explain why the coupling of the diazonium salt with a phenol or an aromatic amine occurs at the para position.

Answers

Answer 1

The coupling of the diazonium salt with phenol or an aromatic amine occurs at the para position due to the activating nature of the substituents on the aromatic ring. It allows for the full delocalization of the positive charge generated by the diazonium salt.

The para position is in the same plane as the nitro group, which stabilizes the positive charge by resonance. This results in a more stable product, as the positive charge is delocalized over the full conjugated system of the aromatic ring. Additionally, the para position allows for optimal steric interactions between the reactants, which further promotes the formation of the desired product.  Both phenols and aromatic amines have electron-donating groups (-OH in phenols and -NH2 in aromatic amines) that can stabilize the positive charge generated during the electrophilic aromatic substitution reaction.

The electron-donating groups activate the aromatic ring and direct the electrophilic substitution to the ortho and para positions. However, the ortho position is often sterically hindered due to the proximity of the electron-donating group, making the para position the preferred site for the coupling reaction with diazonium salts.

To know more about Para Position visit:
https://brainly.com/question/31051319

#SPJ11


Related Questions

How many moles of Sulfur dioxide 73.0 grams of Sulfur dioxide? Report your answer to correct SF a. 1.1 mol b. 1.92 mol c. 1.14 mol d. 38.1 mol How many Grams of Carbon dioxide are in 1.00 mole of Carbon dioxide? Report the answer to 3 SF a. 28.0 gb. 32.0 g c. 44.0 gd. 88.0 g

Answers

Hence, 1.14 moles of Sulfur dioxide in 73 g and 44 grams of Carbon dioxide are in 1 mole.

The first question asks us to find the number of moles of sulfur dioxide in 73.0 grams. We can use the formula:

Moles = mass / molar mass,

where molar mass is the sum of the atomic masses of all the elements in the compound. For sulfur dioxide, the molar mass is 32.07 g/mol for sulfur and 2*16.00 g/mol for oxygen, giving a total of 64.07 g/mol.

Plugging in the given mass of 73.0 g and the molar mass, we get the number of moles to be 1.14 mol, which corresponds to option (c).


The second question asks us to find the mass of carbon dioxide in 1.00 mole. We can use the formula:

Mass = moles * molar mass,

where the molar mass is 12.01 g/mol for carbon and 2*16.00 g/mol for oxygen, giving a total of 44.01 g/mol for carbon dioxide. Plugging in the given number of moles of 1.00 mol and the molar mass, we get the mass to be 44.0 g, which corresponds to option (c).

Therefore, the answer to both questions is (c) 1.14 mol for the first question and 44.0 g for the second question.

Know more about Moles here:

https://brainly.com/question/24191825

#SPJ11

Problem 3 Suppose you have 849 mL of a 0.85 M solution of a weak base and that the weak base has a pKb of 7.85. Part A Calculate the pH of the solution after the addition of 1.11 mol HCl. Approximate no volume change. Enter your answer to 2 decimal places. ANSWER: pH = on 0.00

Answers

The pH of the solution after the addition of 1.11 mol HCl is 7.85.

First, we need to find the initial concentration of the weak base:

0.85 M = [B]/0.849 L

[B] = 0.85 * 0.849 = 0.72165 mol/L

Next, we can use the pKb value to find the Kb value:

pkb = -log(Kb)

7.85 = -log(Kb)

Kb = 1.74 x 10⁻⁸

Now we can set up the equilibrium expression for the weak base:

B + H2O ⇌ BH+ + OH-

Kb = [BH+][OH-]/[B]

At equilibrium, we can assume that [OH-] is negligible compared to [B] and [BH+]. This allows us to simplify the expression to:

Kb = [BH+][OH-]/[B] ≈ [BH+][OH-]/([B] + [BH+])

Since we are dealing with a weak base, we can also assume that [BH+] is much less than [B]. This allows us to simplify the expression further to:

Kb = [BH+][OH-]/[B] ≈ [BH+][OH-]/[B]

Now we can use the initial concentration of the weak base and the Kb value to find [BH+]:

Kb = [BH+][OH-]/[B]

1.74 x 10⁻⁸= [BH+]/0.72165

[BH+] = (1.74 x 10⁻⁸ * 0.72165) = 1.0138 x 10⁻⁴ M

Next, we can use the balanced chemical equation for the reaction between HCl and the weak base:

HCl + B ⇌ BH+ + Cl-

Since we are adding 1.11 mol of HCl and the weak base is the limiting reactant, all of the weak base will react with the HCl. This means that the final concentration of BH+ will be equal to the initial concentration of the weak base:

[BH+] = 0.72165 mol/L

Now we can use the Henderson-Hasselbalch equation to find the pH of the solution:

pH = pKb + log([BH+]/[B])

pH = 7.85 + log(0.72165/0.72165)

pH = 7.85

learn more about pH here:

https://brainly.com/question/26856926

#SPJ11

Would the indicator you investigated be an appropriate indicator for the titration of a strong acid with a strong base? Explain your answer. I used Bromcresol purple.

Answers

Yes, Bromcresol Purple would be an appropriate indicator for the titration of a strong acid with a strong base.

During a titration, an indicator is used to signal the endpoint or equivalence point of the reaction. Bromcresol Purple is a pH indicator that changes color in the pH range of 5.2 (yellow) to 6.8 (purple).

In the titration of a strong acid with a strong base, the equivalence point occurs at pH 7, which is close to the color change range of Bromcresol Purple. Therefore, Bromcresol Purple is suitable for this titration as it can accurately indicate when the strong acid has been neutralized by the strong base.

To learn more about indicator, visit:

https://brainly.com/question/29716580

#SPJ11

Write the balanced NET ionic equation for the reaction when aqueous (NH₄)₃PO₄ and aqueous Zn(NO₃)₂ are mixed in solution to form solid Zn₃(PO₄)₂ and aqueous NH₄NO₃. Be sure to include the proper phases for all species within the reaction.

Answers

2 NH₄⁺(aq) + 3 Zn²⁺(aq) + 2 PO₄³⁻(aq) → Zn₃(PO₄)₂(s) + 6 NH₄⁺(aq) is the net ionic equation.

The balanced net ionic equation for the reaction when aqueous (NH₄)₃PO₄ and aqueous Zn(NO₃)₂ are mixed in solution to form solid Zn₃(PO₄)₂ and aqueous NH₄NO₃ is:

2 NH₄⁺(aq) + 3 Zn²⁺(aq) + 2 PO₄³⁻(aq) → Zn₃(PO₄)₂(s) + 6 NH₄⁺(aq)

The nitrate ions (NO₃⁻) do not participate in the reaction and are therefore not included in the net ionic equation. Additionally, the ammonium ions (NH₄⁺) are spectator ions and are therefore also not included in the net ionic equation.

Therefore, The phases for each species in the equation are:

NH₄⁺(aq) - ammonium ion, aqueous

Zn²⁺(aq) - zinc ion, aqueous

PO₄³⁻(aq) - phosphate ion, aqueous

Zn₃(PO₄)₂(s) - zinc phosphate, solid

NH₄⁺(aq) - ammonium ion, aqueous

To know more about Net Ionic equation refer here :

brainly.com/question/13879496

#SPJ11

calculate the theoretical yield nacl if you mix 2.00g of na2co3

Answers

The theoretical yield of NaCl when you mix 2.00g of Na2CO3 is 2.21g.  Use the balanced equation's stoichiometry to determine the NaCl moles produced. To calculate the theoretical yield of NaCl when mixing 2.00g of Na2CO3, we need to first consider the balanced chemical equation for the reaction between Na2CO3 and HCl:

Na2CO3 + 2HCl -> 2NaCl + CO2 + H2O

This equation shows that one mole of Na2CO3 reacts with two moles of HCl to produce two moles of NaCl. We can use this information to calculate the theoretical yield of NaCl by following these steps:

1. Convert 2.00g of Na2CO3 to moles by dividing by its molar mass (105.99 g/mol).

2. Use stoichiometry to determine the moles of NaCl produced. Since the reaction produces two moles of NaCl for every mole of Na2CO3, we can multiply the moles of Na2CO3 by 2 to get the moles of NaCl.

3. Convert the moles of NaCl to grams by multiplying by its molar mass (58.44 g/mol).

The calculation looks like this:

2.00g Na2CO3 x (1 mol Na2CO3/105.99 g Na2CO3) x (2 mol NaCl/1 mol Na2CO3) x (58.44 g NaCl/1 mol NaCl) = 2.78g NaCl (theoretical yield)

Therefore, the theoretical yield of NaCl when mixing 2.00g of Na2CO3 is 2.78g.

Learn more about NaCl here:

https://brainly.com/question/18248731

#SPJ11

Choose the stronger acid in each of the following pairs:

H2SeO3 or H2SeO4

Answers

The stronger acid between H₂S₂O₃ (thiosulfuric acid) and H₂SO₄ (sulfuric acid) is H₂SO₄.

To determine the stronger acid, we can compare their acid dissociation constant (Ka) values. A higher Ka value indicates a stronger acid, as it shows a greater tendency to donate a proton (H⁺).

Sulfuric acid (H₂SO₄) has a higher Ka value, with its first dissociation constant being around 10¹, while thiosulfuric acid (H₂S₂O₃) has a much lower Ka value. Therefore, H₂SO₄ is the stronger acid.

Additionally, the strong acidity of H₂SO₄ can be attributed to the highly electronegative oxygen atoms present in its structure, which stabilizes the negatively charged conjugate base (HSO₄⁻) formed after donating a proton.

On the other hand, H₂S₂O₃ has sulfur atoms in its structure, which are less electronegative and less able to stabilize the negative charge on the conjugate base, making it a weaker acid.

To know more about acid dissociation constant click on below link:

https://brainly.com/question/4363472#

#SPJ11

Complete question:

Choose the stronger acid in each of the following pairs:

H₂S₂O₃ or H₂SO₄

specific gravity is the density of a substance compared to the density of mineral oil.

Answers

Specific gravity is the ratio of the density of a substance to the density of a reference substance, usually water.

It is a dimensionless quantity and is often used in the context of fluids and solids to describe their relative densities. The specific gravity of a substance can be calculated by dividing its density by the density of the reference substance.

Specific gravity is commonly used in industries such as oil and gas, where it is used to measure the density of drilling fluids and to determine the concentration of minerals in ores. It is also used in the construction industry to measure the density of construction materials.

Learn more about Specific gravity

https://brainly.com/question/28026962

#SPJ4

Complete Question:

What is specific gravity and how is it defined?

QuestionYoung's modulus of rubber is 104N/m2 and area of cross section is 2 cm−2. If force of 2×105 dyn is applied along its length, then its initial l becomes.A3lB4lC2lDNone of theseMedium

Answers

When 2 x 10⁵ dyn of force is applied along its length, the initial length (l) becomes (c) 2l.

First convert the given values to the appropriate units and then use the formula for Young's modulus.

Young's modulus (Y) = 10⁴ N/m²
Area of cross-section (A) = 2 cm² = 2 x 10⁻⁴ m² (since 1 cm² = 10⁻⁴ m²)
Force (F) = 2 x 10⁵ dyn = 2 N (since 1 N = 10⁵ dyn)

Young's modulus (Y) = Stress/Strain = (F/A)/(Δl/l)

We need to find the change in length (Δl) with respect to the initial length (l).

Rearranging the formula: Δl/l = F/(Y × A)

Now, substitute the given values:

Δl/l = 2 N / (10^4 N/m² × 2 x 10^-4 m²) = 1

Thus, Δl = l

The initial length becomes l + Δl = l + l = 2l. So the correct answer is option C, 2l.

Learn more about Young's modulus here: https://brainly.com/question/26660981

#SPJ11

The final molarity when adding 125 mL of water to 25.0 mL of a 3.0 M solution of KOH is Blank 1. Round atomic masses to the nearest whole number. Include 2 sig figs total in your answer.

Answer ASAP please thank you

Answers

The final molarity when adding 125 mL of water to 25.0 mL of a 3.0 M solution of KOH is 0.5 M

How do i determine the final molarity of the solution?

First, we shall list out the given parameters from the question. Details below:

Initial volume of KOH solution (V₁) = 25 mLInitial molarity of KOH solution  (M₁) = 3.0 MVolume of water added = 125 mLFinal volume of KOH solution (V₂) = 25 + 125 = 150 mL Final molarity of KOH solution (M₂) =?

The final molarity of KOH solution can be obtained by using the dilution formular as illustrated below:

M₁V₁ = M₂V₂

3 × 25 = M₂ × 150

75 = M₂ × 150

Divide both side by 150

M₂ = 75 / 150

M₂ = 0.5 M

Thus, we can conclude that the final molarity of KOH solution is 0.5 M

Learn more about dilution:

https://brainly.com/question/15022582

#SPJ1

Which of the following reactiond of alkenes takes place with syn stereospecificity? a. Addition of HBr b. Acid catalyzed hydration (H2O/H2SO4) c. Addition of bromine (Br2) d. Hydrogenation (H2/Pt)

Answers

The addition of hydrogen (H2/Pt) to alkenes takes place with syn stereospecificity, meaning that the two hydrogen atoms are added to the same side of the double bond. Therefore, the correct answer is d. Hydrogenation (H2/Pt).

The other reactions listed do not have stereospecificity:a. Addition of HBr results in the formation of both the syn and anti addition products, meaning that the H and Br can add to either the same side or opposite sides of the double bond.b. Acid-catalyzed hydration (H2O/H2SO4) also does not have stereospecificity because the water molecule can add to either side of the double bond, leading to the formation of both the syn and anti addition products.

c. Addition of bromine (Br2) also does not have stereospecificity, as the two Br atoms can add to either side of the double bond, leading to the formation of both the syn and anti addition products.

Learn more about alkenes here:https://brainly.com/question/29120960

#SPJ11

When water is cooled from 2oC to ice at -2oC, how many distinct calculations must be made to determine the change in the heat for the system?

Answers

Answer: we need three distinct calculations

Explanation: The first one is that the heat energy released when  the water is cooled to 0"c.

                       The second one is that the heat energy released when water changes its state to solid at constant temprature.

                        The third one is the heat energy released when the ice at 0'c is changed to -2'c.

beyond what volume of added base is the ph calculated by focusing on the amount of excess strong based added?

Answers

The volume of added base beyond which the pH is calculated by focusing on the amount of excess strong base added is referred to as the equivalence point.

At this point, the amount of added strong base is equal to the amount of acid in the solution. The pH at the equivalence point depends on the strength of the acid and base being titrated.

When a strong base is added to a weak acid, the pH of the solution increases gradually until it reaches the equivalence point. However, if a strong acid is added to a weak base, the pH decreases until it reaches the equivalence point.

In general, the pH changes rapidly near the equivalence point, so it is important to add the base slowly near the end of the titration to accurately determine the equivalence point. Once the equivalence point is reached, the pH is calculated based on the amount of excess strong base added. The pH at the equivalence point can be used to determine the concentration of the acid or base being titrated.

In conclusion, the volume of added base beyond which the pH is calculated by focusing on the amount of excess strong base added is the equivalence point. Accurately determining the equivalence point is crucial in determining the concentration of the acid or base being titrated.

Here you can learn more about equivalence point

https://brainly.com/question/30464075#

#SPJ11  

what does the term chemical bond mean

Answers

A chemical bond refers to the linking of atoms together to form molecules. Some key characteristics of chemical bonds:

1. They hold atoms together in a molecule. Chemical bonds keep the atoms together rather than having them float apart.

2. They involve the sharing or transfer of electrons between atoms. The bonds are formed due to the electrostatic attraction between positive and negative charges. For example, in an ionic bond, electrons are transferred from one atom to another. In a covalent bond, electrons are shared between atoms.

3. They determine many of the properties of a compound. The strength, polarity, directionality of bonds have a strong influence on properties such as melting point, solubility, conductivity, etc.

4. They can be made and broken. Chemical bonds can form during chemical reactions and break apart during other reactions.

5. They involve the sharing or redistribution of orbital density between atoms. Electrons in atomic orbitals redistribute to form molecular orbitals that surround the nuclei.

6. They align atoms into geometric arrangements. Chemical bonds orient atoms in specific spatial configurations, which determines the molecular geometry and polarity.

7. They influence chemical reactivity. The strength and stability of chemical bonds determine whether a molecule will readily react with other compounds. Weaker bonds are more reactive.

That covers the basic highlights of a chemical bond. Let me know if you have any other questions!

1. The following figure represent a type of flame used in the laboratory. (a) Explain how the brightness of the flame can be increased.

Answers

The ways that the brightness of the flame can be increased are shown below.

How can the brightness of a laboratory flame be increased?

By boosting the airflow into the burner, the flame's brilliance can be improved. Increasing the gas flow rate or changing the air intake valve can do this.

Using a gas that generates a brighter flame, like propane or butane, will increase the brightness of the flame. These gases produce a yellow flame because they have a higher carbon to hydrogen ratio than natural gas.

Learn more about laboratory flame:https://brainly.com/question/9018811

#SPJ1

draw the expected major kinetic product formed from addition of one mole of to the following diene.

Answers

The expected major kinetic product formed from addition of one mole of HBr to the diene is the 1,2-dibromide.

This is because the reaction occurs through a Markovnikov addition mechanism, where the H+ adds to the diene at the carbon with the most hydrogens, and the Br- adds to the carbon with the least hydrogens. This results in the formation of the 1,2-dibromide as the major product.

The reaction occurs in a kinetically controlled manner, meaning that the product formed is the one with the lowest activation energy and therefore forms the fastest.

In summary, the expected major kinetic product formed from the addition of one mole of HBr to the diene is the 1,2-dibromide, formed through a Markovnikov addition mechanism where the H+ adds to the carbon with the most hydrogens and the Br- adds to the carbon with the least hydrogens.

This reaction occurs in a kinetically controlled manner, where the product formed is the one with the lowest activation energy and forms the fastest.

To know more about Markovnikov addition click on below link:

https://brainly.com/question/28163101#

#SPJ11

determine concentration of oh- in a 0.724 m solution of bro- (Kb = 4.0 x 10^-6)

Answers

The concentration of OH- in a 0.724 M solution of BrO- is 4.0 x 10^-6 M.

To determine the concentration of OH- in a 0.724 M solution of BrO-, we first need to find the concentration of the corresponding BrO- ion. Since BrO- is a weak base, we can use the Kb value to calculate the concentration of OH- ions produced when it dissociates.

First, we need to write the balanced equation for the dissociation of BrO-:
BrO- + H2O ⇌ OH- + HBrO

The Kb expression for this reaction is:
Kb = [OH-][HBrO]/[BrO-]

Since we are given the Kb value and the concentration of BrO-, we can solve for [OH-]:
Kb = [OH-][HBrO]/[BrO-]
4.0 x 10^-6 = [OH-][0.724]/[BrO-]
[OH-] = (4.0 x 10^-6)(0.724)/[BrO-]

To solve for [BrO-], we need to use the fact that it dissociates according to the equation:
BrO- + H2O ⇌ OH- + HBrO

This means that the concentration of BrO- will be equal to the initial concentration of the solution, which is 0.724 M.

Plugging in the values, we get:
[OH-] = (4.0 x 10^-6)(0.724)/0.724
[OH-] = 4.0 x 10^-6 M


Learn more about ions here: brainly.com/question/14982375

#SPJ11

identify the element in period 3 with the following successive ionization energies (ies) in kj/mol. input the symbol of the element. ie1 = 578 ie2 =1820 ie3 = 2740 ie4 =11,500 ie5 =13,000

Answers

The element in period 3 with successive ionization energies (IE1 = 578, IE2 = 1820, IE3 = 2740, IE4 = 11,500, and IE5 = 13,000) is Magnesium (Mg).

The very minimum energy required to remove one electron from a gaseous atom in isolation is referred to as ionization energy. Because these atoms are more stable and have orbitals that are partially and completely occupied, it takes more energy to remove an electron from them. In the case of such atoms, the ionization enthalpy is thus larger than the expected value.

To identify the element in period 3 with the successive ionization energies (IEs) in kJ/mol (IE1 = 578, IE2 = 1820, IE3 = 2740, IE4 = 11,500, and IE5 = 13,000), we need to follow these steps:

1. Locate the period 3 elements on the periodic table. Period 3 elements are those in the third row, and they include Na, Mg, Al, Si, P, S, and Cl.
2. Compare the given ionization energies with the known ionization energies of the period 3 elements.

After comparing the given ionization energies with the known values, we can identify the element as Magnesium (Mg).
The element in period 3 with successive ionization energies (IE1 = 578, IE2 = 1820, IE3 = 2740, IE4 = 11,500, and IE5 = 13,000) is Magnesium (Mg).

To learn more about ionization energies, visit: https://brainly.com/question/31192717

#SPJ11

When an action potential reaches a neuromuscular junction, it causes acetylcholine to be released into this synapse. The acetylcholine binds to the nicotinic receptors concentrated on the motor end plate, a specialized area of the muscle fibre's post-synaptic membrane.

Answers

When an action potential reaches a neuromuscular junction, it triggers the release of acetylcholine into the synaptic cleft.

The acetylcholine then binds to the nicotinic receptors, which are concentrated on the motor end plate of the muscle fiber's post-synaptic membrane. This binding causes the opening of ion channels and the influx of positively charged ions, which results in depolarization of the muscle fiber's membrane. This depolarization then spreads through the muscle fiber, ultimately leading to muscle contraction. The action of acetylcholine at the neuromuscular junction is critical for normal muscle function and is targeted by many drugs used to treat neuromuscular disorders.

Learn more about depolarization :

https://brainly.com/question/29698882

#SPJ11

Thick fur and blubber are examples of __________________.

Answers

Answer is insulation

Fur and blubber is an adaptation to insulate animals bodies against the cold weather or cold water.
Answer is insulation

Fur and blubber is an adaptation to insulate animals bodies against the cold weather or cold water.

a. many grams of calcium carbonate are necessary to weigh out 9.50 moles?
b. How many molecules of ammonia are there in 15.0 moles of NH3?
c. How many moles of H are there in 26.0 g of H20?
d. How many molecules of CH4 are there in 25.5 g of methane?
e. How many moles of H atoms are there?

Answers

a) The mass of 9.50 moles of calcium carbonate is 950.95 g.

b) The number of molecule in ammonia are 9.033 x 10²⁴ molecules.

c) The number of moles of H is 0.112 mol.

d) The number of molecule of methane is 9.57 x 10²³ molecules.

e) Number of moles of H atoms are2.

a. To determine how many grams of calcium carbonate are needed to weigh out 9.50 moles, we need to use the molar mass of calcium carbonate, which is approximately 100.09 g/mol. Therefore, the mass of 9.50 moles of calcium carbonate would be 9.50 mol x 100.09 g/mol = 950.95 g.

b. To calculate the number of molecules of ammonia in 15.0 moles of NH₃, we can use Avogadro's number, which is 6.022 x 10²³ molecules/mol. Thus, the number of molecules of ammonia would be 15.0 mol x 6.022 x 10²³ molecules/mol = 9.033 x 10²⁴ molecules.

c. To find the number of moles of hydrogen (H) in 26.0 g of H₂O, we need to first calculate the molar mass of H₂O. The molar mass of H₂O is approximately 18.015 g/mol. Therefore, the number of moles of H atoms in 26.0 g of H₂O can be found by dividing the mass of H in 1 mole of H₂O (2.016 g/mol) by the molar mass of H₂O: 2.016 g/mol ÷ 18.015 g/mol ≈ 0.112 mol.

d. To determine the number of molecules of CH₄ in 25.5 g of methane, we need to first calculate the molar mass of CH₄, which is approximately 16.04 g/mol. Then, we can use Avogadro's number to convert from moles to molecules: 25.5 g / 16.04 g/mol = 1.59 mol, and 1.59 mol x 6.022 x 10²³ molecules/mol ≈ 9.57 x 10²³ molecules.

e. To determine the number of moles of hydrogen (H) atoms, we need to know the number of moles of the compound that contains them. If we consider water (H₂O) as an example, we can find the number of moles of H atoms by using the same approach as in part c. In one mole of H₂O, there are two moles of H atoms. Therefore, to find the number of moles of H atoms, we can simply multiply the number of moles of H₂O by 2.

To know more about Avogadro's number click on below link:

https://brainly.com/question/28812626#

#SPJ11

Write out the reaction and mechanism for the synthesis of phenacetin from p-acetaminophenol (acetaminophen) and bromoethane using the Williamson ether synthesis.

Answers

The Reaction is p-acetaminophenol + bromoethane -> phenacetin + HBr. The mechanism involves the deprotonation of p-acetamminophenol followed by the nucleophilic attack by bromoethane and finally the acidic workup to get the desired product.

How does Williamson ester synthesis reaction proceed?

Step 1: Deprotonation of p-acetaminophenol

p-acetaminophenol is treated with a strong base, such as sodium hydride (NaH) or potassium hydroxide (KOH), to form its corresponding phenoxide ion. This deprotonation step is necessary to allow for the subsequent nucleophilic attack by the bromoethane.

p-acetaminophenol + NaH -> p-acetaminophenoxide + Na+ + H2

Step 2: Nucleophilic attack by bromoethane

The deprotonated p-acetaminophenoxide acts as a nucleophile and attacks the electrophilic carbon atom of bromoethane, displacing the bromine atom to form an ether linkage.

p-acetaminophenoxide + CH3CH2Br -> p-ethoxyacetaminophenol + Br-

Step 3: Acidic workup

The resulting p-ethoxyacetaminophenol is then treated with an acidic solution, such as hydrochloric acid (HCl) or sulfuric acid (H2SO4), to protonate the oxygen atom and restore the neutral phenol structure. This step also releases the bromide ion as hydrobromic acid (HBr).

p-ethoxyacetaminophenol + HCl -> phenacetin + CH3CH2OH + H2O

Overall, the Williamson ether synthesis allows for the synthesis of phenacetin from p-acetaminophenol and bromoethane by forming an ether linkage between the oxygen atom of p-acetaminophenol and the carbon atom of bromoethane.

To know more about Williamson ester synthesis:

https://brainly.com/question/29434473

#SPJ11

What is the chirality of the (1, 2) chiral centers?
a. S, R
b. S, S
c. R, S
d. R, R
e. NA

Answers

The question cannot be answered without more information. The configuration of each chiral center needs to be specified as either R or S, as they have opposite configurations.

Chirality refers to the property of a molecule or ion that is not superimposable on its mirror image. Chiral centers are atoms in a molecule that are bonded to four different groups, and their configuration can be described using the R/S nomenclature system. The R and S designations are based on the priority of the four substituent groups around the chiral center, which is determined by the atomic number of the attached atoms. Without knowing the specific configuration of each chiral center, it is impossible to determine the chirality of the (1,2) chiral centers.

learn more about chiral center here:

https://brainly.com/question/29842209

#SPJ11

In a similar experiment to Part I, a solution of calcium hydroxide of unknown concentration is standardized against potassium hydrogen phthalate (KHP). From the data below, calculate the molarity of Ca(OH)2 solution. The balanced reaction is: Ca(OH)2 + 2KHC,H,O4 CaC,H,O4 + K_C2H404 + 2H,0. Note the 1:2 mole to mole ratio of calcium hydroxide to KHP. Mass of KHP consumed at titration end point: 0.914 g o Ca(OH)2 titrated to reach endpoint: 26.42 ml

Answers

The molarity of the Ca(OH)₂ solution from the balanced reaction above is 0.0846 M.

To calculate the molarity of the Ca(OH)₂ solution, we must convert the mass of KHP consumed (0.914 g) to moles. Use the molar mass of KHP (204.22 g/mol):

moles KHP = 0.914 g / 204.22 g/mol

= 0.00447 mol

Use the 1:2 mole ratio between Ca(OH)₂ and KHP:

moles Ca(OH)₂ = 0.00447 mol KHP / 2

= 0.002235 mol

Convert the volume of Ca(OH)₂ titrated (26.42 mL) to liters:

volume Ca(OH)₂ = 26.42 mL * (1 L / 1000 mL)

= 0.02642 L

Calculate the molarity of Ca(OH)₂ solution:

Molarity Ca(OH)₂ = moles Ca(OH)₂ / volume Ca(OH)₂

= 0.002235 mol / 0.02642 L

= 0.0846 M

Thus, the molarity of the Ca(OH)₂ solution is 0.0846 M.

Learn more about molarity: https://brainly.com/question/18648803

#SPJ11

The following equilibrium is established when copper ions and bromide ions are placed in solution. heat + Cu (H2O)6 + 2(aq) + 4 Br-(aq) ------→ 6 H2O (l) + CuBr4-2 (aq) The tube on the left contains only copper sulfate dissolved in solution. The tube on the right is the result of adding some potassium bromide solution. Given that the Cu (H2O)6+2 ion is blue and that the CuBr4-2 ion is green, answer the questions below. a) What happened to the concentration of each of the ions when the KBr was added?

Answers

When KBr was added to the copper sulphate solution, the concentration of bromide ions (Br-) increases, the concentration of Cu(H2O)6+2 ions decreases and the concentration of CuBr4-2 ions increases.

When potassium bromide (KBr) was added to the copper sulphate solution, the following changes in the concentration of ions occurred:
1. The concentration of bromide ions (Br-) increased due to the addition of KBr.
2. The equilibrium shifted to the right i.e, forward reaction , as more Br- ions reacted with Cu(H2O)6+2 ions to form CuBr4-2 ions.
3. As a result, the concentration of Cu(H2O)6+2 ions decreased, and the concentration of CuBr4-2 ions increased.
This shift in equilibrium led to a change in colour from blue (due to Cu(H2O)6+2 ions) to green (due to CuBr4-2 ions).

Learn more about copper sulphate : https://brainly.com/question/17439051

#SPJ11

Consider the reaction below. At equilibrium which species would be present in higher concentration? Justify your answer in terms of thermodynamic favorability and the equilibrium constant. 4NH3(g) + 3 O2 (g) --> 2 N2 + 6 H2O

Answers

NH3(g) will be present in higher amounts when the system is in equilibrium.

Which equilibrium constant reflects the highest product concentration?

A very high value of K suggests that most of the reactants are transformed into products at equilibrium. The ratio of product concentrations to reactant concentrations raised to the proper stoichiometric coefficients is the equilibrium constant K.

What impact does temperature have on equilibrium constant thermodynamics?

Yes, the equilibrium constant does fluctuate as the temperature changes. As the temperature drops, the exothermic reaction's equilibrium constant drops as well. However, in an endothermic reaction, the equilibrium constant rises as the temperature rises.

To know more about equilibrium constant visit:-

https://brainly.com/question/10038290

#SPJ1

The iodate ion has a number of insoluble compounds. The Ksp for AgIO₃ is 3.0 x 10⁻⁸ and the Ksp for La(IO₃)₃ is 7.5 x 10⁻¹².

a. What is the solubility of AgIO₃ in a 0.285 M solution of NaIO₃?
b. What is the solubility of La (lO3)3 in a 0.285 M solution of NalO3?
c. Which compound is more soluble?

Answers

a. The solubility of AgIO₃ in a 0.285 M solution of NaIO₃ is 1.06 x 10⁻⁸ M. b. The solubility of La(IO₃)₃ in a 0.285 M solution of NaIO₃ is 4.31 x 10⁻¹² M. c. AgIO₃ is more soluble than La(IO₃)₃.

a. To calculate the solubility of AgIO₃, we need to first write the balanced chemical equation for the dissolution of AgIO₃ in water: AgIO₃(s) ⇌ Ag⁺(aq) + IO₃⁻(aq). The Ksp expression for this reaction is: Ksp = [Ag⁺][IO₃⁻]. Let x be the solubility of AgIO₃ in a 0.285 M solution of NaIO₃. Then, the equilibrium concentrations of Ag⁺ and IO₃⁻ are both equal to x. The initial concentration of IO₃⁻ is 0.285 M. Substituting the values into the Ksp expression and solving for x gives: x² = Ksp/[IO₃⁻] = (3.0 x 10⁻⁸)/(0.285) = 1.06 x 10⁻⁸ M.

b. The balanced chemical equation for the dissolution of La(IO₃)₃ in water is: La(IO₃)₃(s) ⇌ La³⁺(aq) + 3IO₃⁻(aq). The Ksp expression for this reaction is: Ksp = [La³⁺][IO₃⁻]³. Let x be the solubility of La(IO₃)₃ in a 0.285 M solution of NaIO₃. Then, the equilibrium concentrations of La³⁺ and IO₃⁻ are both equal to x. The initial concentration of IO₃⁻ is 0.285 M. Substituting the values into the Ksp expression and solving for x gives: x⁴ = Ksp/[IO₃⁻]³ = (7.5 x 10⁻¹²)/(0.285)³ = 4.31 x 10⁻¹² M.

c. Since the solubility of AgIO₃ is greater than the solubility of La(IO₃)₃ in a 0.285 M solution of NaIO₃, AgIO₃ is more soluble than La(IO₃)₃.

learn more about equilibrium here:

https://brainly.com/question/30807709

#SPJ11

A: Calculate the concentrations of H2SO3 and HSO3− in a 0.470 MM solution of H2SO3 (Ka1=1.6×10^−2 and Ka2=6.4×10^−8.)
B: Calculate the concentrations of SO32− H3O+, and OH− in a 0.470 MM solution of H2SO3 (Ka1=1.6×10^−2 and Ka2=6.4×10^−8.)

Answers

a. The concentration of [tex]H_2SO_3[/tex] in the solution is 0.177 MM, the concentration of [tex]HSO^{3-}[/tex] is 0.293 MM, the concentration of [tex]SO_3^{2-}[/tex] is 3.44x[tex]10^{-5}[/tex] MM.

b. The concentration of [tex]H_3O^+[/tex] is 0.000360 MM, and the concentration of OH- is 2.78x[tex]10^{-11}[/tex] MM.

Part A: We are given a 0.470 M solution of [tex]H_2SO_3[/tex] with two dissociation constants, Ka1=1.6×[tex]10^{-2}[/tex] and Ka2 = 6.4×[tex]10^{-8}[/tex]. We can use these dissociation constants to calculate the concentrations of [tex]H_2SO_3[/tex] and [tex]HSO^{3-}[/tex] using the following equations:

Ka1 = [[tex]H_3O^+[/tex]][[tex]HSO^{3-}[/tex]]/[[tex]H_2SO_3[/tex]]

Ka2 = [[tex]H_3O^+[/tex]][[tex]SO_3^{2-}[/tex]]/[[tex]HSO^{3-}[/tex]]

Simplifying these equations, we get:

[[tex]HSO^{3-}[/tex]] = Ka1[[tex]H_2SO_3[/tex]]/[[tex]H_3O^+[/tex]]

[[tex]SO_3^{2-}[/tex]] = Ka2[[tex]HSO^{3-}[/tex]]/[[tex]H_3O^+[/tex]]

[[tex]H_2SO_3[/tex]] = [[tex]H_3O^+[/tex]][[tex]HSO^{3-}[/tex]]/Ka1

Substituting the given values and simplifying, we get:

[[tex]HSO^{3-}[/tex]] = 0.34 M

[[tex]H_2SO_3[/tex]] = 0.13 M

Therefore, the concentration of [tex]H_2SO_3[/tex] is 0.13 M and the concentration of [tex]HSO^{3-}[/tex] is 0.34 M in the given solution.

Part B: We are given the same solution as in Part A, and we need to calculate the concentrations of [tex]SO_3^{2-}[/tex], [tex]H_3O^+[/tex], and OH- using the dissociation constants given.

We can use the following equations to calculate the concentrations:

[[tex]H_3O^+[/tex]] = (Ka1Ka2[C])/([[tex]H_2SO_3[/tex]]+Ka1[C]+Ka1Ka2[C])

[[tex]SO_3^{2-}[/tex]] = Ka2[[tex]H_2SO_3[/tex]]/([[tex]H_2SO_3[/tex]]+Ka1[C]+Ka1Ka2[C])

[OH-] = Kw/[[tex]H_3O^+[/tex]]

Substituting the given values and simplifying, we get:

[[tex]H_3O^+[/tex]] = 1.7 x [tex]10^{-2}[/tex] M

[[tex]SO_3^{2-}[/tex]] = 3.3 x [tex]10^{-9}[/tex] M

[OH-] = 5.9 x [tex]10^{-13}[/tex] M

Therefore, the concentrations of [tex]SO_3^{2-}[/tex], [tex]H_3O^+[/tex], and OH- are 3.3 x [tex]10^{-9}[/tex] M, 1.7 x [tex]10^{-2}[/tex] M, and 5.9 x [tex]10^{-13}[/tex] M, respectively, in the given solution.

Learn more about the concentrations at

https://brainly.com/question/10725862

#SPJ4

draw the product that will be isolated after thermal decarboxylation of the following compound. 2-Pentylmalonic acid

Answers

The product obtained after thermal decarboxylation of 2-pentylmalonic acid is 2-pentylpropanoic acid.

2-pentylmalonic acid has the following structure:

HOOC-CH(COOR)-CH2-CH2-CH2-CH3

Upon heating, the carboxylic acid group (-COOH) undergoes decarboxylation and is removed as carbon dioxide (CO2), leaving behind a ketone group (-C=O) at the alpha position. The remaining molecule is then the corresponding alkyl acid.

Thus, in the given compound, after thermal decarboxylation, the resulting molecule will have the structure:

CH3-CH2-CH2-CH2-CO-CH2-CH2-CH3

which is 2-pentylpropanoic acid.

Therefore, the product obtained after thermal decarboxylation of 2-pentylmalonic acid is 2-pentylpropanoic acid.

For more questions like Acid  click the link below:

https://brainly.com/question/14319110

#SPJ11

Identify reagents that can be used to convert acetylene into 2-pentyne. A 1) NaNHz; 2) CH3l; 3) NaNH2; 4) CH3! B 1) NaNHz; 2) CH3l; 3) NaNH2; 4) CH3CH2! C 1) NaNH2; 2) CH3l; 3) CH3CH2! D 1) excess NaNH2; 2) excess CH3!

Answers

Reagents to convert acetylene into 2-pentyne are found in 1) NaNH₂; 2) CH₃I; 3) NaNH₂; 4) CH₃CH₂I.

So, the correct answer is B.

To synthesize 2-pentyne from acetylene, you need to perform two nucleophilic substitution reactions. First, acetylene is treated with NaNH₂ (sodium amide), a strong base, which removes a hydrogen atom from acetylene, generating an acetylide anion. This anion acts as a nucleophile and reacts with CH₃I (methyl iodide), forming 1-butyne. Then, 1-butyne is treated again with NaNH₂, generating another acetylide anion. Finally, this anion reacts with CH₃CH₂I (ethyl iodide), yielding the desired product, 2-pentyne.

Learn more about reagents at https://brainly.com/question/26905271

#SPJ11

Which of the following types of shoes are recommended by the American Chemical Society for general laboratory work? a. cloth-topped "tennis" or "running" shoes b. sandals c. woven leather shoes d. high heels

Answers

According to the American Chemistry Society, cloth-topped "tennis" or "running" shoes are recommended for general laboratory work. Sandals, woven leather shoes, and high heels are not recommended as they do not provide adequate protection for the feet  against spills or dropped objects in a laboratory setting.
The American Chemical Society is a scientific society based in the United States that supports scientific research in the field of chemistry.

Other safety precautions include: Wearing appropriate gloves, masks, lab coat and shoes. Being careful while using pipette. Washing the glassware properly before using etc.

For more questions regarding American Chemical Society: https://brainly.com/question/28492543

#SPJ11

Other Questions
Identify the following variables as qualitative or quantitative.a. Genderb. Salaryc. Class designationd. Education levele. Salesf. Temperatureg. Make of a carh. Heighti. Season of the yearj. Advertising expenditurek. Type of advertisingl. Store location The conventional policy tools available to the Fed include each of the following, except the:a. currency-to-deposit ratio.b. discount rate.c. target federal funds rate range.d. reserve requirement. Your manager wants you to implement the following approach that will predict all price jump events. 1. Randomly sample the dataset you synthesized in step A, creating N2. Define a hyperparameter Dmax that represents the max depth of the tree. 3. Define a variable d that represent the current depth of the tree. 4. In each node of the tree, randomly choose a threshold between the min and max price values in the input to the tree samples to split the feature x. 5. Continue the splits until you have only one sample at the leaf nodes or you have reached the depth Dmax. Please help me with this! I am really stuck. complete the sentences to review strategies for circumventing allergy attacks. 1. The aim of antiallergy medication is to block the progress of the allergic response somewhere along the route between______ production and the appearance of______. First on this route is the avoidance of the actual____ itself by a sensitive individual. Oral anti-inflammatory drugs, such as ____ can reduce the production of lgE from antibody-secreting cells. Once formed, IgE can be inactivated by a ____ to avoid Rifampin an allergic response. If the lgE persists, a drug such as ___ can be used to prevent degranulation of ____ cells averting an allergic response. Finally, if degranulation does occur ____ can be used to counteract the effects of inflammatory cytokines on target cells. -mast -allergen -cephalosporins - Cromolyn -corticosteroids - symptoms -antihistamines -IgE -phagocytic -monoclonal antibody How should 'for' loop code execution block and increment be implemented using State Machine elements? Loop counter Exit transition conditions Entry transition condition State Action statements express the number 78.263 using ones and thousandths homo naledi had a unique shoulder structure and curved fingers bones. these may indicate that they lived group of answer choices in the water in the trees in the desert The construction of a tangent to a circle given a point outside the circle can be justified using the second corollary to the inscribed angle theorem. An alternative proof of this construction is shown below. Complete the proof. Given: Circle C is constructed so that CD = DE = AD; CA is a radius of circle C. Prove: AE is tangent to circle C. three ways on how community could benefit from participating in campaigns The amount of DNA in eukaryotic cells is significantly greater than in prokaryotes. With this in mind, how is the eukaryotic DNA replicated in a timely, synchronous fashion?so far i know it has to do with origin of replications (i think please correct me if i'm wrong) but could i have a further explanation lpease? #9 75% of 1 #10 50% of 350 is#11 What percent of 450 is 50 What was the primary benefit for the European Union (EU) of adopting the euro in 1999? draw the structure of a phosphatidyl choline that contains glycerol, oleic acid, stearic acid, and choline. Engage in a 10-minute freewriting exercise where you can brainstorm and write about anything that comes to mind when thinking about the emotion the writer is trying to express. Consider these prompts while performing this exercise: What kinds of descriptions does the writer use in the poem? Does the poem feel happy, mad, sad, etc.? Is there a clear rhyme scheme and rhythm? Are there any words in the poem that are difficult to understand? What words stand out to you the most?The poem: Casey at the Bat: The outlook wasn't brilliant for the Mudville nine that day:The score stood four to two, with but one inning more to play,And then when Cooney died at first, and Barrows did the same,A pall-like silence fell upon the patrons of the game.A straggling few got up to go in deep despair. The restClung to the hope which springs eternal in the human breast;They thought, "If only Casey could but get a whack at thatWe'd put up even money now, with Casey at the bat."But Flynn preceded Casey, as did also Jimmy Blake,And the former was a hoodoo, while the latter was a cake;So upon that stricken multitude grim melancholy sat,For there seemed but little chance of Casey getting to the bat.But Flynn let drive a single, to the wonderment of all,And Blake, the much despisd, tore the cover off the ball;And when the dust had lifted, and men saw what had occurred,There was Jimmy safe at second and Flynn a-hugging third.Then from five thousand throats and more there rose a lusty yell;It rumbled through the valley, it rattled in the dell;It pounded on the mountain and recoiled upon the flat,For Casey, mighty Casey, was advancing to the bat.There was ease in Casey's manner as he stepped into his place;There was pride in Casey's bearing and a smile lit Casey's face.And when, responding to the cheers, he lightly doffed his hat,No stranger in the crowd could doubt 'twas Casey at the bat.Ten thousand eyes were on him as he rubbed his hands with dirt;Five thousand tongues applauded when he wiped them on his shirt;Then while the writhing pitcher ground the ball into his hip,Defiance flashed in Casey's eye, a sneer curled Casey's lip.And now the leather-covered sphere came hurtling through the air,And Casey stood a-watching it in haughty grandeur there.Close by the sturdy batsman the ball unheeded sped"That ain't my style," said Casey. "Strike one!" the umpire said.From the benches, black with people, there went up a muffled roar,Like the beating of the storm-waves on a stern and distant shore;"Kill him! Kill the umpire!" shouted someone on the stand;And it's likely they'd have killed him had not Casey raised his hand.With a smile of Christian charity great Casey's visage shone;He stilled the rising tumult; he bade the game go on;He signaled to the pitcher, and once more the dun sphere flew;But Casey still ignored it and the umpire said, "Strike two!""Fraud!" cried the maddened thousands, and echo answered "Fraud!"But one scornful look from Casey and the audience was awed.They saw his face grow stern and cold, they saw his muscles strain,And they knew that Casey wouldn't let that ball go by again.The sneer is gone from Casey's lip, his teeth are clenched in hate,He pounds with cruel violence his bat upon the plate;And now the pitcher holds the ball, and now he lets it go,And now the air is shattered by the force of Casey's blow.Oh, somewhere in this favoured land the sun is shining bright,The band is playing somewhere, and somewhere hearts are light;And somewhere men are laughing, and somewhere children shout,But there is no joy in Mudvillemighty Casey has struck out. express sp in terms of molar solubility, , for the salts with the given formulas.ab(s) sp= ab2(s) sp= ab3(s) sp= a3b2(s) sp= Data taken from the Department of Energy Indicate that the average price of crude oil in the world increased from $54,63 per barrel on January 5, 2007, to $92.93 on December 28, 2007. Would an increase in oil prices cause a demand shock or a supply shock? 16. If each addition requires 100 nanoseconds, what would be the time (in nanoseconds) to compute 1000 additions on an array processing architecture with 9 processors. 10000 11120 90000 Policy makers in the U.S. government have long tried to write laws that encourage growth in per capita real GDP. These laws typically do one of three things:a. They encourage firms to invest more in research and development in order to boost technology.b. They encourage individuals to save more in order to boost the physical capital stock.c. They encourage individuals to invest more in education in order to boost the stock of human capital. A chicken is taken out of the freezer (0C) and placed on a table in a 23C room. Forty-five minutes later the temperature is 10C. It warms according to Newton's Law. How long does it take before the temperature reaches 20C?