find the area of the parallelogram whose vertices are listed (0,0), (2,8), (7,4), (9,12)

Answers

Answer 1

The area of the parallelogram whose vertices are listed (0,0), (2,8), (7,4), (9,12). The area of the parallelogram is 20 square units.

To find the area of a parallelogram, we need to know the base and height of the parallelogram. One of the sides of the parallelogram will serve as the base, and the height will be the distance between the base and the opposite side.

We can start by drawing the parallelogram using the given vertices:

(0,0)         (7,4)
     *---------*
     |         |
     |         |
     |         |
     *---------*
(2,8)         (9,12)

We can see that the sides connecting (0,0) to (2,8) and (7,4) to (9,12) are parallel, so they are opposite sides of the parallelogram. We can use the distance formula to find the length of one of these sides:

d = √[(9 - 7)^2 + (12 - 4)^2]
 = √[(2)^2 + (8)^2]
 = √68

So the length of one side is √68.

Next, we need to find the height of the parallelogram. We can do this by finding the distance between the line connecting (0,0) and (2,8) and the point (7,4). We can use the formula for the distance between a point and a line to do this:

h = |(7 - 0)(8 - 4) - (2 - 0)(4 - 0)| / √[(2 - 0)^2 + (8 - 0)^2]
 = |28 - 8| / √68
 = 20 / √68

Now we have the base (√68) and the height (20 / √68) of the parallelogram, so we can find the area using the formula:

A = base x height
 = (√68) x (20 / √68)
 = 20

Therefore, the area of the parallelogram is 20 square units.

to know more about parallelogram click here:

https://brainly.com/question/8700864

#SPJ11


Related Questions

Identify the state equations for the given transfer function model. Let the two state variables be x1 = y and x2 = y. y(s)/F(s)= 6/3x2+6x+10 Check All That Apply a. x1 = x2 b. x2=1/3(6f(t)- 10x1 - 6x2) c. x1 = x2
d. 2 - }(66(e) – 10x1 - 6x2) e. x2=1/3(6f(t)- 10x1 - 6x2)

Answers

The correct state equations for the given transfer function model are (b) x2=1/3(6f(t)-10x1-6x2) and (e) x2=1/3(6f(t)-10x1-6x2).

The state equations represent the dynamics of a system in terms of its state variables. In this case, the given transfer function model relates the output variable y(s) to the input variable F(s) in the Laplace domain. The state variables are defined as x1 = y and x2 = y, which means both x1 and x2 represent the same variable y.

From the given transfer function, we can rewrite it in state-space form as follows:

y(s)/F(s) = 6/(3x2 + 6x + 10)

Multiplying both sides by (3x2 + 6x + 10) to eliminate the fraction, we get:

y(s) = 2x2 + 4x + 6/(3x2 + 6x + 10)F(s)

Now, we can express this equation in state-space form as:

x1' = x2

x2' = 1/3(6f(t) - 10x1 - 6x2)

where x1' and x2' represent the derivatives of x1 and x2 with respect to time t, respectively, and f(t) represents the input function in the time domain.

Therefore, the correct state equations for the given transfer function model are (b) x2=1/3(6f(t)-10x1-6x2) and (e) x2=1/3(6f(t)-10x1-6x2).

To learn more about transfer function model here:

brainly.com/question/30465063#

#SPJ11

consider the following differential equation to be solved by the method of undetermined coefficients. y(4) 2y″ y = (x − 4)2

Answers

The particular solution to the differential equation by the method of undetermined coefficients is [tex]y \_p(x) = (-6x^2 - 16x - 80) + e^{(2x)}(x^2 + x - 44).[/tex]

How to find differential equation using the method of undetermined coefficients?

To solve this differential equation using the method of undetermined coefficients, we assume that the particular solution takes the form:

[tex]y \_ p(x) = (Ax^2 + Bx + C) + e^{(2x)}(Dx^2 + Ex + F)[/tex]

where A, B, C, D, E, and F are constants to be determined.

To determine the values of these constants, we differentiate y_p(x) four times and substitute the result into the differential equation. We get:

[tex]y \_p(x) = Ax^2 + Bx + C + e^{(2x)}(Dx^2 + Ex + F)[/tex]

[tex]y\_p'(x) = 2Ax + B + 2e^{(2x)}(Dx^2 + Ex + F) + 2e^{(2x)}(2Dx + E)[/tex]

[tex]y \_p''(x) = 2A + 4e^{(2x)}(Dx^2 + Ex + F) + 8e^{(2x)}(Dx + E) + 4e^{(2x)(2D)}[/tex]

[tex]y\_p''(x) = 8e^{(2x)}(Dx^2 + Ex + F) + 24e^{(2x)(Dx + E)} + 16e^{(2x)(D)}[/tex]

[tex]y \_p^4(x) = 32e^{(2x)(Dx + E) }+ 32e^{(2x)(D)}[/tex]

Substituting these into the original differential equation, we get:

[tex](32e^{(2x)(Dx + E)} + 32e^{(2x)(D))} - 2(8e^{(2x)}(Dx^2 + Ex + F) + 24e^{(2x)(Dx + E)} + 16e^{(2x)(D))} + (Ax^{2 }+ Bx + C + e^{(2x)}(Dx^2 + Ex + F))(x - 4)^2 = (x - 4)^2[/tex]

Simplifying this expression, we get:

[tex](-6D + A)x^4 + (4D - 8E + B)x^3 + (4D - 16E + 4F - 32D + C + 16E - 32D)x^2 + (-8D + 24E - 16F + 64D - 32E)x + (32D - 32E) = x^2 - 8x + 16[/tex]

Comparing the coefficients of like terms, we get the following system of equations:

-6D + A = 0

4D - 8E + B = 0

-24D + 4F - 32D + C = 16

-8D + 24E - 16F + 64D - 32E = 0

32D - 32E = 0

Solving this system of equations, we get:

D = E = 1

A = -6

B = -16

C = -80

F = -44

Therefore, the particular solution to the differential equation is:

[tex]y \_p(x) = (-6x^2 - 16x - 80) + e^{(2x)}(x^2 + x - 44)[/tex]

The general solution to the differential equation is the sum of the particular solution and the complementary function, which is the solution to the homogeneous equation:

[tex]y'''' - 2y'' + y = 0[/tex]

The characteristic equation of this homogeneous equation is:

[tex]r^4 - 2r^2 + 1 = 0[/tex]

Factoring the characteristic equation, we get:

[tex](r^2 - 1)^[/tex].

The particular solution to the differential equation by the method of undetermined coefficients is [tex]y \_p(x) = (-6x^2 - 16x - 80) + e^{(2x)}(x^2 + x - 44).[/tex]

Learn more about differential equation.

brainly.com/question/31396200

#SPJ11

let x have the following cumulative distribution function (cdf): f(x)={0,x<0,18x 316x2,0≤x<2,1,2≤x. p(1

Answers

For the cumulative distribution function, p(1 < X ≤ 2) ≈ 0.2222.

What is the probability of 1 < X ≤ 2?

The probability p(1 < X ≤ 2) can be computed by finding the area under the curve of the probability density function (pdf) between x = 1 and x = 2.

Since the cumulative distribution function (cdf) is given, we can differentiate it to obtain the pdf. Thus, the pdf is:

f(x) = { 0, x < 0

18x, 0 ≤ x < 1/4

31/6 - 79x/12, 1/4 ≤ x < 2/3

0, x ≥ 2/3

The probability that 1 < X ≤ 2 can then be computed as follows:

p(1 < X ≤ 2) = ∫₁² f(x) dx

Using the pdf defined above, we can evaluate the integral as follows:

p(1 < X ≤ 2) = ∫₁^(2/3) (31/6 - 79x/12) dx

= [(31/6)x - (79/24)x^2]₁^(2/3)

= (31/6)(2/3) - (79/24)(4/9) - (0) (substituting x = 2/3 and x = 1)

= 0.2222

Therefore, p(1 < X ≤ 2) ≈ 0.2222.

Learn more about cumulative distribution

https://brainly.com/question/19884447?referrer=searchResults

#SPJ11

For the cumulative distribution function, p(1 < X ≤ 2) ≈ 0.2222.

What is the probability of 1 < X ≤ 2?

The probability p(1 < X ≤ 2) can be computed by finding the area under the curve of the probability density function (pdf) between x = 1 and x = 2.

Since the cumulative distribution function (cdf) is given, we can differentiate it to obtain the pdf. Thus, the pdf is:

f(x) = { 0, x < 0

18x, 0 ≤ x < 1/4

31/6 - 79x/12, 1/4 ≤ x < 2/3

0, x ≥ 2/3

The probability that 1 < X ≤ 2 can then be computed as follows:

p(1 < X ≤ 2) = ∫₁² f(x) dx

Using the pdf defined above, we can evaluate the integral as follows:

p(1 < X ≤ 2) = ∫₁^(2/3) (31/6 - 79x/12) dx

= [(31/6)x - (79/24)x^2]₁^(2/3)

= (31/6)(2/3) - (79/24)(4/9) - (0) (substituting x = 2/3 and x = 1)

= 0.2222

Therefore, p(1 < X ≤ 2) ≈ 0.2222.

Learn more about cumulative distribution

https://brainly.com/question/19884447?referrer=searchResults

#SPJ11

Let y be a random variable with cdf F(x) = { 0, x 0 Find P(x < 1/3) (round off to second decimal place).

Answers

The probability that y takes a value less than 1/3 is approximately 0.11.

We are given that the cumulative distribution function (cdf) of the random variable y is defined as:

F(x) = { 0, x ≤ 0

[tex]x^2,[/tex] 0 < x < 1

1, x ≥ 1

We want to find the probability that the random variable y takes a value less than 1/3, i.e., P(y < 1/3).

Since F(x) is the cdf of y, we have:

P(y < 1/3) = P(y ≤ 1/3) = F(1/3)

To find F(1/3), we need to consider two cases:

Case 1: 0 ≤ 1/3 < 1

In this case, we have:

F(1/3) = (1/3[tex])^2[/tex] = 1/9

Case 2: 1/3 ≥ 1

In this case, we have:

F(1/3) = 1

Therefore, the probability that y takes a value less than 1/3 is:

P(y < 1/3) = F(1/3) = 1/9

Rounding off to the second decimal place, we get:

P(y < 1/3) ≈ 0.11

Therefore, the probability that y takes a value less than 1/3 is approximately 0.11.

Learn more about probability

https://brainly.com/question/30034780

#SPJ4

Full Question

Let y be a random variable with cdf F(x) = { 0, x 0 Find P(x < 1/3) (round off to second decimal place).

Suppose a binary tree has leaves l1, l2, . . . , lMat depths d1, d2, . . . , dM, respectively.
Prove that Σ 2^-di <= 1.

Answers

In a binary tree with leaves l1, l2, ..., lM at depths d1, d2, ..., dM respectively, the sum of [tex]2^-^d^_i[/tex] for all leaves is always less than or equal to 1: Σ  [tex]2^-^d^_i[/tex] <= 1.

In a binary tree, each leaf node is reached by following a unique path from the root. Since it is a binary tree, each internal node has two child nodes.

Consider a full binary tree, where all leaves have the maximum number of nodes at each depth. For a full binary tree, the total number of leaves is  [tex]2^d[/tex] , where d is the depth.

Each leaf node contributes [tex]2^-^d[/tex] to the sum. Thus, the sum for a full binary tree is Σ  [tex]2^-^d[/tex] = (2⁰ + 2⁰ + ... + 2⁰) = [tex]2^d[/tex] * [tex]2^-^d[/tex]  = 1. Now, if we remove any node from the full binary tree, the sum can only decrease, as we are reducing the number of terms in the sum. Hence, for any binary tree, the sum Σ [tex]2^-^d^_i[/tex]  will always be less than or equal to 1.

To know more about binary tree click on below link:

https://brainly.com/question/13152677#

#SPJ11

Sam is competing in a diving event at a swim meet. When it's his turn, he jumps upward off
the diving board at a height of 10 meters above the water with a velocity of 4 meters per
second.
Which equation can you use to find how many seconds Sam is in the air before entering the
water?
If an object travels upward at a velocity of v meters per second from s meters above the
ground, the object's height in meters, h, after t seconds can be modeled by the formula
h = -4.9t² vt + s.
0 -4.9t² + 4t + 10
10 = -4.9t² + 4t
To the nearest tenth of a second, how long is Sam in the air before entering the water?

Answers

The time is 4.6 seconds when Sam enters the water again

How to solve the equation

So, we have the equation:

0 = -4.9t² + 4t + 10

Now, we can solve this quadratic equation for t using the quadratic formula:

t = (-b ± √(b² - 4ac)) / 2a

In our equation, a = -4.9, b = 4, and c = 10.

t = (-4 ± √(4² - 4(-4.9)(10))) / 2(-4.9)

t = (-4 ± √(16 + 196)) / (-9.8)

t = (-4 ± √212) / (-9.8)

The two possible values for t are:

t ≈ 0.444 (when Sam is at the surface of the water, just after jumping)

t ≈ 4.597 (when Sam enters the water again)

Read more on quadratic equation here:https://brainly.com/question/1214333

#SPJ1

Answer: The time is 4.6 seconds when Sam enters the water again

How to solve the equation

So, we have the equation:

0 = -4.9t² + 4t + 10

Now, we can solve this quadratic equation for t using the quadratic  formula:

t = (-b ± √(b² - 4ac)) / 2a

In our equation, a = -4.9, b = 4, and c = 10.

t = (-4 ± √(4² - 4(-4.9)(10))) / 2(-4.9)t = (-4 ± √(16 + 196)) / (-9.8)t = (-4 ± √212) / (-9.8)

The two possible values for t are:

t ≈ 0.444 (when Sam is at the surface of the water, just after jumping)

t ≈ 4.597 (when Sam enters the water again)


Read more on quadratic equation here:

brainly.com/question/1214333#SPJ1

Point A is an element of a direct variation. Identify each point, other than A, that are elements of this direct variation.

Answers

Since point A is an element of a direct variation, each point, other than A, that are elements of this direct variation are (-2, -8) and (2, 8).

What is a direct variation?

In Mathematics, a direct variation is also referred to as direct proportion and it can be modeled by using the following mathematical expression or function:

y = kx

Where:

y and x are the variables.k represents the constant of proportionality.

Under direct variation, the value of x represent an independent variable while the value of y represents the dependent variable. Therefore, the constant of proportionality (variation) can be calculated as follows:

Constant of proportionality (k) = y/x

Constant of proportionality (k) = -4/-1 = 8/2 = -8/-2

Constant of proportionality (k) = 4.

Therefore, the required function is given by;

y = kx

y = 4x

Read more on direct variation here: brainly.com/question/15785278

#SPJ1

19 What is the equation in standard form of the line that passes through the point (6,-1) and is
parallel to the line represented by 8x + 3y = 15?
8x + 3y = -45
B 8x-3y = -51
C 8x + 3y = 45
D 8x-3y = 51

Answers

Answer:

C. 8x + 3y = 45

Step-by-step explanation:

Currently, the line we're given is in standard form, whose general form is

[tex]Ax+By=C[/tex]

We know that parallel lines have the same slope (m), as

[tex]m_{2}=m_{1}[/tex], where m2 is the slope of the line we're trying to find and m1 is the slope of the line we're given.

We don't know the slope (m1) of the line we're already given while the line is in standard form, but we can find it by converting the line from standard form to slope-intercept form, whose general form is

[tex]y=mx+b[/tex], where m is the slope and b is the y-intercept.

To convert from standard form to slope-intercept form, we must simply isolate y on the left-hand side of the equation:

[tex]8x+3y=15\\3y=-8x+15\\y=-8/3x+5[/tex]

Thus, the slope of the first line is -8/3 and the slope of the other line is also -8/3.

We can find the y-intercept of the other line by using the slope-intercept form and plugging in -8/3 for m, and (6, -1) for x and y:

[tex]-1=-8/3(6)+b\\-1=-16+b\\15=b[/tex]

Thus, the equation of the line in slope-intercept form is y = -8/3x + 15

We can covert this into standard form, first by clearing the fraction (multiply both sides by 3) and isolate the constant made after multiplying both sides by 3 on the right-hand side of the equation

[tex]3(y=-8/3x+15)\\3y=-8x+45\\8x+3y=45[/tex]

Examine the values of f along the curves that end at (0,0). Along which set of curves is f a constant value?

y= kx^2
y= kx +kx^2
y=kx^3
y=kx

Answers

F is a constant value along all the given curves that end at (0,0): y=kx^2, y=kx+kx^2, y=kx^3, and y=kx.

To examine the values of f along the curves that end at (0,0) and determine along which set of curves f is a constant value, let's analyze each given equation:

1. y = kx^2:
For (0,0) to be on the curve, we have:
0 = k(0)^2
0 = 0, which is always true. Thus, f is a constant value along this curve.

2. y = kx + kx^2:
For (0,0) to be on the curve, we have:
0 = k(0) + k(0)^2
0 = 0, which is always true. Thus, f is a constant value along this curve.

3. y = kx^3:
For (0,0) to be on the curve, we have:
0 = k(0)^3
0 = 0, which is always true. Thus, f is a constant value along this curve.

4. y = kx:
For (0,0) to be on the curve, we have:
0 = k(0)
0 = 0, which is always true. Thus, f is a constant value along this curve.

In conclusion, f is a constant value along all the given curves that end at (0,0): y=kx^2, y=kx+kx^2, y=kx^3, and y=kx.

To know more about curves refer here:

https://brainly.com/question/25915496

#SPJ11

An amount of $37,000 is borrowed for 8 years at 7.25% interest, compounded annually. If the loan is paid in full at the end of that period, how much must be paid back?

Answers

Answer: The total amount that must be paid back at the end of the 8-year period is $65,206.49

Step-by-step explanation:

A = P*(1 + r/n)^(n*t)

A = the amount to be paid back

P = the principal amount borrowed ($37,000 in this case)

r = the annual interest rate (7.25%)

n = the number of times the interest is compounded per year (once annually in this case)

t = the time period (8 years)

A = 37000*(1 + 0.0725/1)^(18)

A = 37000(1.0725)^8

A = 65,206.49

[tex]A = P(1 + r/n)^{(nt)}[/tex]

[tex]A = 37000(1 + 7.25)^8[/tex]

Answer:

[tex]\longrightarrow A = \boxed{\bold{794,023,420,332.60}}[/tex]

HURRY UP Please answer this question

Answers

Answer:

[tex] {6}^{2} + {b}^{2} = {10}^{2} [/tex]

[tex]36 + {b}^{2} = 100[/tex]

[tex] {b}^{2} = 64[/tex]

[tex]b = 8[/tex]

find a matrix s such that s −1as = d, where d is a diagonal matrix.

Answers

To find a matrix S such that S⁻¹AS = D, where D is a diagonal matrix, you need to diagonalize matrix A using eigenvectors and eigenvalues.

First, find the eigenvalues and eigenvectors of matrix A. Then, form matrix S using the eigenvectors as its columns. Finally, find the inverse of matrix S (S⁻¹) and multiply S⁻¹AS to obtain the diagonal matrix D.

In this process, the eigenvalues of matrix A will be the diagonal elements of matrix D. By diagonalizing A, you are transforming it into a simpler diagonal form using a change of basis given by matrix S and its inverse S⁻¹.

To know more about diagonal matrix click on below link:

https://brainly.com/question/15275426#

#SPJ11

A numerical measure from a sample, such as a sample mean, is known as?
A. Statistic
B. The mean deviation
C. The central limit theorem
D. A parameter

Answers

It states that as the sample size increases, the distribution of the sample mean approaches a normal distribution regardless of the underlying population distribution.

A numerical measure calculated from a sample is known as a statistic. A statistic is a summary measure that describes a characteristic of a sample. It is used to estimate the corresponding population parameter.

For example, the sample mean is a statistic that summarizes the average value of a variable in the sample. This value can be used to estimate the population mean, which is the parameter that describes the average value of the variable in the entire population.

In contrast, a parameter is a numerical measure that describes a characteristic of a population. It is typically unknown and must be estimated from a sample. Examples of parameters include the population mean, population standard deviation, population proportion, etc.

The central limit theorem is a statistical theory that describes the behavior of the mean of a large number of independent, identically distributed random variables. It states that as the sample size increases, the distribution of the sample mean approaches a normal distribution regardless of the underlying population distribution.

To learn more about parameter visit:

https://brainly.com/question/30757464

#SPJ11

As reported by the Department of Agriculture in Crop Production, the mean yield of oats for U.S. farms is 58.4 bushels per acre. A farmer wants to estimate his mean yield using an organic method. He uses the method on a random sample of 25 1-acre plots and obtained a mean of 61.49 and a standard deviation of 3.754 bushels. Assume yield is normally distributed.
Refer to problem 2. Assume now that the standard deviation is a population standard deviation.
a. Find a 99% CI for the mean yield per acre, :, that this farmer will get on his land with the organic method.
b. Find the sample size required to have a margin of error of 1 bushel and a 99% confidence level?

Answers

The farmer would need to sample at least 108 1-acre plots to estimate the mean yield per acre with a margin of error of 1 bushel and a 99% confidence level.

What is Standard deviation ?

Standard deviation is a measure of how spread out a set of data is from the mean (average) value. It tells you how much the individual data points deviate from the mean. A smaller standard deviation indicates that the data points are clustered closer to the mean, while a larger standard deviation indicates that the data points are more spread out.

a. To find the 99% confidence interval (CI) for the mean yield per acre, we can use the formula:

CI = X' ± Zα÷2 * σ÷√n

where X' is the sample mean, σ is the population standard deviation, n is the sample size, and Zα÷2 is the critical value for a 99% confidence level, which can be found using a standard normal distribution table or calculator.

Zα÷2 = 2.576 (from a standard normal distribution table for a 99% confidence level)

Substituting the given values, we get:

CI = 61.49 ± 2.576 * 3.754÷√25

CI = 61.49 ± 1.529

CI = (59.96, 63.02)

Therefore, we are 99% confident that the true mean yield per acre for the farmer using the organic method is between 59.96 and 63.02 bushels.

b. To find the sample size required to have a margin of error of 1 bushel and a 99% confidence level, we can use the formula:

n = (Zα÷2 * σ÷E)²

where Zα÷2 is the critical value for a 99% confidence level (2.576), σ is the population standard deviation (which we assume to be 3.754), and E is the desired margin of error (1 bushel).

Substituting the given values, we get:

n = (2.576 * 3.754÷1)²

n ≈ 108

Therefore, the farmer would need to sample at least 108 1-acre plots to estimate the mean yield per acre with a margin of error of 1 bushel and a 99% confidence level.

To learn more about Standard deviation from given link.

https://brainly.com/question/13905583

#SPJ1

Find the missing dimension of the parallelogram.

Answers

Answer:

b=7

Step-by-step explanation:

We know that for a parallelogram, The formula is a=bh

so plug it in

28=b4

Divide both sides by 4:

b=7

Answer:

b = 7 m

Step-by-step explanation:

the area (A) of a parallelogram is calculated as

A = bh ( b is the base and h the perpendicular height )

here h = 4 and A = 28 , then

28 = 4b ( divide both sides by 4 )

7 = b

construct a 99 confidence interval to estimate the population proportion with a sample proportion equal to 0.50 and a sample size equal to 250.

Answers

The 99% confidence interval estimate for the population proportion is approximately 0.4172 to 0.5828, or 41.72% to 58.28% (rounded to two decimal places).

To construct a 99% confidence interval to estimate the population proportion with a sample proportion of 0.50 and a sample size of 250, we can use the formula for confidence intervals for proportions, which is given by:

Confidence Interval = Sample Proportion ± Critical Value * Standard Error

where:

Sample Proportion = 0.50 (given)

Sample Size (n) = 250 (given)

Confidence Level = 99% (given)

To find the critical value, we can refer to a standard normal distribution table or use a statistical calculator. For a 99% confidence level, the critical value is approximately 2.62 for a standard normal distribution.

The standard error (SE) for estimating a population proportion is given by the formula:

SE = sqrt[(p * (1 - p)) / n]

where:

p = sample proportion

n = sample size

Plugging in the given values:

Sample Proportion (p) = 0.50

Sample Size (n) = 250

SE = sqrt[(0.50 * (1 - 0.50)) / 250]

SE = sqrt[(0.50 * 0.50) / 250]

SE = sqrt(0.001)

SE = 0.0316 (rounded to four decimal places)

Now, we can plug the values for the sample proportion, critical value, and standard error into the confidence interval formula:

Confidence Interval = 0.50 ± 2.62 * 0.0316

Calculating the upper and lower bounds of the confidence interval:

Upper Bound = 0.50 + 2.62 * 0.0316

Upper Bound = 0.50 + 0.0828

Upper Bound = 0.5828 (rounded to four decimal places)

Lower Bound = 0.50 - 2.62 * 0.0316

Lower Bound = 0.50 - 0.0828

Lower Bound = 0.4172 (rounded to four decimal places)

Learn more population proprtion at https://brainly.com/question/13708063

#SPJ11

Express cos M as a fraction in simplest terms.

Answers

Using the laws of simplification of fractions, we can find that in the simplest terms, cos M has a fraction value of 3/5.

Describe fraction?

In order to express a piece of a whole or a ratio of two numbers, a fraction requires a numerator (top number) and a denominator (bottom number) separated by a fraction bar.

The ratio of the neighbouring side to the hypotenuse of a right triangle is known as the cosine of an angle.

As a result, to calculate cos M, we must find the side that is perpendicular to M and divide it by the hypotenuse.

The length of the triangle's third side, KL, can be calculated using the Pythagorean theorem as shown below:

KL² + LM² = KM²

12² + 9² = 15²

144 + 81 = 225

225 = 15²

Taking the square root of both sides:

KL = √ (15² - 12²)

KL = √ (225 - 144)

KL = √81

KL = 9

As a result, angle M's neighbouring side, KL, has a length of 9. Therefore, by dividing 9 by 15, we can calculate cos M:

KL/KM = cos M = 9/15

To make this fraction simpler, divide the numerator and denominator by their 3 largest common factor:

cos M = (9/3)/ (15/3) = 3/5

To know more about Pythagorean theorem, visit:

brainly.com/question/30616230

#SPJ1

The mean of the following incomplete information is 16. 2 find the missing
frequencies. Class
Intervals
10-12 12-14 14-
16
16-
18
18-20 20-22 22-24 TOTAL
Frequencies 5 ? 10 ? 9 3 2 50

Answers

The missing frequency for the interval 10-12 is 21.

Let's call the missing frequencies as x and y for the intervals 10-12 and 16-18 respectively.

We know that the total number of observations is 50 and the mean is 16.

To find x and y, we can use the formula for the mean of grouped data:

Mean = (sum of (midpoint of each interval * frequency)) / (total number of observations)

16 = ((11+13)5 + (17+19)3 + 1410 + 202 + 21*y) / 50

Simplifying the above equation, we get:

800 + 21y = 800

y = 0

This means that the missing frequency for the interval 16-18 is 0.

To find the missing frequency for the interval 10-12, we can use the fact that the total number of observations is 50:

x + 5 + 10 + 9 + 3 + 2 + 0 = 50

x = 21

Therefore, the missing frequency for the interval 10-12 is 21.

So the complete frequency table is:

Class Intervals Frequencies

10-12 5 + 21 = 26

12-14 ?

14-16 10

16-18 0

18-20 9

20-22 3

22-24 2

TOTAL 50.

For similar question on frequency.

https://brainly.com/question/10613053

#SPJ11

An exponential probability distribution has a mean equal to 5 minutes per customer Calculate the following probabilities for the distribution. a) P(x ≤ 10 b) P (x ≤ 5) c) P (x ≤ 4) d) (P ≤ 14)

Answers

The probability that the time between two events is less than or equal to 14 minutes is 0.865.

An exponential probability distribution is used to model the time between two events that occur randomly and independently of each other, and the probability density function of the distribution is given by:

f(x) = λe^(-λx)

where λ is the rate parameter and is equal to the inverse of the mean, λ = 1/μ.

In this problem, we are given that the mean is equal to 5 minutes per customer, so μ = 5. Therefore, the rate parameter λ = 1/5 = 0.2.

a) P(x ≤ 10)

To find this probability, we need to integrate the probability density function from 0 to 10:

P(x ≤ 10) = ∫0^10 λe^(-λx) dx

= -e^(-λx)|0^10

= -e^(-0.2*10) + 1

= 0.632

Therefore, the probability that the time between two events is less than or equal to 10 minutes is 0.632.

b) P(x ≤ 5)

To find this probability, we need to integrate the probability density function from 0 to 5:

P(x ≤ 5) = ∫0^5 λe^(-λx) dx

= -e^(-λx)|0^5

= -e^(-0.2*5) + 1

= 0.393

Therefore, the probability that the time between two events is less than or equal to 5 minutes is 0.393.

c) P(x ≤ 4)

To find this probability, we need to integrate the probability density function from 0 to 4:

P(x ≤ 4) = ∫0^4 λe^(-λx) dx

= -e^(-λx)|0^4

= -e^(-0.2*4) + 1

= 0.329

Therefore, the probability that the time between two events is less than or equal to 4 minutes is 0.329.

d) P(x ≤ 14)

To find this probability, we need to integrate the probability density function from 0 to 14:

P(x ≤ 14) = ∫0^14 λe^(-λx) dx

= -e^(-λx)|0^14

= -e^(-0.2*14) + 1

= 0.865

Therefore, the probability that the time between two events is less than or equal to 14 minutes is 0.865.

To learn more about probability visit:

https://brainly.com/question/30034780

#SPJ11

In 2011, 17 percent of a random sample of 200 adults in the United States indicated that they consumed at least 3 pounds of bacon that year. In 2016, 25 percent of a random sample of 600 adults in the United States indicated that they consumed at least 3 pounds of bacon that year

Answers

A test for two proportions and the null hypothesis would be the best test statistic to assess the variance in bacon consumption from 2011 to 2016.

The null hypothesis for the test is that the proportion of adults who consumed at least 3 pounds of bacon in 2011 is equivalent to the proportion of adults who consumed at least three pounds of bacon in 2016. A potential explanation would be that the percentage of adults who ate at least 3 pounds of bacon in 2011 and 2016 differed.

Additionally, the test statistic may be likened to a chi-squared distribution with one degree of freedom; hence, it is necessary to compute the test statistic's p-value in order to establish whether the null hypothesis can be ideally rejected or not.

Complete Question:

In 2011, 17 percent of a random sample of 200 adults in the United States indicated that they consumed at least 3 pounds of bacon that year. In 2016, 25 percent of a random sample of 600 adults in the United States indicated that they consumed at least 3 pounds of bacon that year.  Assuming all conditions for inference are met which is the most appropriate test statistic to determine variation of bacon consumption from 2011 to 2016 ?

Read more about null hypothesis on:

https://brainly.com/question/29576929

#SPJ4

find the running time equation of this program: def prob6(l): if len(l)<2: return 1 left = l[len(0) : len(l)//2] s = 0 for x in left: s = x return s prob6(left)

Answers

To get the running time equation of the given program, let's analyse it step by step.


The program consists of the following operations:
Step:1. Check if the length of the list is less than 2.
Step:2. Divide the list into two parts (left and right).
Step:3. Iterate through the left part and calculate the sum.
Step:4. Call the function recursively on the left part.
The running time equation can be represented as T(n), where n is the length of the list. The steps can be analyzed as follows:
1. The comparison takes constant time, so O(1).
2. Dividing the list also takes constant time, O(1).
3. Iterating through the left part takes O(n/2) as it processes half of the list.
4. Recursively calling the function with half of the list will have a running time of T(n/2).
Putting everything together, we get the following equation: T(n) = T(n/2) + O(n/2) + O(1)
This represents the running time equation of the given program.

Learn more about running time equation here, https://brainly.com/question/18075422

#SPJ11

Please help me with this (9/4x+6)-(-5/4x-24)

Answers

Answer:

7/2x+30

Step-by-step explanation:

(9/4x+6)-(-5/4x-24)

9/4x+6-(-5/4x)-(-24)

9/4x+6+5/4x+24

14/4x+30

7/2x+30

find the limit. use l'hospital's rule where appropriate. if there is a more elementary method, consider using it. lim x→7 x − 7 x2 − 49

Answers

The limit of the given expression as x approaches 7 is 1/14.

How to find the limit?

To evaluate the limit:

lim x → 7 (x - 7) / ([tex]x^2[/tex] - 49)

We can see that this is an indeterminate form of type 0/0, since both the numerator and denominator approach 0 as x approaches 7. We can use L'Hospital's rule to evaluate this limit:

lim x → 7 (x - 7) / ([tex]x^2[/tex] - 49)

= lim x → 7 1 / (2x) [by applying L'Hospital's rule once]

= 1 / 14 [substituting x = 7]

Therefore, the limit of the given expression as x approaches 7 is 1/14.

Learn more about l'hospital's rule

brainly.com/question/14105620

#SPJ11

mong the following pairs of sets, identify the ones that are equal. (Check all that apply.) Check All That Apply (1,3, 3, 3, 5, 5, 5, 5, 5}, {5, 3, 1} {{1} }, {1, [1] ) 0.{0} [1, 2], [[1], [2])

Answers

Among the following pairs of sets, I'll help you identify the ones that are equal:

1. {1, 3, 3, 3, 5, 5, 5, 5, 5} and {5, 3, 1}:

These sets are equal because in set notation, repetitions are not counted.

Both sets have the unique elements {1, 3, 5}.

2. {{1}} and {1, [1]}:

These sets are not equal because the first set contains a single element which is the set {1}, while the second set contains two distinct elements, 1 and [1]

(assuming [1] is a different notation for an element).

3. {0} and [1, 2]:

These sets are not equal because they have different elements. The first set contains the single element 0, while the second set contains the elements 1 and 2.

4. [[1], [2]]:

This is not a pair of sets, so it cannot be compared for equality.

In summary, the equal pair of sets among the given options is {1, 3, 3, 3, 5, 5, 5, 5, 5} and {5, 3, 1}.

To know more about sets:

https://brainly.com/question/8053622

#SPJ11

Draw a Punnett Square for this test cross: EB eb; AP ap X eb eb; ap ap
Using your Punnett Square as reference, explain how this test cross will allow you to verify that the heterozygous individual produced all 4 possible gamete types (EB AP, EB ap, eb AP, eb ap) in equal frequencies during meiosis due to independent assortment

Answers

Test cross allows us to verify that the heterozygous individual produced all 4 possible gamete types in equal frequencies during meiosis due to independent assortment. A

Punnett Square for the given test cross can be drawn as follows:

      E B e b

e b eBeb ebeb

a p aPeb ap eb

In this

Punnett Square, the gametes produced by the heterozygous individual (EB eb; AP ap) are represented along the top and left sides, and the gametes produced by the homozygous recessive individual (eb eb; ap ap) are represented along the bottom and right sides. The possible offspring resulting from the mating is shown in the four boxes in the middle.

To verify that the heterozygous individual produced all 4 possible gamete types (EB AP, EB ap, eb AP, eb ap) in equal frequencies during meiosis due to independent assortment, we can look at the resulting offspring in the Punnett Square. If the heterozygous individual produced all 4 possible gamete types in equal frequencies, then we would expect to see each of the four possible offspring genotypes represented equally in the resulting offspring.

From the Punnett Square, we can see that there are four possible offspring genotypes: eBeb, ebeb, aPeb, and ap eb. Each of these genotypes appears once in the resulting offspring, which suggests that the heterozygous individual produced all 4 possible gamete types in equal frequencies during meiosis due to independent assortment.

To learn more about Punnett Square,  visit here

https://brainly.com/question/27984422

#SPJ4

The time it takes a mechanic to change the oil in a car is exponentially distributed with a mean of 5 minutes. (Please show work)
a. What is the probability density function for the time it takes to change the oil?
b. What is the probability that it will take a mechanic less than 6 minutes to change the oil?
c. What is the probability that it will take a mechanic between 3 and 5 minutes to change the oil?
d. What is the variance of the time it takes to change the oil?

Answers

The probability density function is f(x) = (1/5)e^(-x/5) for x >= 0, the probability it will take the mechanic less than 6 minutes to change oil is 0.699

What is the probability density function

a. The probability density function (PDF) for the time it takes a mechanic to change the oil in a car, given that it follows an exponential distribution with a mean of 5 minutes, is:

f(x) = (1/5)e^(-x/5) for x >= 0

b. The probability that it will take a mechanic less than 6 minutes to change the oil is given by:

P(X < 6) = ∫0^6 f(x) dx

= ∫0^6 (1/5)e^(-x/5) dx

= [-e^(-x/5)]_0^6

= 1 - e^(-6/5)

≈ 0.699

c. The probability that it will take a mechanic between 3 and 5 minutes to change the oil is given by:

P(3 < X < 5) = ∫3^5 f(x) dx

= ∫3^5 (1/5)e^(-x/5) dx

= [-e^(-x/5)]_3^5

= e^(-3/5) - e^(-1)

≈ 0.181

d. The variance of the time it takes to change the oil can be calculated using the formula:

Var(X) = σ^2 = 1/λ^2

where λ is the rate parameter of the exponential distribution, which is the reciprocal of the mean. Therefore, in this case:

λ = 1/5

σ^2 = (1/λ)^2 = 5^2 = 25

So, the variance of the time it takes to change the oil is 25.

Learn more on probability density function here;

https://brainly.com/question/30403935

#SPJ1

Suppose Mi-Young wants to estimate the mean salary for state employees in North Carolina. She obtains a list of all state employees and randomly selects 18 of them. She plans to obtain the salaries of these 18 employees and construct a t-confidence interval for the mean salary of all state employees in North Carolina. Have the requirements for a one-sample t-confidence interval for a mean been met? The requirements been met because the sample is random. the population is normal. the sample size is too small. the sample size is large enough. the population standard deviation is known the population is not normal. the population standard deviation is not known. the sample is not random.

Answers

In conclusion, while Mi-Young's sample is random and the population standard deviation is not known, the sample size is not large enough, and we cannot assume the population is normal. Thus, the requirements for a one-sample t-confidence interval for a mean have not been fully met in this case.

To determine if the requirements for a one-sample t-confidence interval for a mean have been met in Mi-Young's case, we should consider the following:

1. The sample is random: Mi-Young randomly selects 18 state employees, so this requirement is met.
2. The population is normal: We don't have enough information to determine this, but the Central Limit Theorem states that for sample sizes greater than or equal to 30, the sampling distribution is approximately normal. Since Mi-Young's sample size is smaller, we cannot assume the population is normal.
3. The sample size is large enough: Mi-Young's sample size is 18, which is smaller than the recommended size of 30 or more. Therefore, the sample size is not large enough.
4. The population standard deviation is not known: We have no information about the population standard deviation, so we assume it's not known.

In conclusion, while Mi-Young's sample is random and the population standard deviation is not known, the sample size is not large enough, and we cannot assume the population is normal. Thus, the requirements for a one-sample t-confidence interval for a mean have not been fully met in this case.

learn more about Mi-Young's sample

https://brainly.com/question/20333743

#SPJ11

Find the surface area of the cylinder.
PLS PLS PLS PLS PLS PLS PLS PLS PLS PLS HELP THIS IS SO CONFUSING !!

Answers

Answer:

376.990444... [tex]cm^{2}[/tex] or 376.99 [tex]cm^{2}[/tex] ( It says in terms of π so your answer is 120 π, sorry :) )

Hope this helps!

Step-by-step explanation:

To find the surface area of a cylinder you need to find the area of the 2 circles and the area of the rectangle.

The area of a circle is [tex]\pi[/tex] × [tex]r^{2}[/tex]

So, the area of one circle is [tex]\pi[/tex] × 36 = 113.097335529...

113.097 × 2 = 226.194

The area of the rectangle is 4 × 2[tex]\pi r[/tex] ( circumference of the circle is the rectangle's length )

The area of the rectangle is 4 × 12[tex]\pi[/tex] = 4 × 37.699111... = 150.796444...

Add the area of the rectangle with the area of the 2 circles to get 376.990444... [tex]cm^{2}[/tex].

Simplify (sec y- tan y)(sec y+ tan y)/sec y

Answers

The solution to the given trigonometric identity is: cos y

How to solve trigonometric identities?

The problem we are given to solve is:

[(sec y - tan y)(sec y + tan y)]/(sec y)

Multiplying out the numerator gives us:

(sec²y - tan²y)/sec y

Dividing each term by sec y gives us:

sec y - ((tan²y)/sec y)

We know that tan y = sin y/cos y

Thus:

tan²y = (sin y/cos y)*(sin y/cos y)

1/cos y = sec y

Thus, we now have:

sec y - sin²y(sec y)

We can rewrite this as:

1/cos y - sin²y/cos y

= (1 - sin²y)/cos y

= cos²y/cos y

= cos y

Read more about trigonometric identities at: https://brainly.com/question/7331447

#SPJ1

Gary deposited $9,000 in a savings account with simple interest. Four months later, he had earned $180 in interest. What was the interest rat

Answers

Using the simple interest system, the interest rate for which Gary deposited $9,000 and earned $180 in interest after four months is 6%.

What is the simple interest system?

The simple interest system is based on the process of computing interest on the principal only for each period.

This contrasts with the compound interest system that charges interest on both accumulated interest and the principal.

The simple interest formula is given as SI = (P × R × T)/100, where SI = simple interest, P = Principal, R = Rate of Interest in % per annum, and T = Time.

The principal amount invested by Gary = $9,000

Time = 4 months = 4/12 years

Interest = $180

Therefore, 180 = ($9,000 x R x 4/12)/100

R = 180/($9,000 x 4/12)/100

R = 6%

Thus, the interest rate is 6%.

Learn more about the simple interest system at https://brainly.com/question/25793394.

#SPJ1

Other Questions
Volunteers who had developed a cold within the previous 24 hours were randomized to take either zinc or placebo lozenges every 2 to 3 hours until their cold symptoms were gone. Twenty-five participants took zinc lozenges, and 23 participants took placebo lozenges. For the placebo group, the mean overall duration of symptoms was x1 = 7.2 days, and the standard deviation was 1.6 days. The mean overall duration of symptoms for the zinc lozenge group was x2 = 4.1 days, and the standard deviation of overall duration of symptoms was 1.4 days.(a) Calculate x1 x2 difference in sample means.x1 x2 = ______ daysCompute the unpooled s.e.(x1 x2) standard error of the difference in means. (Round your answer to four decimal places.)s.e.(x1 x2) = ______days(b) Compute a 95% confidence interval for the difference in mean days of overall symptoms for the placebo and zinc lozenge treatments. Use the unpooled standard error and use the smaller of n1 1 and n2 1 as a conservative estimate of degrees of freedom. (Round the answers to two decimal places.)______ to ____ days(c) Complete the following sentence interpreting the interval which was obtained in part (b).With 95% confidence, we can say that in the population of cold sufferers represented by the sample, taking zinc lozenges would reduce the mean number of days of symptoms by somewhere between _____and_____ days, compared with taking a placebo.(d) Is the interval computed in part (b) evidence that the population means are different? Fill the blank in the following sentence.Yes, it is not evidence that population means are different because it does not cover 0. Zinc lozenges appear to be effective in reducing the average number of days of symptoms. What is the concentric motion of the shoulder blades during the standing cable row exercise?Select one:a. Elevationb. Upward rotationc. Protractiond. Retraction Trace coding belowd = 4e = 6f = 7while d > f d = d + 1 e = e - 1endwhileoutput d, e, f True/False: if a treatment is expected to decrease scores in a population with = 30, then the alternative hypothesis is 30. For the following probability density, (a) find the value of the normalizing constant k, (b) sketch the density, and guess what the expected value is. Mark your guess on the graph and briefly explain. Finally, (c) compute the expected value (using integration) to check your guess. x) 0 When eliminating pests, all of the following are acceptable except a) Glueboards except b) Ultraviolet fly traps c) Rodent bait traps d) Tracking powder are acids fine chemicals pr(3 x 5) when n = 8 and p = 0.62chegg ) Find the average gold medal winnings of those NOCs who have beenawarded fewer than ten bronze medals.Count the number of those NOCs that have been awarded ten or moresilver medals. This question requires the construction and interpretation of a pie chart basedon the data throughout this task.a) Create a suitable and fully labelled pie chart to show the total medalwinnings of the Top 10 NOCs at the Beijing 2022 Winter Olympic games.Interpret the pie chart produced in Question 8a). Discuss two probablejustifications for the behaviour of the data. Customers arrive at an automated teller machine at the times of a Poisson process with rate of 10 per hour. Suppose that the amount of money withdrawn on each transaction has a mean o f$30 and a standard deviation of $20. Find the mean and standard deviation of the total withdrawals in 8 hours. decision point: addressing hilde's situation using expectancy theory, how would you best address the problem described by hilde? What factors fueled deindustrialization in the early 1970s?- Employees began migrating to other sectors of the economy.- Labor unions had become too powerful.- Consumer demand had declined.- U.S. industry faced more foreign competition. Measure the dimensions and the trapezoid, and mark them below Consider the relation DISK DRIVE (Serial number, Manufacturer, Model, Batch, Capacity, Retailer). Each tuple in the relation DISK DRIVE contains information about a disk drive with a unique Serial number, made by a manufacturer, with a particular model number, released in a certain batch, which has a certain storage capacity and is sold by a certain retailer. a speech of why should every citizen vote find the surface area of the part of the cylinder that lies between the xy-plane and the plane . the answer has the form , find the value of a. what can you conclude about the following reaction? galactose glucose lactose water Romine is a CPA and an audit manager at Rivera & Rivera, CPA's. Romine has worked for Rivera & Rivera, CPA's for ten years. Because Romine is considered to be an expert in audits of public universities, he has been asked by Local State University to be an adjunct faculty member and to design and teach a new class in audits of public universities. Local State University is a client of Rivera & Rivera, CPA's and has been for the past five years. Which of the following would not impair Rivera & Rivera, CPA's independence with respect to Local State University?A) Romine participates on the attest engagement team for the Local State University audit.B) Romine participates on a committee that sets policies for Local State University.C) Romine is employed by the university on a part-time and nontenure basis.D) None of the above would impair independence. Find the volume of a pyramid with a square base, where the perimeter of the base is 18.2 in and the height of the pyramid is 10.9 in. Round your answer to the nearest tenth of a cubic inch. What is the ph of 0.203 m diethylammonium bromide, (c2h5)2nh2br?