find the value of k so that the function f(x,y) is a joint probability density function on the domain d. f(x,y)= k x (3−2y) where d= {1≤ x ≤4; 0≤y≤2}

Answers

Answer 1

the value of k that makes f(x, y) = (1/7)x(3 - 2y) a joint probability density function on the given domain D is k = 1/7.

How to find the value of the function?

To find the value of k so that the function f(x, y) = kx(3 - 2y) is a joint probability density function on the domain D = {1 ≤ x ≤ 4; 0 ≤ y ≤ 2}, we need to ensure that the total probability over the domain is equal to 1. We can do this by integrating the function over the given domain and setting the result equal to 1:

1 = ∫∫_D f(x, y) dxdy

First, we will integrate the function with respect to x:

1 = ∫[∫_1^4 kx(3 - 2y) dx] dy

1 = ∫[k(3 - 2y)(x^2/2)|_1^4 dy

1 = ∫[k(3 - 2y)(8 - 1/2)] dy

Now, integrate with respect to y:

1 = k(7/2)∫_0^2 (3 - 2y) dy

1 = k(7/2)[(3y - y^2)|_0^2]

1 = k(7/2)(6 - 4)

1 = 7k

To make the total probability equal to 1, we need to find the value of k:
k = 1/7

So, the value of k that makes f(x, y) = (1/7)x(3 - 2y) a joint probability density function on the given domain D is k = 1/7.

Learn more about joint probability density function

brainly.com/question/31473322

#SPJ11


Related Questions

be eigenvectors of the matrix A which correspond to theeigenvalues λ1= -4, λ2= 2, andλ3=3, respectively, and let v =.
Express v as a linear combination of v1,v2, and v3, and find Av.
v = __________________ v1 + _______v2 +____________v3
Av=

Answers

To express vector v as a linear combination of vectors v1, v2, and v3 and find Av, we need to know the components of vector v, and then we can set up and solve a system of linear equations to determine the coefficients c1, c2, and c3, and calculate Av using matrix multiplication.

In order to express vector v as a linear combination of vectors v1, v2, and v3, we need to know the components of vector v. The components of a vector represent its values along each coordinate axis or direction. Let's assume that the components of vector v are denoted as v_x, v_y, and v_z, representing its values along the x, y, and z axes respectively.

Given that, we can express vector v as a linear combination of vectors v1, v2, and v3 as follows:

v = c1 * v1 + c2 * v2 + c3 * v3

where c1, c2, and c3 are constants that represent the coefficients or weights of the respective vectors v1, v2, and v3 in the linear combination.

To find the coefficients c1, c2, and c3, we can set up a system of linear equations based on the components of vector v and the given vectors v1, v2, and v3. We can then solve this system of linear equations to determine the values of c1, c2, and c3.

Once we have the coefficients c1, c2, and c3, we can also calculate Av, which represents the vector resulting from the matrix multiplication of a matrix A (formed by stacking v1, v2, and v3 as columns) and the column vector containing c1, c2, and c3 as its elements.

In summary, to express vector v as a linear combination of vectors v1, v2, and v3 and find Av, we need to know the components of vector v, and then we can set up and solve a system of linear equations to determine the coefficients c1, c2, and c3, and calculate Av using matrix multiplication.

To learn more about linear equations, refer below:

https://brainly.com/question/29739212

#SPJ11

f(x) = -3log4(x − 5) + 2

Need help

Answers

Answer:

Domain: (−∞,∞),{x|x∈R}(-∞,∞),{x|x∈ℝ}Range: (−∞,∞),{y|y∈R}, There are no vertical or horizontal asymptotes and x is 6.11

Step-by-step explanation:

Unsure on what Im solving for but here’s a couple different possibilities

Martha debe confeccionar un cilindro de cartulina, ella misma recorta las bases, corta la cara lateral por una generatriz y lo extiende por la hoja; has un cilindro como el de Martha

Answers

Considering all Martha's instructions for making a cardboard cylinder, the resultant cardboard cylinder is present in above figure.

In mathematics, a cylinder is a three dimensional object with two parallel bases connected at fixed points by curved edges. The distance between the two bases is called the vertical distance and "h" indicates the height. The distance between two circles is called the radius of the cylinder and is defined by "r". It is combination of 2 circles + 1 rectangle :

Volume: π × r² × hSurface area: 2πr(r + h)Number of faces are equal to 3.Number of vertices are zero.

We have provide the instructions follows by Martha to make a cardboard cylinder and we have to make same cylinder or like as Martha's.

First cuts the bases cuts the lateral face along a generatrixextends it on the sheet

After following the all these necessary instructions for cylinder construction, the resultant cardboard cylinder in present in figure.

For more information about cylinder, visit :

https://brainly.com/question/27440983

#SPJ4

Complete question:

Martha must make a cardboard cylinder, she herself cuts out the bases, cuts the lateral face along a generatrix and extends it on the sheet; make a cylinder like Martha's.

Find r(t) if r'(t) = t^2 i + e^t j + 5te^5t k and r(0) = i + j + k.
r(t) =

Answers

Position vector r(t) is given by

[tex]r(t) = (1/3)t^3 i + e^t j + e^{5t} k.[/tex]

How to find the position vector r(t), and apply the initial condition r(0) = i + j + k?

Here's the step-by-step explanation:

1. Integrate each component of r'(t) with respect to t:
  ∫[tex](t^2) dt = (1/3)t^3 + C1[/tex] (for i-component)
  ∫[tex](e^t) dt = e^t + C2[/tex] (for j-component)
  ∫[tex](5te^{5t}) dt = e^{5t} + C3[/tex] (for k-component)

2. Apply the initial condition r(0) = i + j + k:
  r(0) = (1/3)(0)³ + C1 i + e⁰ + C2 j + e⁵ˣ⁰ + C3 k = i + j + k
  This implies that C1 = 1, C2 = 0, and C3 = 0.

3. Plug in the values of C1, C2, and C3 to find r(t):
  [tex]r(t) = (1/3)t^3 + 1 i + e^t j + e^{5t} k[/tex]

So, the position vector r(t) is given by [tex]r(t) = (1/3)t^3 i + e^t j + e^{5t} k.[/tex]

Learn more about Position vector.

brainly.com/question/14552074

#SPJ11

Consider S = {1 − 2x^2, 1 + 3x − x^2, 1 + 2x + x3} ⊆ P3(R).

Answers

S = {1 - 2x², 1 + 3x - x², 1 + 2x + x³} is linearly independent in P3(R).

To determine if the set S is linearly independent in P3(R), we can use the linear combination method. We set a linear combination of the vectors in S equal to the zero vector:

c1(1 - 2x²) + c2(1 + 3x - x²) + c3(1 + 2x + x³) = 0

Now, we equate the coefficients of like terms:

c1 + c2 + c3 = 0
3c2 + 2c3 = 0
-2c1 - c2 + c3 = 0

This system of linear equations has only the trivial solution, where c1 = c2 = c3 = 0, which implies that the set S is linearly independent in P3(R).

To know more about zero vector click on below link:

https://brainly.com/question/31129939#

#SPJ11

complete question:

Consider S = {1 − 2x^2, 1 + 3x − x^2, 1 + 2x + x3} ⊆ P3(R)  is S linearly independent in P3(R) ?

the diagram shows a bridge that that can be lifted to allow ships to pass below. what is the distance AB when the bridge is lifted to the position shown in the diagram (note that the bridge divides exactly in half when it lifts open)​

Answers

Therefore, the distance AB when the bridge is lifted to the position shown in the diagram is approximately 17.32 units.

What is distance?

Distance refers to the numerical measurement of the amount of space between two points, objects, or locations. It is a scalar quantity that has magnitude but no direction, and it is usually expressed in units such as meters, kilometers, miles, or feet. Distance can be measured in a straight line, or it can refer to the length of a path or route taken to travel from one point to another. It is an important concept in mathematics, physics, and other fields, and it has many practical applications in daily life, such as in navigation, transportation, and sports.

Here,

In the diagram, we can see that the bridge is divided into two halves and pivots around point B. When the bridge is lifted, it forms a right triangle with legs AB and BC, and hypotenuse AC. Since the bridge divides exactly in half, we can see that angle BCD is a right angle and angle ACD is equal to 30 degrees.

Using trigonometry, we can find the length of AB as follows:

tan(30) = AB/BC

tan(30) = AB/30

AB = 30 * tan(30)

AB ≈ 17.32

To know more about distance,

https://brainly.com/question/15172156

#SPJ1

for each of the following assertions, state whether it is a legitimate statistical hypothesis and why. h: > 125

Answers

The assertion "H: > 125" can be part of a legitimate statistical hypothesis when accompanied by a corresponding null hypothesis.

We will determine if the assertion "H: > 125" is a legitimate statistical hypothesis and explain why.

A statistical hypothesis is a statement about a population parameter that can be tested using sample data. There are two types of hypotheses: null hypothesis (H0) and alternative hypothesis (H1 or Ha). The null hypothesis is a statement of no effect, while the alternative hypothesis is a statement of an effect or difference.

In this case, the assertion "H: > 125" appears to be an alternative hypothesis, as it suggests that some parameter is greater than 125. However, for it to be a legitimate statistical hypothesis, it must be paired with an appropriate null hypothesis.

For example, if we were testing the mean weight of a certain species of animal, our hypotheses could be as follows:

- Null hypothesis (H0): The mean weight is equal to 125 (μ = 125)
- Alternative hypothesis (H1): The mean weight is greater than 125 (μ > 125)

With this pair of hypotheses, we can conduct a statistical test to determine whether the data supports the alternative hypothesis or not. In conclusion, the assertion "H: > 125" can be part of a legitimate statistical hypothesis when accompanied by a corresponding null hypothesis.

To know more about legitimate statistical hypothesis refer here:

https://brainly.com/question/30893254

#SPJ11

A coin is tossed 3 times. Use a tree diagram to find the number of possible outcomes that could produce exactly 2 heads.

Answers

Here's a tree diagram that shows all the possible outcomes of tossing a coin three times:

```
T H
/ \ / \
T H T H
/ \ / \ / \ / \
T H T H T H T H
```

Each branch of the tree shows the outcome of one coin toss. For example, the branch on the far left represents the outcome TTT (tails on the first toss, tails on the second toss, and tails on the third toss).

To find the number of possible outcomes that could produce exactly 2 heads, we need to look for the branches that have exactly two H's. These are:

- TTH
- THT
- HTT

So there are three possible outcomes that could produce exactly 2 heads.


Find sin(B) in the triangle.

Answers

Answer:

4/5

Step-by-step explanation:

The sin of B is equal to opposite/hypotenuse

So, the equation would be 4/5 because 4 is equal to the opposite side length of B and 5 is equal to the hypotenuse of the triangle.

So, the answer would be 4/5

wht is probability a coin toss lands on neither heads nore tails

Answers

Step-by-step explanation:

Essentially Zero probability  ......   VERY unlikely that it will land on its edge.

The triangle below is isosceles. Find the length of side x in simplest radical form with a rational denominator.

Answers

The length of side x in simplest radical form with a rational denominator is[tex]3\sqrt{4.5}[/tex].

What is an isosceles triangle?

An isosceles triangle is a triangle with any two sides that are the same length and angles on opposite sides that are the same size.

The right triangle is isosceles, which indicates that its two legs are the same length. This length should be called "y".

Using the Pythagorean theorem, we know that:

[tex]y^{2}+y^{2}=9^{2}[/tex]

Simplifying this equation:

[tex]2y^{2}=81[/tex]

Dividing both sides by 2:

[tex]y^{2}[/tex] = 40.5

Taking the square root of both sides:

y = [tex]\sqrt{40.5}[/tex]

We can simplify this expression by factoring out a perfect square:

y = [tex]\sqrt{4.5*9}[/tex]

y = [tex]3\sqrt{4.5}[/tex]

Since we know that x has the same length as y, the length of x is also:

x = [tex]3\sqrt{4.5}[/tex]

Therefore, the length of side x in simplest radical form with a rational denominator is[tex]3\sqrt{4.5}[/tex].

know more about triangle visit :

https://brainly.com/question/2773823

#SPJ1

At West High School, 10% of the students participate in
sports. A student wants to simulate the act of randomly
selecting 20 students and counting the number of
students in the sample who participate in sports. The
student assigns the digits to the outcomes.
0 student participates in sports
=
1-9 student does not participate in sports
How can a random number table be used to simulate
one trial of this situation?
O Select a row from the random number table. Count
the number of digits until you find 20 zeros.
O Select a row from the random number table. Count
the number of digits until you find 10 zeros.
O Select a row from the random number table. Read 20
single digits. Count the number of digits that are
zeros.
O Select a row from the random number table. Read 10
single digits. Count the number of digits that are
zeros.

Answers

Option C is the correct answer: Select a row from the random number table. Read 20 single digits. Count the number of digits that are zeros.

How to use Number Table?

Here's how you can use a random number table to simulate one trial of this situation:

Choose a random number table that has enough rows and columns to accommodate the number of digits you need. For this problem, you need 20 digits, so make sure your table has at least 20 columns.Randomly select a row from the table to use for your trial.Read the first digit in the row. If the digit is 0, count it as a student who participates in sports. If the digit is 1-9, count it as a student who does not participate in sports.Repeat step 3 for the next 19 digits in the row, until you have counted the number of students who participate in sports in your sample of 20 students.Record the number of students who participate in sports in your sample.Repeat steps 2-5 for as many trials as you need to get a sense of the distribution of outcomes.

By using a random number table, you can simulate this situation and get a sense of the likelihood of different outcomes. Keep in mind that the more trials you run, the more accurate your estimate of the actual distribution will be.

Learn more about number table here: https://brainly.com/question/30242913

#SPJ1

The radius of the front wheel of Paul's
bike is 56cm.
Paul goes for a cycle and travels
75.1km.
How many full revolutions did Paul's
front wheel complete?

Answers

Answer: Paul's front wheel completed 21,147 full revolutions.

Step-by-step explanation:

The distance traveled by the bike is equal to the circumference of the front wheel times the number of revolutions made by the wheel. The circumference C of a circle is given by the formula C = 2πr, where r is the radius of the circle.

In this case, the radius of the front wheel is 56 cm, so its circumference is:

C = 2πr = 2π(56 cm) ≈ 351.86 cm

To convert the distance traveled by Paul from kilometers to centimeters, we multiply by 100,000:

distance = 75.1 km = 75,100,000 cm

The number of full revolutions N made by the front wheel is therefore:

N = distance / C = 75,100,000 cm / 351.86 cm ≈ 213,470.2

However, we need to round down to the nearest integer since the wheel cannot complete a fractional revolution. Therefore:

N = 21,147

Therefore, Paul's front wheel completed 21,147 full revolutions.

True or False
a. If the null hypothesis is true, it is a correct decision to retain the null.
b. When generalizing from a sample to a population, there is always the possibility of a Type I or Type II error.

Answers

Answer:

(a) Yes, the statement is true. If the null hypothesi is true, we can retain the null. 

(b) Yes, the statement is true

Answer:

(a) Yes, the statement is true. If the null hypothesi is true, we can retain the null. 

(b) Yes, the statement is true

The slope of a curve is equal to y divided by 4 more than x^2 at any point (x,y) on the curve.
A) Find a differential equation that represents this:
I got dy/dx=y/(4+x^2)
B) Solve this differential equation:
I got y=sqrt((x^4+8x^2+16)/2x)+C
Here is where I really need help!
C) Suppose its known that as x goes to infinity on the curve, y goes to 1. Find the equation for the curve by using part B and determining the constant. Explain all reasoning.

Answers

We used the fact that y goes to 1 as x goes to infinity to determine the value of the constant C in the equation we got from part B. This allowed us to find the equation for the curve.

C) To find the equation for the curve given the condition that as x goes to infinity, y goes to 1, we need to use the solution obtained in part B and determine the constant C. Here's how to do it:

As x approaches infinity, we have:
1 = sqrt((x^4 + 8x^2 + 16) / (2x)) + C

Since x is going to infinity, we can consider x^4 to be dominant over the other terms in the numerator, so:
1 ≈ sqrt((x^4) / (2x)) + C

Simplifying the above expression, we get:
1 ≈ sqrt(x^3 / 2) + C

As x goes to infinity, the term sqrt(x^3 / 2) also goes to infinity. For the equation to hold true, C must be equal to negative infinity. However, since C is a constant and not a variable, we cannot consider it to be equal to negative infinity.

Thus, there seems to be a mistake in the solution obtained in part B, as it does not satisfy the given condition in part C. Please double-check the solution and steps taken in part B to ensure the correctness of the answer.

Learn more about variables here: brainly.com/question/2466865

#SPJ11

for the equation (x^2-16)^3 (x-1)y'' - 2xy' y =0, the point x = 1 is singular point

Answers

A singular point occurs when the coefficient of the highest derivative term, in this case y'', becomes zero. At x=1, the coefficient (x²-16)³(x-1) becomes 0, making x=1 a singular point for the given equation.

To determine if x=1 is a singular point for the equation (x²-16)³(x-1)y'' - 2xy' y = 0, we can examine the coefficients of the equation.

In more detail, a singular point in a differential equation is a point where the coefficients of the highest derivative terms are either undefined or equal to zero. For our equation, the highest derivative term is y'' and its coefficient is (x²-16)³(x-1). When x=1, this coefficient becomes (1²-16)³(1-1) = (1-16)³(0) = (-15)³(0) = 0.

Since the coefficient is equal to zero at x=1, it confirms that x=1 is indeed a singular point for the given equation.

To know more about derivative click on below link:

https://brainly.com/question/25324584#

#SPJ11

Help please


Tasha sketched the image of trapezoid EFGH after a 180° rotation about the origin. Then, she sketched a second image of EFGH after a 540° rotation about the origin. How are the two rotations of EFGH related? Explain.

A. The two rotations map the same image onto EFGH since 180° is a full rotation and 180° + 180° + 180° = 150°.

B. The two rotations are not related since 360° is a full rotation. Any rotations less than 360° maps the pre-image onto itself.

C. The rotations are not related since 360° is a full rotation. Any rotation greater 360° maps the pre-image onto itself.

D. The two rotations map the same image since 350° is a full rotation and 180° + 360° = 540°

Answers

Option A is incorrect because 180° rotation is not a full rotation. It maps the image onto its reflection across the origin.

Option B is incorrect because rotations greater than 360° can also map the image onto itself.

Option C is partially correct, but it is not a complete explanation. Rotations greater than 360° can map the pre-image onto itself, but not all rotations greater than 360° do so.

Option D is incorrect because 350° is not a full rotation, and 180° + 360° = 540° is not a relevant calculation.

The correct answer is: The two rotations are related because 540° is equivalent to 1.5 full rotations, which means that the second rotation maps the image onto its original position. In other words, the second rotation undoes the first rotation, so the two rotations combined result in a net rotation of 360°, which maps the image onto itself.

Answer: D. The two rotations map the same image since 350° is a full rotation and 180° + 360° = 540°.

differentiate 4/9 with respect to , assuming that is implicitly a function of . (use symbolic notation and fractions where needed. use ′ in place of . )

Answers

Note that the use of the term "implicitly" in the question suggests that there is some other equation or context that defines y, but without that information, we can only assume that y is an arbitrary function. To differentiate 4/9 with respect to an implicitly defined function, we first need to clarify what that function is.

Let's call it y, so we have: 4/9 = f(y)
Now, we can differentiate both sides with respect to y using the chain rule: d/dy (4/9) = d/dy (f(y))
0 = f'(y)
So, the derivative of 4/9 with respect to an implicitly defined function y is 0. We can write this as:
d/dy (4/9) = 0
Note that the use of the term "implicitly" in the question suggests that there is some other equation or context that defines y, but without that information, we can only assume that y is an arbitrary function.

Learn more about differentiation here, https://brainly.com/question/954654

#SPJ11

8.3 Accumulation Functions in Context Form A Name Date _Period 1. The population of a beachside resort grows at a rate of r(t) people per year, where t is time in years. At t = 2, the resort population is 4823 residents. What does the expression mean? 4823 + () dt = 7635 + Questions 2 - 3: The temperature of a pot of chicken soup is increasing at a rate of r(t) = 34e08 degrees Celsius per minute, where t is the time in minutes. At time t = 0, the soup is 26 degrees Celsius. 2. Write an expression that could be used to find how much the temperature increased between t = 0 and t = 10 minutes. 3. What is the temperature of the soup after 5 minutes? 「曲

Answers

The temperature of the soup after 5 minutes is [tex]26 + 42.5(e^4 - 1)[/tex]degrees Celsius.

1. The given expression represents the accumulation function of the population of the beachside resort. It is the integral of the rate function r(t) over the time interval [2, t], where t is the current time in years. The value of the integral at t is added to the initial population of 4823 to get the current population. In other words, the expression represents the total number of residents that have moved into the resort from time 2 to time t.

So, the expression can be written as: [tex]4823 + \int 2t r(x) dx = 7635 + \int 2t r(x) dx[/tex]

2. To find how much the temperature increased between t = 0 and t = 10 minutes, we need to evaluate the integral of the rate function r(t) over the time interval [0, 10]. The value of the integral will give us the total increase in temperature during this time period.

So, the expression can be written as[tex]\int 0^{10} 34e^{0.8t} dt[/tex]

Simplifying the integral, we get[tex]: [42.5e^{0.8t}]0^{10} = 42.5(e^8 - 1)[/tex] degrees Celsius

Therefore, the temperature of the soup increased by[tex]42.5(e^8 - 1)[/tex]degrees Celsius between t = 0 and t = 10 minutes.

3. To find the temperature of the soup after 5 minutes, we need to evaluate the expression for the accumulation function of temperature at t = 5, given that the initial temperature is 26 degrees Celsius.

So, the expression can be written as:[tex]26 + \int 0^5 34e^{0.8t} dt[/tex]

Simplifying the integral, we get: [tex]26 + [42.5e^{0.8t}]0^5 = 26 + 42.5(e^4 - 1)[/tex] degrees Celsius

Therefore, the temperature of the soup after 5 minutes is[tex]26 + 42.5(e^4 - 1)[/tex]degrees Celsius.

learn more about accumulation function,

https://brainly.com/question/30243173

#SPJ11

pls answer along with steps
Thanks

Answers

The angle ACB is tan⁻¹(80/a), the range of tan⁻¹(x) is (0, 90) and the time taken to reach the shore is a/30

Calculating the measure of ACB

The measure of ACB can be calculated using the following tangent trigonometry ratio

tan(ACB) = Opposite/Adjacent

So, we have

tan(β) = 80/a

Take the arc tan of both sides

So, we have

β = tan⁻¹(80/a)

So, the angle is tan⁻¹(80/a)

The range of tan⁻¹(x)

Given that the angle is an acute angle

The range of tan⁻¹(x) for acute angles can be found by considering the values of the tangent function for angles between 0 and 90 degrees.

Since tan(0) = 0 and tan(90) is undefined, the tangent function takes on all positive values in this range.

So, the range of tan⁻¹(x) for acute angles is (0, 90) degrees.

The time taken to reach the shore

Here, we have

Distance = a

Speed = 30 km/h

The time taken to reach the shore can be calculated using the formula:

time = distance / speed

Substituting the given values, we get:

time = a / 30 km/h

Simplifying this expression, we get:

time = a / 30 hours

Therefore, the time taken to reach the shore is a/30 hours, where a is the distance to the shore in kilometers.

Read more about bearing distance at

https://brainly.com/question/22719608

#SPJ1

Construct a 98% confidence interval for the true mean for exam 2 using * = 72 28 and 5 = 18.375 and sample size of n = 25? O (63.1.81.4) O (26.5.118.1) O (64.7.79.9) O (59.1.854)

Answers

The 98% confidence interval for the true mean of exam 2 is approximately (62.81, 81.75).

To construct a 98% confidence interval for the true mean of exam 2, we will use the provided information:

Mean (μ) = 72.28
Standard deviation (σ) = 18.375
Sample size (n) = 25

First, we need to find the standard error of the mean (SE):
SE = σ / √n = 18.375 / √25 = 18.375 / 5 = 3.675

Next, we need to find the critical value (z) for a 98% confidence interval. The critical value for a 98% confidence interval is 2.576 (from the z-table).

Now we can calculate the margin of error (ME):
ME = z × SE = 2.576 × 3.675 ≈ 9.47

Finally, we can calculate the confidence interval:
Lower limit = μ - ME = 72.28 - 9.47 ≈ 62.81
Upper limit = μ + ME = 72.28 + 9.47 ≈ 81.75

So, the 98% confidence interval for the true mean of exam 2 is approximately (62.81, 81.75).

To learn more about confidence interval here;

brainly.com/question/24131141#

#SPJ11

Determine if the sequence below is arithmetic or geometric and determine the common difference / ratio in simplest form. 17,\, 13,\, 9,\, ... 17,13,9,.

Answers

The sequence above is an arithmetic sequence.

The common difference is -4.

How to calculate an arithmetic sequence?

In Mathematics and Geometry, the nth term of an arithmetic sequence can be calculated by using this expression:

aₙ =  a₁ + (n - 1)d

Where:

d represents the common difference.a₁ represents the first term of an arithmetic sequence.n represents the total number of terms.

Next, we would determine the common difference as follows.

Common difference, d = a₂ - a₁

Common difference, d = 13 - 17 = 9 - 13

Common difference, d = -4.

Next, we would determine the common ratio as follows;

Common ratio, r = a₂/a₁

Common ratio, r = 13/17 ≠ 9/13

Common ratio, r = 0.7647 ≠ 0.6923

Read more on arithmetic sequence here: brainly.com/question/24989563

#SPJ1

Let an be the nth term of this sequence 1, 2, 2, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6,..., constructed by including the integer k exactly k times. Show that an=floor(√(2n)+1/2). I clear explanation would be nice on how to solve. Thanks.

Answers

an+1 ≤ √(2(n+1)) + 1/2.

Since we have shown

To show that an = floor(√(2n) + 1/2), we need to prove two things:

an ≤ √(2n) + 1/2

an + 1 > √(2(n+1)) + 1/2

We will prove these statements by induction.

Base case: n = 1

a1 = 1 = floor(√(2*1) + 1/2) = floor(1.5)

The base case holds.

Induction hypothesis:

Assume that an = floor(√(2n) + 1/2) for some positive integer n.

Inductive step:

We need to show that an+1 = floor(√(2(n+1)) + 1/2) based on the induction hypothesis.

By definition of the sequence, a1 through an represent the first 1+2+...+n = n(n+1)/2 terms. Therefore, an+1 is the (n+1)th term.

The (n+1)th term is k if and only if 1+2+...+k-1 < n+1 ≤ 1+2+...+k.

Using the formula for the sum of the first k integers, we can simplify this condition to:

k(k-1)/2 < n+1 ≤ k(k+1)/2.

Multiplying both sides by 2 and rearranging, we get:

k^2 - k < 2n+2 ≤ k^2 + k.

Adding 1/4 to both sides, we get:

k^2 - k + 1/4 < 2n+2 + 1/4 ≤ k^2 + k + 1/4.

Taking the square root, we get:

k - 1/2 < √(2n+2) + 1/2 ≤ k + 1/2.

Now, we want to show that an+1 = k = floor(√(2(n+1)) + 1/2).

First, we will show that an+1 > √(2(n+1)) - 1/2.

Assume, for the sake of contradiction, that an+1 ≤ √(2(n+1)) - 1/2. Then:

k ≤ √(2(n+1)) - 1/2

k + 1/2 ≤ √(2(n+1))

(k + 1/2)^2 ≤ 2(n+1)

k^2 + k + 1/4 ≤ 2n + 2

This contradicts the fact that k is the smallest integer satisfying k^2 - k < 2n+2.

Therefore, an+1 > √(2(n+1)) - 1/2.

Next, we will show that an+1 ≤ √(2(n+1)) + 1/2.

Assume, for the sake of contradiction, that an+1 > √(2(n+1)) + 1/2. Then:

k > √(2(n+1)) + 1/2

k - 1/2 > √(2(n+1))

(k - 1/2)^2 > 2(n+1)

k^2 - k + 1/4 > 2n + 2

This contradicts the fact that k is the smallest integer satisfying 2n+2 ≤ k(k+1)/2.

Therefore, an+1 ≤ √(2(n+1)) + 1/2.

Since we have shown

To learn more about Multiplying visit:

https://brainly.com/question/30875464

#SPJ11

Write a statement that correctly describes the relationship between these two sequences: 6, 7, 8, 9, 10, and 18, 21, 24, 27, 30. (2 points)

Answers

18, 21, 24, 27, 30 can be gotten when 6, 7, 8, 9, 10 are multiplied three times.

What is Sequence?

Sequence is  an ordered list of numbers that often follow a specific pattern or rule. Sequence is a list of things that are in order.

How to determine this

6, 7, 8, 9, 10 are related to 18, 21, 24, 27, 30

6 * 3 = 18

7 * 3 = 21

8 * 3 = 24

9 * 3 = 27

10 * 3 = 30

All of them followed the same sequence of being multiplied by 3.

6, 7, 8, 9, 10 when multiplied thrice will give 18, 21, 24, 27, 30.

Read more about Sequence

https://brainly.com/question/15458247

#SPJ1

to find the number in a square multiply the numbers in the two circles connected to it

Fill in the Missing numbers

Answers

In the circle on the left bottom, 4

the circle on the right bottom, 5

the square on the right, -15

find an equation of the tangent line to the curve y = √ 3 x 2 that is parallel to the line x − 2y = 1

Answers

The equation of the tangent line is y = (x/2) + (√3/2).

How to find the equation of the tangent line?

To find an equation of the tangent line to the curve y = √(3x²) that is parallel to the line x - 2y = 1, we need to follow these steps:

Rewrite the curve y = √(3x²) as y = ±√(3)x.Take the derivative of y with respect to x: dy/dx = ±√3.Since the tangent line is parallel to the given line x - 2y = 1, its slope is also 1/2. Therefore, we want to find the value of x where dy/dx = 1/2.Set √3 = 1/2 and solve for x: x = (√3)/2.Substitute x = (√3)/2 into the original equation y = ±√(3)x to get the corresponding y-value: y = ±√3/2.Choose one of the two possible values of y and use the point-slope form of the equation of a line to write the equation of the tangent line: y - y1 = m(x - x1), where m is the slope and (x1, y1) is the point on the curve where the tangent line touches it. For example, if we choose y = √3/2, then the point on the curve is (x1, y1) = ((√3)/2, √3/2), and the slope is m = 1/2. Substituting these values, we get:

        y - √3/2 = (1/2)(x - √3/2)

        y = (1/2)x + (√3/4)

Therefore, the equation of the tangent line to the curve y = √(3x²) that is parallel to the line x - 2y = 1 is y = (1/2)x + (√3/4).

Learn more about Tangent line

brainly.com/question/31326507

#SPJ11

General Motors stock fell from $41 per share in 2013 to $24.98 per share during 2016.
a. If you bought and then sold 300 shares at these prices, what was your loss?

b. Express your loss as a percent of the purchase price. Round to the nearest tenth of a percent.

Answers

Answer:

a. The total loss from buying and selling 300 shares at these prices can be calculated as follows:

Total cost of buying the stock = 300 shares x $41/share = $12,300

Total proceeds from selling the stock = 300 shares x $24.98/share = $7,494

Loss = Total cost - Total proceeds = $12,300 - $7,494 = $4,806

Therefore, the loss from buying and selling 300 shares of General Motors stock at these prices is $4,806.

b. To express the loss as a percent of the purchase price, we can use the following formula:

Loss percentage = (Loss / Total cost) x 100%

Substituting the values we found, we get:

Loss percentage = ($4,806 / $12,300) x 100% = 39.2%

Rounded to the nearest tenth of a percent, the loss percentage is 39.2%.

Is Tugela Falls taller than the Burj Khalifa?

Answers

no, it is not taller than the burj khalifa
Yes, Tugela Falls is taller than the Burj Khalifa. Tugela Falls is located in South Africa and is the world's second-tallest waterfall, with a total height of 948 meters (3,110 feet). In contrast, the Burj Khalifa is the world's tallest building, located in Dubai, United Arab Emirates, with a height of 828 meters (2,717 feet).

Use the Partial F test to compare Model A and Model B. Please state the null and alternative hypothesis of the test. Compute the test statistic value and p value. Do you reject the null hypothesis? Please use 0.05 as the significance level.

Answers

The Partial F test is used to compare two nested linear regression models, where Model B is a more complex version of Model A. The null hypothesis of the test is that the additional variables in Model B do not have a significant impact on the dependent variable, while the alternative hypothesis is that they do.


To compute the Partial F test statistic, we need to first fit both models and obtain their respective residual sum of squares (RSS). Then, we can use the formula:


F = (RSS_A - RSS_B) / (p - q) * (RSS_B / (n - p))

where p is the number of variables in Model A (excluding the intercept), q is the number of additional variables in Model B (excluding those already in Model A), and n is the sample size.

The resulting F value follows an F-distribution with (q, n - p) degrees of freedom. We can then calculate the p-value by comparing this F value to the critical value of the F-distribution with the same degrees of freedom, using a significance level of 0.05.


If the p-value is less than 0.05, we reject the null hypothesis and conclude that Model B is a better fit than Model A. Otherwise, we fail to reject the null hypothesis and conclude that there is no significant difference between the two models.

To learn more about linear regression model : brainly.com/question/31328926

#SPJ11  

Need help asap! thanks!

Answers

Answer:

EG = 75°

Step-by-step explanation:

the secant- secant angle DFQ is half the difference of its intercepted arcs, that is

∠ DFQ = [tex]\frac{1}{2}[/tex] (DQ - EG) , substituting values

35° = [tex]\frac{1}{2}[/tex] (145 - EG ) ← multiply both sides by 2 to clear the fraction

70° = 145 - EG ( subtract 145 from both sides )

- 75 = - EG ( multiply both sides by - 1 )

EG = 75°

Other Questions
For each of the following answers, ask an appropriate question using comment, pourquoi, quand, quelle heure, o, or que. Use inversion.MODLE: Je vais soutenir Marseille parce quils sont les meilleurs.Pourquoi vas-tu soutenir Marseille?1. Elle va dans ce restaurant parce quelle a rendez-vous avec Michel.2. La classe de gym va au stade.3. Je vais porter une nouvelle charpe lcole jeudi.4. Nous allons plonger la piscine.5. Les amis vont faire les devoirs la mdiathque.6. Jcoute le CD du groupe Air.7. On va manger la pizzeria.8. Nous sommes la maison parce quil ne fait pas beau. Determine the margin of error for a 98% confidence interval to estimate the population proportion with a sample proportion equal to 0.70 for the following sample sizes. a. n=100 b. n=200 c. n=250 Click the icon to view a portion of the Cumulative Probabilities for the Standard Normal Distribution table. a. The margin of error for a 98% confidence interval to estimate the population proportion with a sample proportion equal to 0.70 and sample size n=100 is (Round to three decimal places as needed.) Please help me with this homework determine the qualities of the given set. (select all that apply.) (x, y)| x 3 Open,Connected, or simply connected Vitamin K can be synthesized by bacteria in the gut in the form of menaquinones, it is thought that it provides ________ portion of the human vitamin requirement. O a neutralO a majorO only a minorO a significant For each mutation, provide a plausible explanation for why it gives rise to its associated phenotype. If your building a 10,000 sq ft restaurant how much woult the utilities cost each month if your in san antonio, texas. please do your research to find out how much gas, electric, water, trash and internet would cost. Suppose AB = AC, where B and C are nxp matrices and A is invertible. Show that B=C. Is this true, in general, when A is not invertible?OA. (AB) 1 =B-1A-1OB. (A-1) = (AT) -1OC. A-A=IOD. (A-1)-=A What % is:a) 12 out of 20b) 62 out of 80What is:a) 12% of 125b) 18.3 of 28 A proton with velocity v=10^7 m/s enters a region with a uniform magnetic field B= 0.8T at an angle of 60 degrees. It exits the field at some distance d away from it where entered. What is the distance d and the angle at which it exits the magnetic field? a) What is the angular speed (in rad/s) of the car? rad/s (b) What are the magnitude (in m/s2) and direction of the car's acceleration? m/s2 magnitude direction Select 4. Solve the equation for x: 3(x-4) = 9 + 2x . Indicate whether the following individuals are "Required" (based on income) or "Not required" to file a tax return for 2020. Click here to access the standard deduction tables to use.Required /Not Requireda. Patricia, age 19, is a self-employed single individual with gross income of $5,200 from an unincorporated business. Business expenses amounted to $4,900. Not required What is the value of cos(15)?StartFraction StartRoot 6 EndRoot minus StartRoot 2 EndRoot Over 2 EndFractionStartFraction StartRoot 6 EndRoot minus StartRoot 2 EndRoot Over 4 EndFractionStartFraction StartRoot 6 EndRoot + StartRoot 2 EndRoot Over 4 EndFractionStartFraction StartRoot 6 EndRoot + StartRoot 2 EndRoot Over 2 EndFraction calculate the ph during the titration of 30.00 ml of 0.1000 m methylamine, (ch3)nh2(aq), with 0.1000 m hcl(aq) after 22 ml of the acid have been added. kb of methylamine = 3.6 x 10-4. Typically, all of the following information is included on a packaging label except _____.what risks are associated with the productwhere the product was madewhat color the product iswho made the product Equipment bought at Kal Tech systems at a cost of $200,000 was depreciated using the double declining balance (DDB) method. In year four, the company decided switch to the straight-line depreciation method. Determine the depreciation charges in year 4. Assume a depreciable life of 10 years and a salvage value of $20,000.A. $32,000B. $25,600C. $17,066.66D. $13,733.83 PLEASE HELP ME!!! Unit 10 Circles Homework Inscribed Angles questions 15 and 17 A sidewalk in front of Kathys house is in the shape of a rectangle four feet wide by 45 feet long. Find the perimeter and the area find the standard matrix of the given linear transformation from 2 to 2. projection onto the line y = 6x