaluate f'(1) to find the slope at x = 1:

f'(1) = 1/1 - 7/5(1)^2 = -2/5

Thus, the slope of the tangent line is -2/5. We also know that the point of tangency is (1,-46/15), so we can use the point-slope form to find the equation of the tangent line:

y - (-46/15) = (-2/5)(x - 1)

Simplifying, we get:

y = (-2/5)x - 16/3

Now we can write the parametrization of the tangent line as r(t) = <1, -46/15> + t<1, -2/3>. This is because the direction vector of the tangent line is <1, -2/3>, which is the same as the slope of the line, and the point on the line is (1,-46/15).

So, to get the equation of the line in vector form, we start with the point <1, -46/15>, and add a scalar multiple of the direction vector <1, -2/3>. Thus, the parametrization of the tangent line is r(t) = <1, -46/15> + t<1, -2/3>.

To learn more about parametrization, visit:

https://brainly.com/question/20038346

#SPJ11

The parametrization of the tangent line to the function f(x) = ln(x) - 7/15x^3 at the point (1,-46/15) is r(t) = <1, -46/15> + t<1, -2/3>.

To find the tangent line at a point, we need the slope of the tangent line, which is the derivative of the function evaluated at that point. So, we first find the derivative of f(x):

f'(x) = 1/x - 7/5 x^2

Then, we evaluate f'(1) to find the slope at x = 1:

f'(1) = 1/1 - 7/5(1)^2 = -2/5

Thus, the slope of the tangent line is -2/5. We also know that the point of tangency is (1,-46/15), so we can use the point-slope form to find the equation of the tangent line:

y - (-46/15) = (-2/5)(x - 1)

Simplifying, we get:

y = (-2/5)x - 16/3

Now we can write the parametrization of the tangent line as r(t) = <1, -46/15> + t<1, -2/3>. This is because the direction vector of the tangent line is <1, -2/3>, which is the same as the slope of the line, and the point on the line is (1,-46/15).

So, to get the equation of the line in vector form, we start with the point <1, -46/15>, and add a scalar multiple of the direction vector <1, -2/3>. Thus, the parametrization of the tangent line is r(t) = <1, -46/15> + t<1, -2/3>.

To learn more about parametrization, visit:

https://brainly.com/question/20038346

#SPJ11

let bold r left parenthesis t right parenthesis equals t bold i plus t cubed bold j plus t bold k the tangential component of acceleration is

Answers

The tangential component of acceleration is:
Bold a subscript T left parenthesis t right parenthesis equals 18 t cubed divided by square root of 1 plus 9 t to the power of 4 plus 1

To find the tangential component of acceleration:

We first need to find the velocity vector.

Taking the derivative of the position vector gives us:
bold v left parenthesis t right parenthesis equals bold i plus 3 t squared bold j plus bold k
The tangential component of acceleration is the component of acceleration that is parallel to the velocity vector.

Taking the derivative of the velocity vector gives us:
bold a left parenthesis t right parenthesis equals 0 bold i plus 6 t bold j plus 0 bold k
So the tangential component of acceleration is:
bold a subscript T left parenthesis t right parenthesis equals bold a left parenthesis t right parenthesis dot bold v left parenthesis t right parenthesis divided by the magnitude of bold v left parenthesis t right parenthesis
Since the velocity vector is:
bold v left parenthesis t right parenthesis equals bold i plus 3 t squared bold j plus bold k
The dot product of bold a and bold v is:
bold a left parenthesis t right parenthesis dot bold v left parenthesis t right parenthesis equals 0 times 1 plus 6 t times 3 t squared plus 0 times 1 equals 18 t cubed
The magnitude of the velocity vector is:
magnitude of bold v left parenthesis t right parenthesis equals square root of 1 plus 9 t to the power of 4 plus 1
So the tangential component of acceleration is:
bold a subscript T left parenthesis t right parenthesis equals 18 t cubed divided by square root of 1 plus 9 t to the power of 4 plus 1

To know more about Tangential component:

https://brainly.com/question/31503185

#SPJ11

Yolanda wants to replace the grass in this triangular section of her yard with mulch. A bag of mulch costs $4.85 and covers 3 square feet. Which of the following statements accurately describe this situation? Select all that apply.

Yolanda wants to replace the grass in this triangular section of her yard with mulch. A bag of mulch costs $4.85 and covers 3 square feet. Which of the following statements accurately describe this situation? Select all that apply.

Answers

Answer:

Step-by-step explanation:

(1 point) find the interval of convergence for the given power series. ∑n=1[infinity](x−9)nn(−5)n

Answers

Answer :-The interval of convergence for the given power series is (4, 14).

The power series in question is ∑n=1 to infinity [(x−9)^n]/[n(-5)^n].

To find the interval of convergence, we will use the Ratio Test:

1. Compute the absolute value of the ratio between the (n+1)th term and the nth term:

|(a_(n+1))/a_n| = |[((x-9)^(n+1))/((n+1)(-5)^(n+1))]/[((x-9)^n)/(n(-5)^n)]|

2. Simplify the ratio:

|(a_(n+1))/a_n| = |(x-9)/((-5)(n+1))|

3. Take the limit as n approaches infinity:

lim (n→∞) |(x-9)/((-5)(n+1))|

4. For the Ratio Test, if the limit is less than 1, then the series converges. In this case:

|(x-9)/(-5)| < 1

5. Solve the inequality to find the interval of convergence:

-1 < (x-9)/(-5) < 1

Multiply each side by -5 (and reverse the inequalities since we're multiplying by a negative number):

5 > x-9 > -5

Add 9 to each side:

14 > x > 4

So, the interval of convergence for the given power series is (4, 14).

learn more about "series converges":-https://brainly.com/question/15415793

#SPJ11

(CO 4) In a situation where the sample size was decreased from 39 to 29, what would be the impact on the confidence interval? a. It would become narrower with fewer values b. It would become wider with fewer values c. It would become narrower due to using the z distribution d. It would remain the same as sample size does not impact confidence intervals

Answers

The correct answer is b. It would become wider with fewer values. This is because as the sample size decreases, the variability of the sample mean increases, leading to a wider confidence interval.

The distribution used for the confidence interval calculation (whether z or t) is not impacted by the sample size, only the size of the sample itself affects the confidence interval.

In a situation where the sample size was decreased from 39 to 29, the impact on the confidence interval would be (b) It would become wider with fewer values.

A smaller sample size generally leads to a wider confidence interval, as the decreased sample size provides less information about the overall distribution.

Visit here to learn more about Sample Size:

brainly.com/question/30509642

#SPJ11

A couple of two-way radios were purchased from different stores. Two-way radio A can reach 6 miles in any direction. Two-way radio B can reach 12.88 kilometers in any direction.

Part A: How many square miles does two-way radio A cover? Use 3.14 for π and round to the nearest whole number. Show every step of your work. (3 points)

Part B: How many square kilometers does two-way radio B cover? Use 3.14 for π and round to the nearest whole number. Show every step of your work. (3 points)

Part C: If 1 mile = 1.61 kilometers, which two-way radio covers the larger area? Show every step of your work. (3 points)

Part D: Using the radius of each circle, determine the scale factor relationship between the radio coverages. (3 points)

Answers

A. Two-way radio A covers 113 square miles.

B. Rounded to the nearest whole number, two-way radio B covers 523 square kilometers.

C. Comparing the areas, we can see that radio B covers the larger area with 523 square kilometers.

D. The coverage area of radio B is approximately 1.33 times larger than the coverage area of radio A.

What is radius?

Radius is a term used in geometry to describe the distance from the center of a circle or sphere to any point on its circumference or surface, respectively. It is usually denoted by the letter "r" and is measured in units of length, such as inches, centimeters, or meters. The radius of a circle is half of its diameter, while the radius of a sphere is one-half of its diameter.

Part A:

The area covered by two-way radio A can be calculated using the formula for the area of a circle:

Area = π x radius²

Radius of radio A = 6 miles

Area = 3.14 x 6²

Area = 113.04 square miles

Rounded to the nearest whole number, two-way radio A covers 113 square miles.

Part B:

The area covered by two-way radio B can also be calculated using the same formula:

Area = π x radius²

Radius of radio B = 12.88 kilometers

Area = 3.14 x (12.88)²

Area = 523.14 square kilometers

Rounded to the nearest whole number, two-way radio B covers 523 square kilometers.

Part C:

To compare the areas covered by the two-way radios, we need to convert the area covered by radio A from square miles to square kilometers, using the conversion factor given:

1 mile = 1.61 kilometers

Therefore, 1 square mile = (1.61)² square kilometers

Area covered by radio A = 113 square miles

Area covered by radio A in square kilometers = 113 x (1.61)²

Area covered by radio A in square kilometers = 290.22 square kilometers

Comparing the areas, we can see that radio B covers the larger area with 523 square kilometers.

Part D:

To determine the scale factor relationship between the radio coverages, we can divide the radius of radio B by the radius of radio A:

Scale factor = radius of radio B / radius of radio A

Scale factor = 12.88 kilometers / 6 miles

Scale factor = 12.88 kilometers / 9.66 kilometers (since 1 mile = 1.61 kilometers)

Scale factor = 1.33

This means that the coverage area of radio B is approximately 1.33 times larger than the coverage area of radio A.

To learn more about distance from the given link

https://brainly.com/question/12356021

#SPJ1

which angle measure is coterminal with the angle 7pi/12? a. 15 degrees b. 125 degrees c. 285 degrees d. 465 degress

Answers

The angle 7π/12 is coterminal with 465.5 degrees.

How to find the coterminal angle of 7π/12?

To find the coterminal angle of 7π/12, we can add or subtract any multiple of 2π until we get an angle between 0 and 2π.

First, we can convert 7π/12 to degrees:

7π/12 = (7/12) * 180 ≈ 105.5 degrees

Next, we can add or subtract 360 degrees to get an angle between 0 and 360 degrees:

105.5 + 360 = 465.5

So the angle 7π/12 is coterminal with 465.5 degrees.

Therefore, the answer is d. 465 degrees.

Learn more about coterminal angle

brainly.com/question/29133154

#SPJ11

Edwin's soccer team has a tradition of going out for pizza after each game. Last week, the team ordered 2 medium pizzas and 4 large pizzas for a total of 56 slices. This week, the team ordered 3 medium pizzas and 3 large pizzas for a total of 54 slices.

Answers

The question isn’t specific
Buh I guess we are looking for the amount contained in a medium slice and a large slice
That will be done simultaneously
Represent medium pizzas with x and large pizzas with y
2x+4y=56–eq 1
3x+3y=54—eq 2
Using the elimination method
2x+4y=56–*3—eq 3
3x+3y=54—*2—eq 4
6x+12y=168—eq 5
6x+6y=108—eq 6
Subtract eq6 from eq 5
Resulting answer is
6y=60
Therefore,y=10
Substitution of y=10 into eq 1

2x+4y=56
2x+4(10)=56
2x+40=56
2x=56-40
2x=16
x=8

Medium pizzas contains 8 slices and large pizzas contains 10 slices

PLS HELP ASAP I DONT UNDERSTAND SLOPE

Answers

Answer:

get a ruler, draw a line trough a to b and count the rise and run

Step-by-step explanation:

6. (a) is there a smallest real number a for which x 26 x is big-o of a x ? explain your answer. (b) is there a smallest integer number a for which x 26 x is big-o of a x ? explain your answer.

Answers

(a) Yes, there is a smallest real number a for which x^26 is big-O of ax. To find this value, we can use the limit definition of big-O notation.

We want to find a value of a such that x^26 is less than or equal to ax multiplied by some constant C, for all x greater than some value N. Mathematically, we can write this as:

x^26 <= Cax, for all x >= N

Dividing both sides by x and taking the limit as x approaches infinity, we get:

lim x->inf (x^25 / a) <= C

This limit exists only if a is greater than zero, so let's assume that. Then we can simplify the left-hand side of the inequality as:

lim x->inf x^25 / a = inf

So for any value of C, we can always find a value of N such that x^26 is less than or equal to ax multiplied by C, for all x greater than or equal to N. Therefore, we can say that x^26 is big-O of ax, for any positive real number a, and there is no smallest such value of a.

(b) No, there is no smallest integer number a for which x^26 is big-O of ax. The proof is similar to part (a), but we need to show that for any positive integer a, there exists a constant C such that x^26 is not less than or equal to ax multiplied by C, for infinitely many values of x.

To do this, we can choose x to be a power of 2, say x = 2^k. Then we have:

x^26 = (2^k)^26 = 2^(26k)

ax = a * 2^k

So we want to find a value of a and a constant C such that:

2^(26k) > Ca * 2^k, for infinitely many values of k

Dividing both sides by 2^k, we get:

2^(25k) > Ca, for infinitely many values of k

But this is true for any value of a greater than 2^(25), since 2^(25k) grows faster than Ca for large enough values of k. Therefore, for any integer value of a greater than 2^(25), there exist infinitely many values of k for which x^26 is not less than or equal to ax multiplied by some constant C. Hence, x^26 is not big-O of ax for any integer value of a less than or equal to 2^(25), and there is no smallest such value of a.

(a) No, there isn't a smallest real number 'a' for which x^26x is big-O of ax. This is because x^26x has a higher growth rate than ax for any real number 'a'. As 'x' becomes larger, the term x^26x will always grow faster than ax, no matter the value of 'a'.

(b) Yes, there is a smallest integer number 'a' for which x^26x is big-O of ax. The smallest integer 'a' would be 1, because if we let 'a' be any integer smaller than 1, ax will have a lower growth rate than x^26x. When 'a' is equal to 1, we have x^26x = O(x), which means x^26x grows at most as fast as x, and there's no smaller integer 'a' for which this is true.

Visit here to learn more about limit brainly.com/question/8533149

#SPJ11

use the laplace transform to solve the given initial-value problem. y' − y = 2 cos(6t), y(0) = 0

Answers

To solve the initial-value problem y' - y = 2 cos(6t), y(0) = 0 using the Laplace transform, we first take the Laplace transform of both sides of the equation.

L[y'] - L[y] = L[2 cos(6t)]

Using the property of the Laplace transform that L[ y' ] = sY(s) - y(0) and L[ cos(6t) ] = s/( s^2 + 36 ), this becomes:

sY(s) - y(0) - Y(s) = 2 * s / ( s^2 + 36 )

Substituting y(0) = 0, we get:

sY(s) - Y(s) = 2 * s / ( s^2 + 36 )

Factoring out Y(s), we get:

( s - 1 ) * Y(s) = 2 * s / ( s^2 + 36 )

Solving for Y(s), we get:

Y(s) = 2 * s / ( ( s - 1 ) * ( s^2 + 36 ) )

Using partial fractions, we can write Y(s) as:

Y(s) = A / ( s - 1 ) + B * s / ( s^2 + 36 )

Multiplying both sides by the denominator on the right-hand side and substituting s = 1, we get:

2 = A / ( 1 - 1 ) + B * 1 / ( 1^2 + 36 )
2 = B / 37

Thus, B = 74.

Substituting B in the previous equation and simplifying, we get:

Y(s) = 2 / ( s - 1 ) + 2s / ( s^2 + 36 )

Taking the inverse Laplace transform of Y(s) using a table or a software, we get:

y(t) = 2 * e^t + sin(6t) / 3

Therefore, the solution to the initial-value problem y' - y = 2 cos(6t), y(0) = 0 using the Laplace transform is y(t) = 2 * e^t + sin(6t) / 3.

Session 3
(Calculator)
David just bought six more baseball cards. The new baseball cards represent 30% of
David's special edition baseball card collection.)
Number of Baseball Cards
6
++
0
+
25 30
+
50
+
75
?
+
100
What is the total number of cards in David's baseball card collection?
Enter your answer in the box.

Answers

Answer:

If the new baseball cards represent 30% of David's special edition baseball card collection, then the original collection represents 70%. Let's represent the total number of cards in David's collection with the variable x. Then we can set up the following equation:

6 = 0.3x

To solve for x, we can divide both sides by 0.3:

x = 6 ÷ 0.3 = 20

Therefore, the total number of cards in David's baseball card collection is 20.

A blood bank needs 10 people to help with a blood drive. 18 people have volunteered. Find how many different groups of 10 can be formed from the 18 volunteers.

Answers

The solution of the given problem of Permutation and Combination is .There are38,760 different groups of 10 can be formed from the 18 volunteers.

What is  Permutation and Combination ?

A permutation is a way of arranging a set of objects or events in a specific order. The number of possible permutations of a set of n objects taken r at a time is given by the formula nPr = n!/(n-r)!, where n! (n factorial) is the product of all positive integers up to n.

A combination, on the other hand, is a way of selecting a subset of objects or events from a larger set, where the order of the elements does not matter. The number of possible combinations of a set of n objects taken r at a time is given by the formula nCr = n!/r!(n-r)!.

According to given information

The number of different groups of 10 that can be formed from 18 volunteers can be calculated using the formula for combinations:

C(18, 10) = 18! / (10! * 8!)

where "C(18, 10)" represents the number of ways to choose 10 volunteers out of 18.

Simplifying the expression:

C(18, 10) = (18 * 17 * 16 * 15 * 14 * 13 * 12 * 11 * 10!) / (10! * 8 * 7 * 6 * 5 * 4 * 3 * 2 * 1)

The 10! in the numerator and denominator cancel out, leaving:

C(18, 10) = (18 * 17 * 16 * 15 * 14 * 13 * 12 * 11) / (8 * 7 * 6 * 5 * 4 * 3 * 2 * 1)

Simplifying further, we get:

C(18, 10) = 38,760

Therefore, there are 38,760 different groups of 10 that can be formed from 18 volunteers.

To know more about  Permutation and Combination Visit:

brainly.com/question/28720645

#SPJ1

Find the sum of the series.
[infinity] (−1)^n π^2n
n =0 6^2n(2n)!

Answers

The sum of the given series is 72 / (72 + π^2).

We can use the formula for the sum of an infinite geometric series:

S = a / (1 - r)

where S is the sum, a is the first term, and r is the common ratio. In this case, the first term is (-1)^0 π^0 / (6^0 (2*0)!), which simplifies to 1, and the common ratio is (-1) π^2 / (6^2 (2*1)!), which simplifies to -π^2 / 72. Thus, we have:

S = 1 / (1 + π^2 / 72)

Now, we can simplify the denominator by multiplying the numerator and denominator by 72:

S = 72 / (72 + π^2)

Therefore, the sum of the given series is 72 / (72 + π^2).

Visit to know more about Sum:-

brainly.com/question/24205483

#SPJ11

Which expression is equivalent to x^5 × x^2?​

Answers

Answer:

no choices given but it is x^

Step-by-step explanation:

when the bases are the same and you are multiplying, add the powers.

G'day!
Can anyone please explain taking LCM of 2/t + 1/1+t = -3/2+t

Answers

Answer:

To solve the equation 2/t + 1/(1+t) = -3/(2+t), we first need to find the least common multiple (LCM) of the denominators, which are t and 1+t, and then rewrite each fraction with the LCM as its denominator.

The LCM of t and 1+t is (t)(1+t) or t(t+1). To rewrite the fractions with this common denominator, we need to multiply the first fraction by (t+1)/(t+1) and the second fraction by t/t:

2/t * (t+1)/(t+1) + 1/(1+t) * t/t = -3/(2+t)

Simplifying each fraction, we get:

2(t+1)/(t(t+1)) + t/(t(t+1)) = -3/(2+t)

Combining the fractions on the left side, we get:

(2t+2+t)/(t(t+1)) = -3/(2+t)

Simplifying further:

(3t+2)/(t(t+1)) = -3/(2+t)

Now, we can cross-multiply and simplify:

(3t+2)(2+t) = -3t(t+1)

6t^2 + 11t + 4 = -3t^2 - 3t

9t^2 + 14t + 4 = 0

To solve this quadratic equation, we can use the quadratic formula:

t = (-b ± sqrt(b^2 - 4ac)) / 2a

where a = 9, b = 14, and c = 4.

Plugging in these values, we get:

t = (-14 ± sqrt(14^2 - 4(9)(4))) / 2(9)

t = (-14 ± sqrt(136)) / 18

t = (-14 ± 2sqrt(34)) / 18

Simplifying the expression, we get:

t = (-7 ± sqrt(34)) / 9

These are the two possible solutions for t that satisfy the original equation.

How many lines can be
constructed through point P
that are perpendicular to AB?

Answers

Answer:

A. 2

Step-by-step explanation:

It would be a triangle. There's no other way unless you used a point in between a and b

a tree grows in height by 21% per
year. it is 2m tall after one year.
After how many more years will the
tree be over 20m tall

Answers

Answer:

12.08 years

Step-by-step explanation:

to overcome this problem we will have to use the exponential growth formula A = P(1+r)^t

where a is the final amount

where p is the initial amount

where r is the rate per year

where t is the number of years

we can say

20= 2(1+0.21)^t

solve the equation for t

20/2 = 2(1.21)^t/2

10 = 1.21^t

take the log of both sides we get that

t = 12.08 years

Determine the Longest Common Subsequence and the Longest Common Substring for the following strings: A=(a, c, t, g, a, t, t) and B= (c, g, a, t, g, a). (15+15=30)

Answers

The Longest Common Subsequence (LCS) for strings A=(a, c, t, g, a, t, t) and B=(c, g, a, t, g, a) is (c, t, g, a, t) and the Longest Common Substring (LCSb) is (t, g, a).


1. Create a matrix of size (m+1)x(n+1) where m and n are the lengths of A and B respectively.


2. Initialize the first row and column of the matrix with 0.


3. Iterate through the matrix, comparing characters from A and B.


4. If characters match, update the matrix value as matrix[i-1][j-1] + 1.


5. If characters don't match, update the matrix value as the max(matrix[i-1][j], matrix[i][j-1]).


6. The LCS can be reconstructed by backtracking from the bottom-right corner of the matrix.


7. For LCSb, find the maximum value in the matrix and its position, then backtrack to construct the substring.

This provides the LCS and LCSb as defined above.

To know more about Longest Common Subsequence  click on below link:

https://brainly.com/question/29809157#

#SPJ11

Chelsea has 2. 24 pounds of meat. She uses 0. 16 pound of meat to make one hamburger. How many hamburgers can Chelsea make with the meat she has?

Answers

Answer:

14 hamburgers

Step-by-step explanation:

The problem uses division, but we can create a proportion to see how the division works.

Since we know that Chelsea can make 1 hamburger with 0.16 pounds and allow x to represent the number of burgers Chelsea can make with 2.24 lbs of meat, we have:

[tex]\frac{2.24}{x}=\frac{0.16}{1}[/tex]

[tex]2.24=0.16x[/tex]

As the proportion shows, we can divide 2.24 by 0.16 to get x = 14.

Check: 0.16 lbs * 14 patties = 2.24 lbs

which is the area of the region in quadrant i bounded by y = 2x2 and y = 2x3?

Answers

The area of the region in the given quadrant i is 1/3 square units.

How to find the area of the region in quadrant?

To find the area of the region in quadrant i bounded by y = 2x2 and y = 2x3, we need to first find the x-coordinates where these two curves intersect.

Setting 2x2 equal to 2x3, we get:
2x2 = 2x3

Dividing both sides by 2x2 (which is non-zero since we are only considering quadrant i), we get:
x3 = x2

So the curves intersect at the point (0,0) and (1,2).

To find the area of the region between these curves in quadrant i, we can integrate the difference between the two curves with respect to x, from x = 0 to x = 1:

∫[0,1] (2x3 - 2x2) dx
= [x4 - 2/3 x3] from 0 to 1
= (1 - 2/3) - (0 - 0)
= 1/3

Therefore, the area of the region in quadrant i bounded by y = 2x2 and y = 2x3 is 1/3 square units.

Learn more about quadrant

brainly.com/question/30979352

#SPJ11

evaluate the line integral, where c is the given curve. c xey dx, c is the arc of the curve x = ey from (1, 0) to (e9, 9)

Answers

The line integral ∫C xey dx on the arc of the curve x = ey from (1, 0) to (e^9, 9) is (1/3)(e^27 - 1).

How to evaluate the line integral on the given curve?

Hi! I'd be happy to help you evaluate the line integral on the given curve. To evaluate the line integral ∫C xey dx, where C is the arc of the curve x = ey from (1, 0) to (e^9, 9), follow these steps:

1. Parameterize the curve: Since x = ey, let y = t, so x = e^t. Thus, the parameterization of the curve is r(t) = (e^t, t), with t ranging from 0 to 9.

2. Compute the derivative of the parameterization: dr/dt = (de^t/dt, dt/dt) = (e^t, 1).

3. Substitute the parameterization into the integrand: xey = (e^t)(e^t) = e^(2t).

4. Compute the dot product of the integrand and dr/dt: (e^(2t)) * (e^t, 1) = e^(3t).

5. Integrate the dot product with respect to t from 0 to 9: ∫(e^(3t)) dt from t = 0 to t = 9.

6. Evaluate the integral: [1/3 * e^(3t)] from t = 0 to t = 9 = [1/3 * e^(27)] - [1/3 * e^0] = (1/3)(e^27 - 1).

So, the line integral ∫C xey dx on the arc of the curve x = ey from (1, 0) to (e^9, 9) is (1/3)(e^27 - 1).

Learn more about Line Integrals and Parametrization

brainly.com/question/31472762

#SPJ11

Other Questions
if the vertical component of the earth's magnetic field is 5.3106 t , and its horizontal component is 1.5106 t , what is the induced emf between the wing tips? a subway patron dropped their smartphone on to the train tracks, jumped down to get it, and returned to the platform safely. how would the patron express outcome bias?a."It was a bad decision because the econocnic value of the phone was less than the economic value of my life "b."It was a bad decision because I was ovorconsident in my ability to get the smart phone salely" c."It was a bad decision because the risk of harm was too great." d."It was a good decision because I got the smartphone without geting hurt" A child who grows up without regular access to computers and the Internet will be at a disadvantage later due to the ___________.data breachdigital dividesmart devicesdigital inclusion determine whether the series 4 16 3 64 9 256 27 is convergent or divergent, and if convergent, find its sum. Consider the following first order, linear, constant coefficient differential equation, y(t) = ay(t) + bu(t) y(0) = y. where a a 40.0- resistor, a 0.100-h inductor, and a 10.0-f capacitor are connected in series to a 60.0-hz source. the rms current in the circuit is 2.35 A. Find the rms voltages across (a) the resistor, (b) the inductor, (c) the capacitor, and (d) the RLC combination. (e) Sketch the phasor diagram for this circuit. 1. What is meant by prophets and prophecy in our use of these terms today? How are ideas of prophecy portrayed in the media today? Discuss and clarify any problematic terms and how the biblical idea of prophecy differs from our modern understanding (e.g.. Do all people who claim to be a prophetic voice actually speak for God today? How can we know who speaks on God's behalf today? I am a city planner in Ukraine. I am in charge of rebuilding Mariupol and it is in ashes. What is my best plan to get former residents back home? I need help right now, submit tonight Explain the formation of research proposal and it's format. A recording artis plans to place six songs on her new CD. i) In how many ways can she order these songs? ii) In how many ways can She order these songs if she has already chosen the first and last selections? The area of a circle is 25 square meters. What is the radius? 2. when the form is submitted, call the javascript function or functions to validate the form is completed and as correct as possible. assuming the bearings at o and c are deep-groove ball bearings, is the slope at each bearings location within the allowable range? a meteor follows a trajectory r(t)=(4, 6, 9) t(6, 5, -2) km with t in seconds Valerie shops at the small, local bookstore near her house. Which of the following answers shows the subject and main verb in this sentence Consider the reaction:2O3(g) 3O2(g) rate = k[O3]^2 [O2]^-1What is the overall order of the reaction and the order with respect to [O3]? Trace the development of the idea of race in the 18th and 19th centuries. How was this concept used to justify imperial conquest and expansion? Did theexperience of subaltern peoples confirm or negate these justifications? Answer these questions with an analysis of assigned primary sources andrelevant information and examples in the textbook.Add a comment to help your tutor better understand your question what is the parallel line that passes through the point (-6, -3) for the line y= -5/3 x - 3 Give the relative mass on : a proton,a neutron,and an electron