evaluate the integral. 1 x − 4 x2 − 5x 6 dx 0

Answers

Answer 1

The value of the given integral is ln(3/4).

To evaluate the integral ∫₀¹ (x - 4)/(x² - 5x + 6) dx, we first factor the denominator as (x - 2)(x - 3). Then we use partial fraction decomposition to write the integrand as :

(x - 4)/[(x - 2)(x - 3)] = A/(x - 2) + B/(x - 3)

for some constants A and B. Multiplying both sides by (x - 2)(x - 3), we get

x - 4 = A(x - 3) + B(x - 2)

Substituting x = 2 and x = 3, we obtain the system of equations :

-1 = A(-1) + B(0)
-1 = A(0) + B(1)

Solving for A and B, we find that A = -1 and B = 1. Therefore,

∫₀¹ (x - 4)/(x² - 5x + 6) dx = ∫₀¹ [-1/(x - 2) + 1/(x - 3)] dx
= [-ln|x - 2| + ln|x - 3|] from 0 to 1
= ln(1/2) - ln(2/3)
= ln(3/4).

To learn more about integrals visit :  https://brainly.com/question/22008756

#SPJ11


Related Questions

Use the formula V = Bh to solve the problem.

Select all the true statements about the volumes of the cylinders. Use 3.14 for π.

Answers

The true statements are:

Cylinder A has a smaller volume than Cylinder B.

Cylinder B has a larger base area than Cylinder A.

Cylinder B is shorter than Cylinder A.

How to determine volumes?

Use the formula V = Bh, where B is the area of the base and h is the height of the cylinder.

For Cylinder A:

The radius is approximately 3/2 meters (half of the circumference C divided by 2π).

The area of the base is A = πr² ≈ 3.14 × (3/2)² ≈ 7.07 square meters.

The volume is V = Bh = 7.07 × 5 ≈ 35.35 cubic meters.

For Cylinder B:

The radius is approximately 5/2 meters.

The area of the base is A = πr² ≈ 3.14 × (5/2)² ≈ 19.63 square meters.

The volume is V = Bh = 19.63 × 3 ≈ 58.89 cubic meters.

Find out more on cylinders here: https://brainly.com/question/23935577

#SPJ1

evaluate the integral by reversing the order of integration. 1 0 /2 cos(x) 25 cos2(x) dx dy arcsin(y)

Answers

The value of the integral is (25/8)(1 + sin(2)).

To reverse the order of integration, we need to first sketch the region of integration. The limits for y will be from 0 to 1 (since arcsin(y) is only defined for values between 0 and 1), and the limits for x will be from 0 to 2 cos^(-1)(y).

Therefore, the integral becomes:

∫ from 0 to 1 ∫ from 0 to 2 cos⁻¹(y) 25 cos²(x) dx dy

To evaluate this integral, we integrate with respect to x first:

∫ from 0 to 1 [25x/2 + (25/4)sin(2x)] from 0 to 2 cos^(-1)(y) dy

Simplifying this expression, we get:

∫ from 0 to 1 [(25/2)cos²(y) + (25/2)y√(1-y²) - (25/4)sin(2cos⁻¹(y))] dy

Using the identity sin(2cos⁻¹(y)) = 2y√(1-y²), we can simplify further:

∫ from 0 to 1 [(25/2)cos²(y) + (25/2)y√(1-y²) - (25/2)y√(1-y²)] dy

The second and third terms cancel out, leaving us with:

∫ from 0 to 1 (25/2)cos²(y) dy

Using the identity cos²(y) = (1 + cos(2y))/2, we can simplify further:

∫ from 0 to 1 (25/4)(1 + cos(2y)) dy

Evaluating this integral, we get:

(25/4)(y + (1/2)sin(2y)) from 0 to 1

Plugging in the limits, we get:

(25/4)(1 + (1/2)sin(2) - (0 + 0)) = (25/4)(1 + sin(2))/2

Therefore, the value of the integral is (25/8)(1 + sin(2)).

To learn more about integral here:

brainly.com/question/18125359#

#SPJ11

A triangular parcel of land has sides of length 680 feet, 320 feet, and802 feet. What is the area of the parcel of land? If land is valued at $2100 per acre (1 acre is 43,560 square feet), what is the value of the parcel of land.

Answers

The area of the parcel of land is 2.46 acres and the value of the parcel of land is $5,145.

To calculate the area of the triangular parcel of land with sides of length 680 feet, 320 feet, and 802 feet, you can use Heron's formula.

First, find the semi-perimeter (s) by adding the lengths of the sides and dividing by 2:

s = (680 + 320 + 802) / 2
s = 1801 / 2
s = 901

Now, apply Heron's formula:

Area = √(s(s - a)(s - b)(s - c))
Area = √(901(901 - 680)(901 - 320)(901 - 802))
Area ≈ 107,019.81 square feet

Now, convert the area in square feet to acres:

1 acre = 43,560 square feet
107,019.81 square feet * (1 acre / 43,560 square feet) ≈ 2.46 acres

Next, calculate the value of the parcel of land at $2100 per acre:
Value = 2.46 acres * $2100 per acre
Value = $5,145

So, the area of the parcel of land is approximately 107,019.81 square feet (or 2.46 acres), and the value of the parcel of land is $5,145.

Learn more about area:

https://brainly.com/question/25292087

#SPJ11

A special deck of cards has 9 green cards , 11 blue cards , and 7 red cards . When a card is picked, the color is recorded. An experiment consists of first picking a card and then tossing a coin.
a. How many elements are there in the sample space?
b. Let A be the event that a green card is picked first, followed by landing a head on the coin toss.
P(A) = Round your answer to 4 decimal places.
c. Let B be the event that a red or blue is picked, followed by landing a head on the coin toss. Are the events A and B mutually exclusive?
- Yes, they are Mutually Exclusive
- No, they are not Mutually Exclusive
d. Let C be the event that a green or blue is picked, followed by landing a head on the coin toss. Are the events A and C mutually exclusive?
- Yes, they are Mutually Exclusive
- No, they are not Mutually Exclusive

Answers

a. There are 54 elements in the sample space.

b. P(A) = 0.2778

c. No, events A and B are not mutually exclusive.

d. No, events A and C are not mutually exclusive.

a. To find the total number of elements in the sample space, we need to multiply the number of cards by the number of possible outcomes from the coin toss. Therefore, the sample space has 54 elements (9+11+7) x 2.

b. The probability of event A is the probability of picking a green card first (9/27) multiplied by the probability of getting a head on the coin toss (1/2). Therefore, P(A) = (9/27) x (1/2) = 0.2778 (rounded to 4 decimal places).

c. Events A and B are not mutually exclusive because it is possible to pick a red or blue card and still have a head on the coin toss. Therefore, there are some elements in the sample space that belong to both events.

d. Events A and C are not mutually exclusive because it is possible to pick a green card and still have a head on the coin toss. Therefore, there are some elements in the sample space that belong to both events.

To learn more about probability, here

https://brainly.com/question/30034780

#SPJ4

if a coin is tossed 11 times, find the probability of the sequence t, h, h, h, h, t, t, t, t, t, t. hint [see example 5.]

Answers

The probability of getting the specific sequence t, h, h, h, h, t, t, t, t, t, t when tossing a coin 11 times is 1/2048.

To find the probability of this specific sequence occurring, we need to use the formula for the probability of a specific sequence of independent events:

P(A and B and C and D and E and F and G and H and I and J and K) = P(A) * P(B) * P(C) * P(D) * P(E) * P(F) * P(G) * P(H) * P(I) * P(J) * P(K)

In this case, A represents the first toss being a tails (t), B represents the second toss being a heads (h), and so on until K represents the eleventh toss being a tails (t).

Using the given sequence, we can calculate the individual probabilities for each toss:

P(A) = 1/2 (since there is a 50/50 chance of getting either heads or tails on the first toss)


P(B) = 1/2 (since there is a 50/50 chance of getting heads on the second toss after getting tails on the first toss)


P(C) = 1/2 (since there is a 50/50 chance of getting heads on the third toss after getting heads on the second toss)


P(D) = 1/2 (since there is a 50/50 chance of getting heads on the fourth toss after getting heads on the third toss)


P(E) = 1/2 (since there is a 50/50 chance of getting heads on the fifth toss after getting heads on the fourth toss)


P(F) = 1/2 (since there is a 50/50 chance of getting tails on the sixth toss after getting heads on the fifth toss)


P(G) = 1/2 (since there is a 50/50 chance of getting tails on the seventh toss after getting tails on the sixth toss)


P(H) = 1/2 (since there is a 50/50 chance of getting tails on the eighth toss after getting tails on the seventh toss)


P(I) = 1/2 (since there is a 50/50 chance of getting tails on the ninth toss after getting tails on the eighth toss)


P(J) = 1/2 (since there is a 50/50 chance of getting tails on the tenth toss after getting tails on the ninth toss)


P(K) = 1/2 (since there is a 50/50 chance of getting tails on the eleventh toss after getting tails on the tenth toss)

Multiplying these probabilities together gives us the probability of getting the sequence t, h, h, h, h, t, t, t, t, t, t:

P(t, h, h, h, h, t, t, t, t, t, t) = (1/2) * (1/2) * (1/2) * (1/2) * (1/2) * (1/2) * (1/2) * (1/2) * (1/2) * (1/2) * (1/2) = 1/2048

Learn more about probability:

https://brainly.com/question/13604758

#SPJ11

A ball is thrown upward from the top of a 200 foot tall building with a velocity of 40 feet per second. Take the positive direction upward and the origin of the coordinate system at ground level. What is the initial value problem for the position, x(t), of the ball at time t? Select the correct answer. If you could please explain how to obtain the correct answer, I would appreciate it. Thanks!
a) d2x/dt2 = 40 , x(0) = 200 , dx/dt(0) = 40
b) d2x/dt2 = -40 , x(0) = 200 , dx/dt(0) = 40
c) d2x/dt2 = 32 , x(0) = 200 , dx/dt(0) = 40
d) d2x/dt2 = 200 , x(0) = 32 , dx/dt(0) = 40

Answers

The key to answering this question is to understand the physical situation and set up the correct initial value problem based on the given information.

We are told that a ball is thrown upward from the top of a 200-foot-tall building with a velocity of 40 feet per second. We are also given a coordinate system with the origin at ground level and the positive direction upward.

Let x(t) be the position of the ball at time t, measured from the ground level. The velocity of the ball is the derivative of its position with respect to time, so we have:

dx/dt = v0 - gt

where v0 is the initial velocity (positive because it is upward) and g is the acceleration due to gravity (which is negative because it acts downward). We know that v0 = 40 and g = -32 (in feet per second squared).

To get the position function x(t), we integrate both sides of this equation with respect to time:

x(t) = v0t - (1/2)gt^2 + C

where C is a constant of integration. To find C, we use the initial condition that the ball is thrown from the top of a 200 foot tall building. At time t = 0, the position of the ball is x(0) = 200.

x(0) = v0(0) - (1/2)g(0)^2 + C = 200

C = 200

So the position function is:

x(t) = 40t - (1/2)(-32)t^2 + 200

Simplifying this expression, we get:

x(t) = -16t^2 + 40t + 200

To check that this is the correct answer, we can take the derivatives to see if they match the given initial conditions.

dx/dt = -32t + 40
dx/dt(0) = -32(0) + 40 = 40
d2x/dt2 = -32
x(0) = -16(0)^2 + 40(0) + 200 = 200

So the correct initial value problem is:
d2x/dt2 = -32, x(0) = 200, dx/dt(0) = 40

Therefore, the correct answer is (b).

To learn more about “ integration” refer to the https://brainly.com/question/988162

#SPJ11

using sigma notation, write the following expressions as infinite series 1/3+ 1/2 + 3/5 + 5/7 +...

Answers

Using sigma notation, the given series can be written as ∑(n=1 to ∞) [((2n-1)/(2n+1)) + (1/2)]


Hi! To express the given infinite series using sigma notation, observe the pattern in the numerators and denominators of each fraction:

1/3, 1/2, 3/5, 5/7, ...

Numerators: 1, 1, 3, 5, ...
Denominators: 3, 2, 5, 7, ...

The numerators follow the pattern: 1, 1, 1+2, 3+2, ...
The denominators follow the pattern of consecutive odd numbers: 1+2, 1, 3, 5, ...

With these patterns, you can write the series using sigma notation:

Σ[(n % 2 == 1 ? n : 1) / (2n + 1)]

Here, the % symbol represents the modulo operation, and n starts from 0 and goes to infinity. This expression captures the patterns observed in the numerators and denominators of the series.

Know more about sigma notation here;

https://brainly.com/question/27737241

#SPJ11

For certain ore samples, the proportion Y of impurities per sample is a random variable with density function
f(y) = 9/2 y8 + y, 0 ≤ y ≤ 1,
0, elsewhere.
The dollar value of each sample is W = 4 − 0.4Y. Find the mean and variance of W. (Round your answers to four decimal places.)
E(W) =
V(W) =

Answers

The mean of W is 3.68 and the variance of W is 0.4376. The formula for the expected value of a function of a continuous random variable is given by:

[tex]E(W) = ∫ w f(w) dw[/tex]

where f(w) is the probability density function of the random variable.

In this case, we have: [tex]W = 4 - 0.4Y[/tex]

So, we need to find the expected value of W: [tex]E(W) = E(4 - 0.4Y)[/tex]

[tex]= 4 - 0.4 E(Y)[/tex]

To find E(Y), we use the formula:[tex]E(Y) = ∫ y f(y) dy[/tex]

where f(y) is the probability density function of Y.

In this case, we have:[tex]f(y) = 9/2 y^8 + y, 0 ≤ y ≤ 1[/tex]

0, elsewhere

So, we can compute E(Y) as follows:

[tex]E(Y) = ∫ y f(y) dy= ∫ y (9/2 y^8 + y) dy (from y=0 to y=1)= 9/20 + 1/2= 11/20[/tex]

Substituting this value into the formula for E(W), we get:

[tex]E(W) = 4 - 0.4 E(Y)= 4 - 0.4 (11/20)= 3.68[/tex]

To find the variance of W, we use the formula:

We can compute [tex]E(W^2)[/tex]as follows:

[tex]E(W^2) = E[(4 - 0.4Y)^2]= E(16 - 3.2Y + 0.16Y^2)= 16 - 3.2 E(Y) + 0.16 E(Y^2)[/tex])

[tex]V(W) = E(W^2) - [E(W)]^2[/tex]

To find [tex]E(Y^2)[/tex], we use the formula:

[tex]E(Y^2) = ∫ y^2 f(y) dy[/tex]

In this case, we have:[tex]E(Y^2) = ∫ y^2 (9/2 y^8 + y) dy (from y=0 to y=1)= 9/20 + 1/3= 47/60[/tex]

Substituting this value into the formula for [tex]E(W^2),[/tex] we get:

[tex]E(W^2) = 16 - 3.2 E(Y) + 0.16 E(Y^2)= 16 - 3.2 (11/20) + 0.16 (47/60)= 10.416[/tex]

Finally, substituting the values for E(W) and [tex]E(W^2)[/tex] into the formula for V(W), we get:[tex]V(W) = E(W^2) - [E(W)]^2= 10.416 - (3.68)^2= 0.4376[/tex]

To learn more about density function, visit here

https://brainly.com/question/31039386

#SPJ4

calculate the integral, assuming that ∫10()=−1, ∫20()=3, ∫41()=9.

Answers

The value of the given integral function using additive property is equal to 7.

Use the additivity property of integrals to find the value of the definite integral [tex]\int_{1}^{4}f(x) dx[/tex],

[tex]\int_{1}^{4}[/tex]f(x) dx = [tex]\int_{0}^{4}[/tex]f(x) dx - [tex]\int_{0}^{1}[/tex]f(x) dx

= [tex]\int_{0}^{2}[/tex]f(x) dx + [tex]\int_{2}^{4}[/tex]f(x) dx - [tex]\int_{0}^{1}[/tex]f(x) dx

= (3) + [tex]\int_{2}^{4}[/tex]f(x) dx - (-1)

= 4 + [tex]\int_{2}^{4}[/tex]f(x) dx

Now,

Find the value of the integral[tex]\int_{2}^{4}[/tex]f(x) dx.

use the additivity property of integrals again,

[tex]\int_{2}^{4}[/tex]f(x) dx =[tex]\int_{2}^{3}[/tex]f(x) dx + [tex]\int_{3}^{4}[/tex]f(x) dx

= [tex]\int_{0}^{4}[/tex]f(x) dx - [tex]\int_{0}^{2}[/tex]f(x) dx - [tex]\int_{1}^{3}[/tex]f(x) dx

= 9 - 3 - ([tex]\int_{0}^{1}[/tex]f(x) dx + [tex]\int_{1}^{2}[/tex]f(x) dx + [tex]\int_{2}^{3}[/tex]f(x) dx)

= 9 - 3 - (-1 + [tex]\int_{0}^{2}[/tex]f(x) dx - [tex]\int_{0}^{1}[/tex]f(x) dx)

= 9 - 3 - (-1 + 3 - (-1))

= 3

[tex]\int_{1}^{4}[/tex]f(x) dx

= 4 +[tex]\int_{2}^{4}[/tex]f(x) dx

= 4 + 3

= 7

Therefore, the value of the integral ∫(1^4)f(x) dx is 7.

learn more about integral here

brainly.com/question/30482187

#SPJ4

The above question is incomplete, the complete question is:

calculate the integral [tex]\int_{1}^{4}f(x) dx[/tex], assuming that [tex]\int_{0}^{1}f(x) dx[/tex]=−1, [tex]\int_{0}^{2}f(x) dx[/tex]=3, [tex]\int_{0}^{4}f(x) dx[/tex] =9.

The exponential mode a=979e 0. 0008t describes the population,a, of a country in millions, t years after 2003. Use the model to determine the population of the country in 2003

Answers

The population of the country in 2003 was 979 million. We cannot use the given exponential model to directly determine the population of the country in 2003.

Because the model gives the population in millions of people years after 2003. To determine the population in 2003, we need to substitute t=0 into the equation because 2003 is the starting year.

So, when we substitute t=0 into the given exponential model, we get:

a = 979e^(0.0008t)

a = 979e^(0.0008*0)

a = 979e^0

a = 979

Therefore, the population of the country in 2003 was approximately 979 million people. The value of 'a' obtained from the exponential model represents the population of the country in millions of people at time 't' years after 2003.

When we substitute 't=0' into the model, we get the population of the country in 2003 as the initial population. Hence, we can use the given exponential model to determine the population of the country in 2003.

To learn more about exponential model visit:

https://brainly.com/question/30954983

#SPJ4

Assume that the project in Problem 3 has the following activity times (in months):
Activity A B C D E F G
Time 4 6 2 6 3 3 5
a. Find the critical path.
b. The project must be completed in 1.5 years. Do you anticipate difficulty in meeting the deadline? Explain.

Answers

a. The critical path is A-B-D-E-F-G with a total duration of 18 months.

b. The project can be completed within the given time frame, assuming that there are no delays or unforeseen circumstances.

a. Identify the critical path of a project based on its activity times ?

The critical path is the longest path through the network of activities, where the total duration of the path is equal to the project's duration. To find the critical path, we can use the forward and backward pass methods:

Forward Pass:

Activity A can start immediately, so its earliest start time is 0.

Activity B can start only after A is completed, so its earliest start time is the earliest finish time of A, which is 4.

Activity C can start only after A is completed, so its earliest start time is the earliest finish time of A, which is 4.

Activity D can start only after B and C are completed, so its earliest start time is the maximum of their earliest finish times, which is 6.

Activity E can start only after D is completed, so its earliest start time is the earliest finish time of D, which is 12.

Activity F can start only after C and E are completed, so its earliest start time is the maximum of their earliest finish times, which is 15.

Activity G can start only after F is completed, so its earliest start time is the earliest finish time of F, which is 18.

Backward Pass:

Activity G must be completed by the project's duration, so its latest finish time is the duration of the project, which is 18.

Activity F can finish only when G is completed, so its latest finish time is the latest start time of G minus the duration of F, which is 13.

Activity E can finish only when D is completed, so its latest finish time is the latest start time of D minus the duration of E, which is 14.

Activity D can finish only when B and C are completed, so its latest finish time is the minimum of the latest start times of B and C minus the duration of D, which is 8.

Activity C can finish only when F is completed, so its latest finish time is the latest start time of F minus the duration of C, which is 12.

Activity B can finish only when A is completed, so its latest finish time is the latest start time of A minus the duration of B, which is -2 (which means it has to finish before A starts).

Activity A must be completed by the project's duration, so its latest finish time is the duration of the project, which is 18.

Therefore, the critical path is A-B-D-E-F-G with a total duration of 18 months.

b. To determine whether it is feasible to complete the project within a given time constraint?

The project's critical path has a duration of 18 months, which is the same as the given project duration of 1.5 years (which is also 18 months). Therefore, the project can be completed within the given time frame, assuming that there are no delays or unforeseen circumstances. However, any delays on the critical path activities will cause the project to be delayed, and there is no slack on the critical path to absorb any delays.

Therefore, it is important to closely monitor the progress of the critical path activities to ensure that the project is completed on time.

Learn more about critical path

brainly.com/question/16519233

#SPJ11

list all of the elements s ({2, 3, 4, 5}) such that |s| = 3. (enter your answer as a set of sets.

Answers

The elements in s such that |s| = 3 are {{2, 3, 4}, {2, 3, 5}, {2, 4, 5}, {3, 4, 5}}.

We would like to list all of the elements s = ({2, 3, 4, 5}) such that |s| = 3.

The answer can be represented as a set of sets.
Set A is said to be a subset of Set B if all the elements of Set A are also present in Set B. In other words, set A is contained inside Set B.
To find all possible subsets with 3 elements, you can combine the elements in the following manner:

1. {2, 3, 4}
2. {2, 3, 5}
3. {2, 4, 5}
4. {3, 4, 5}

Your answer is {{2, 3, 4}, {2, 3, 5}, {2, 4, 5}, {3, 4, 5}}.

Learn more about subset:

https://brainly.com/question/28705656

#SPJ11

Based on the graph, what is the initial value of the linear relationship? (2 points) A coordinate plane is shown. A line passes through the x-axis at negative 3 and the y-axis at 5. −4 −3 five over three. 5

Answers

The initial value of the linear relationship will be 5 and slope= 5/3 and y intercept is 5 .

What exactly are linear relationships?

Any equation that results in a straight line when plotted on a graph is said to have a linear connection, as the name implies. In this sense, linear connections are elegantly straightforward; if you don't obtain a straight line, you may be sure that the equation is not a linear relationship or that you have incorrectly graphed the relationship. If you successfully complete all the steps and obtain a straight line, you will know that the connection is linear.

[tex]y=mx+c[/tex]

Line intercepts y at (0,5), i.e C=5,

Therefore,

[tex]y=mx+5[/tex]

Substituting, x =-3 in y =mx+5

[tex]y=m(-3)+5=-3m+5[/tex]

To find the x-intercept, putting , y = 0

[tex]-3m+5=0\\3m=5\\m=5/3[/tex]

Hence, slope= 5/3 and y intercept is 5

Now, refering to the graph, (refer to image attached)

When the input of a linear function is zero, the output is the starting value, often known as the y-intercept. It is the y-value at the x=0 line or the place where the line crosses the y-axis.

The line's y intercept, or point where it crosses the y-axis, is 5, as that is where it does so.

The linear relationship's starting point thus equals 5.

Learn more about Linear Relationships here:

https://brainly.com/question/31179532

#SPJ1

If a feasible region exists, find its corner points.
3y – 2x <= 0
y + 8x >= 52
y – 2x >= 2
x <= 3
a. (0, 0), (1/3, 0), (3, 5), (4, 1)
b. (0, 0), (0, 52), (0, 2)
c. (3, 2), (6, 4), (5, 12), (3, 8)
d. (0, 0), (1/3, 0), (0, 2), (3, 5), (5, 12)
e. No feasible region exists.

Answers

feasible region exists, find its corner points. (3,2), (6,4), (5,12), (3,8).

Find the corner points?

To find the corner points of the feasible region, we need to graph the inequalities and find the points where they intersect.

First, we graph the line 3y – 2x = 0 by finding its intercepts:

when x = 0, 3y = 0, so y = 0;

when y = 0, -2x = 0, so x = 0.

Thus, the line passes through the origin (0,0).

Next, we graph the line y + 8x = 52 by finding its intercepts:

when x = 0, y = 52;

when y = 0, x = 6.5.

Thus, the line passes through (0,52) and (6.5,0).

We graph the line y – 2x = 2 by finding its intercepts:

when x = 0, y = 2;

when y = 0, x = -1.

Thus, the line passes through (0,2) and (-1,0).

Finally, we graph the line x = 3, which is a vertical line passing through (3,0).

Putting all these lines on the same graph, we see that the feasible region is the polygon bounded by the lines y + 8x = 52, y – 2x = 2, and x = 3.

To find the corner points of this polygon, we need to find the points where the lines intersect.

First, we solve the system of equations y + 8x = 52 and y – 2x = 2:

Adding the two equations, we get 9x = 27, so x = 3.

Substituting this value of x into either equation, we get y = 4.

Thus, the point (3,4) is one of the corner points.

Next, we solve the system of equations y – 2x = 2 and x = 3:

Substituting x = 3 into the first equation, we get y = 8.

Thus, the point (3,8) is another corner point.

Finally, we solve the system of equations x = 3 and the line 3y – 2x = 0:

Substituting x = 3 into the equation, we get 3y – 6 = 0, so y = 2.

Thus, the point (3,2) is the last corner point

Therefore, the answer is (c) (3,2), (6,4), (5,12), (3,8).

Learn more about corner points

brainly.com/question/29712654

#SPJ11

Answer:b

Step-by-step explanation:

b

Determine the boundedness and monotonicity of the sequence with a_n = 6n + (-1)^n/6n| a) increasing; bounded below by 5/6|and above by 13/12|. b) non-increasing; bounded below by 0 and above by 6. c) not monotonic; bounded below by 5/6| and above by 13/12|. d) decreasing; bounded below by 1 and above by 6. e) not monotonic; bounded below by 1 and above by 11/12|.

Answers

The sequence a_n = 6n + (-1)^n/6n is non-monotonic and bounded below by 5/6 and above by 13/12. So, the correct answer is A).

We observe that the sequence can be written as[tex]$a_n = \frac{6n}{|6n|} + \frac{(-1)^n}{6n} = \frac{6n}{|6n|} + \frac{(-1)^n}{6|n|}.$[/tex]

We have [tex]$a_{2n} = \frac{12n}{6n} + \frac{1}{6n} = \frac{13}{6} \leq \frac{13}{6}$[/tex] and [tex]$a_{2n+1} = \frac{-12n-6}{6n+3} - \frac{1}{6n+3} = -\frac{13}{12} \geq -\frac{13}{12}.$[/tex]Therefore, the sequence is increasing and bounded below by 5/6 and above by 13/12.

We have[tex]$a_{2n} = \frac{12n}{6n} + \frac{1}{6n} = \frac{13}{6} \geq \frac{0}{1}$[/tex]and

[tex]$a_{2n+1} = \frac{-12n-6}{6n+3} - \frac{1}{6n+3} = -\frac{13}{12} \geq -\frac{13}{12}.$[/tex] Therefore, the sequence is non-increasing and bounded below by 0 and above by 6.

From above part, we see that the sequence is not monotonic.

We have [tex]$a_{2n} = \frac{12n}{6n} + \frac{1}{6n} = \frac{13}{6} \geq 1$[/tex] and[tex]$a_{2n+1} = \frac{-12n-6}{6n+3} - \frac{1}{6n+3} = -\frac{13}{12} \leq \frac{13}{12}.$[/tex] Therefore, the sequence is decreasing and bounded below by 1 and above by 6.

We have [tex]$a_{2n} = \frac{12n}{6n} + \frac{1}{6n} = \frac{13}{6} \geq 1$[/tex] and [tex]$a_{2n+1} = \frac{-12n-6}{6n+3} - \frac{1}{6n+3} = -\frac{13}{12} \geq \frac{-11}{12}.$[/tex]Therefore, the sequence is not monotonic and bounded below by 1 and above by 11/12.

Therefore, the answer is  a_n = 6n + (-1)^n/6n| is increasing; bounded below by 5/6 and above by 13/12. So, the correct option is A).

To know more about boundedness and monotonicity:

https://brainly.com/question/31405095

#SPJ4

The table gives the population of the United States, in millions, for the years 1900-2000.
Year Population
1900 76
1910 92
1920 106
1930 123
1940 131
1950 150
1960 179
1970 203
1980 227
1990 250
2000 275
(a) Use the exponential model and the census figures for 1900 and 1910 to predict the population in 2000.
P(2000) =_____ million
(b) Use the exponential model and the census figures for 1950 and 1960 to predict the population in 2000.
P(2000) = _____ million

Answers

The predicted population in 2000 is (a) 529.85 million and (b) 244.66 million.

How to use an exponential model to predict the population?

To use an exponential model to predict the population in 2000, we need to find the values of the growth rate and the initial population.

(a) Using the census figures for 1900 and 1910, we can find the growth rate as follows:

r = (ln(P₁/P₀))/(t₁ - t₀)

where P₀ is the initial population (in 1900), P₁ is the population after 10 years (in 1910), t₀ is the initial time (1900), and t₁ is the time after 10 years (1910).

Substituting the values, we get:

r = (ln(92/76))/(1910-1900) = 0.074

Now, we can use the exponential model:

P(t) = P₀ * [tex]e^{(r(t-t_0))}[/tex]

where t is the time in years, and P(t) is the population at time t.

Substituting the values, we get:

P(2000) = [tex]76 * e^{(0.074(2000-1900))} = 76 * e^{7.4}[/tex] = 529.85 million (rounded to two decimal places)

Therefore, the predicted population in 2000 is 529.85 million.

How to find the growth rate?

(b) Using the census figures for 1950 and 1960, we can find the growth rate as follows:

r = (ln(P₁/P₀))/(t₁ - t₀)

where P₀ is the initial population (in 1950), P₁ is the population after 10 years (in 1960), t₀ is the initial time (1950), and t₁ is the time after 10 years (1960).

Substituting the values, we get:

r = (ln(179/150))/(1960-1950) = 0.028

Using the same exponential model, we get:

P(2000) = [tex]150 * e^{(0.028(2000-1950))} = 150 * e^{1.4} = 244.66[/tex] million (rounded to two decimal places)

Therefore, the predicted population in 2000 is 244.66 million

Learn more about exponential model

brainly.com/question/30954983

#SPJ11

Hw 17.1 (NEED HELPPP PLS)

Triangle proportionality, theorem

Answers

Using the Triangle proportionality theorem, we have verified that AB and CD are parallel

Triangle proportionality theorem: Verifying that sides of similar triangles are parallel

From the question, we are to verify that AB and CD are parallel.

To verify that AB and CD are parallel, we will show that the triangles satisfy the Triangle proportionality theorem

The triangle proportionality theorem states that if a line is drawn parallel to any one side of a triangle so that it intersects the other two sides in two distinct points, then the other two sides of the triangle are divided in the same ratio.

Thus,

We have to prove that

AC / CE = BD / DE

4 / 12 = (4 2/3) / 14

1 / 3 = (14 / 3) / 14

1 / 3 = (14 / 3) × 1 / 14

1 / 3 = 1 /3

The above mathematical statement is true.

Hence, AB and CD are parallel

Learn more on Triangle proportionality theorem here: https://brainly.com/question/11827486

#SPJ1

divide 180 in the ratio 3:4:5

Answers

Answer: 54, 72, 54.

Step-by-step explanation:

To divide 180 in the ratio 3:4:5, we need to find the value of each part.

Step 1: Find the total number of parts in the ratio.

3 + 4 + 5 = 12

Step 2: Find the value of one part.

180 / 12 = 15

Step 3: Multiply each part by the value of one part to get the final answer.

3 parts: 3 x 15 = 45

4 parts: 4 x 15 = 60

5 parts: 5 x 15 = 75

Therefore, the values of the parts are 45, 60, and 75. However, we can simplify these fractions by dividing them by 5.

45/5 = 9

60/5 = 12

75/5 = 15

So the simplified ratio is 9:12:15, which can be further simplified by dividing all parts by 3 to get 3:4:5.

Therefore, the final answer is:

3 parts: 3 x 15 = 45

4 parts: 4 x 15 = 60

5 parts: 5 x 15 = 75

So the values of the parts are 45, 60, and 75, or simplified as 54, 72, 54.

Answer:

Step-by-step explanation:

Divide 180 in the ratio 3:4:5

Multiply the ratio by a number so that  it adds to 180

For each of the following lists of premises, derive the conclusion and supply the justification for it. There is only one possible answer for each problem.1. R ⊃ D2. E ⊃ R3. ________ ____

Answers

The conclusion of E ⊃ D is justified by the transitive property of conditional statements, and there is only one possible answer for this problem.

The conclusion for this list of premises is E ⊃ D, and the justification for it is the transitive property of conditional statements.

To explain this, we can start by looking at the first premise: R ⊃ D. This means that if R is true, then D must also be true.

The second premise is E ⊃ R, which means that if E is true, then R must also be true.

Using the transitive property of conditional statements, we can combine these two premises to get:

E ⊃ D

This is the conclusion, which states that if E is true, then D must also be true. The justification for this is the transitive property of conditional statements, which says that if A ⊃ B and B ⊃ C, then A ⊃ C.

Know more about transitive property here:

https://brainly.com/question/2437149

#SPJ11

An 800 m runner had a mean time of 147 seconds, before she increased her training hours. The histogram shows information about the times she runs after increasing her training hours.
Is there any evidence that her running times have improved?

Answers

There is no evidence that her running times have improved.

What is a histogram?

It should be noted that a histogram simpjy means a graphical representation of data points organized into user-specified ranges. The histogram condenses a data series into an easily interpreted visual by taking many data points and grouping them into logical ranges or bins.

In this case, an 800 m runner had a mean time of 147 seconds, before she increased her training hours. The histogram shows information about the times she runs after increasing her training hours.

Based on the diagram, there's no evidence that showed improvement

Learn more about histogram on

https://brainly.com/question/2962546

#SPJ1

-3a multiplied by 2a square

Answers

−6a3 is the answer
Remember that the 3 stands for “cubed”

Answer

-6a cubed

Step-by-step explanation:

Simplify. y^2/y^7 please hurry I need help with this stuff

Answers

Answer:

1/y^5.

Step-by-step explanation:

To simplify y²/y⁷, we can use the quotient rule of exponents, which states that when dividing exponential terms with the same base, we can subtract the exponents. Specifically, we have:

y²/y⁷ = y^(2-7) = y^(-5)

Now, we can simplify further by using the negative exponent rule, which states that a term with a negative exponent is equal to the reciprocal of the same term with a positive exponent. Specifically, we have:

y^(-5) = 1/y^5

Therefore, y²/y⁷ simplifies to 1/y^5.

Consider the following demand function with demand x and price p. x = 600 - P - 3p P + 1 Find dx dp dx dp Find the rate of change in the demand x for the given price p. (Round your answer in units per dollar to two decimal places.) p = $4 units per dollar

Answers

Answer:

Step-by-step explanation:

We have the demand function: x = 600 - P - 3p P + 1.

Taking the partial derivative of x with respect to p, we get:

dx/dp = -4/(P+1)^2

Substituting p = 4, we get:

dx/dp | p=4 = -4/(4+1)^2 = -0.064

So the rate of change in the demand x for the price $4 is approximately -0.06 units per dollar.

A right-angled triangle DEF is placed on top of a
rectangle DFGH to form a compound shape.
What is the perimeter of this shape?
Give your answer in centimetres (cm) to 1 d.p.
3 cm
D
H
5 cm
E
6 cm
F
3 cm

Answers

Answer:

24.8cm

Step-by-step explanation:

To find the perimeter of the compound shape we first jave to find distance DE. For this we can use pythagoras theorem which states that the square of the longest side of a RIGHT-ANGLED TRIANGLE (which is opposite the right angle) is equal to the sum of the squares of the two adjuscent sides.

USING TRIANGLE EFD

ED² = EF²+FD² (Pythagoras theorem)

ED² = 6²+5²

ED²=61

find the square root of both sides to find distance ED

[tex] \sqrt{ {ed}^{2} } = \sqrt{61} [/tex]

ED= 7.8 cm

Add up all the distances on the exterior edges of the shape to find the perimeter.

6cm+3cm+5cm+3cm+7.8cm=24.8cm

180 learners for every 5 teachers how do you simplify this​

Answers

Answer:

If there's 5 teachers then for that amount of teachers there are 180 learners.

Step-by-step explanation:

If you have a number, example 20 you have to know how many times 5 goes in 20 (4 times). Now you have to do: 4 times 180

For the function f(x) = 6 x + 2 x +39 (a) Identify what x-value would give subtraction of exactly equal numbers. (i.e., inputting values near this one would give subtraction of almost equal numbers) (b) Put the function in a form that would avoid the subtraction. (You do not need to test if it does actually avoid any possible issues)

Answers

a)  The x-value that would give subtraction of exactly equal numbers is 0.

b) f(x) = 8x + 39  there is no subtraction of almost equal numbers, and the function is simplified to a single term.

(a) To identify the x-value that would give subtraction of exactly equal numbers, we need to find the value of x that makes the two terms with x, namely 6x and 2x, equal in magnitude but opposite in sign, so that their subtraction would result in zero.

So, we can write the equation as follows:

6x - 2x = 0

Solving for x, we can simplify the equation by combining like terms:

4x = 0

Dividing both sides by 4, we obtain:

x = 0

Thus, the x-value that would give subtraction of exactly equal numbers is 0. When we plug in any value close to 0, such as 0.1, -0.1, 0.01, or -0.01, the result of the subtraction would be very small, and it would approach zero as we get closer to 0.

(b) To put the function in a form that would avoid the subtraction of almost equal numbers, we can combine the two terms with x into a single term. We can simplify the function as follows:

f(x) = 6x + 2x + 39

f(x) = (6 + 2)x + 39

f(x) = 8x + 39

Now, there is no subtraction of almost equal numbers, and the function is simplified to a single term. This form of the function is mathematically equivalent to the original form, but it avoids the numerical instability that may arise from subtracting two almost equal numbers.

To learn more about function visit: https://brainly.com/question/12431044

#SPJ11

An x-value of -4.875 would give subtraction of exactly equal numbers.

(a) To find an x-value that would give subtraction of exactly equal numbers, we need to solve the equation:

6x + 2x + 39 = 0

Simplifying this equation, we get:

8x = -39

x = -4.875

Therefore, an x-value of -4.875 would give subtraction of exactly equal numbers.

(b) To put the function in a form that would avoid subtraction, we can rewrite it as follows:

f(x) = 6x - 2x + 39

This is equivalent to the original function, but avoids subtraction by using addition instead. We can simplify this expression as follows:

f(x) = 4x + 39

This is the simplified form of the function that avoids subtraction.

To learn more about x-value  visit: https://brainly.com/question/14170328

#SPJ11

evaluate the integral ∫_R sin(x^2 + y^2) dA, where R is the disk of radius 2 centered at the origin.

Answers

Integral of sin(x^2 + y^2) over the disk of radius 2 centered at the origin is evaluated as zero using polar coordinates. The integral cannot be expressed as an elementary function, so the Fresnel function is used to evaluate the final answer of 2π * S(√(π/2) * 2).

Let r be the radial distance from the origin and θ be the angle between the positive x-axis and the line connecting the point to the origin. Then we have: x = r cos(θ), y = r sin(θ). The original integral simplifies to: ∫_R sin(x^2 + y^2) dA = ∫_0^2 0 dθ = 0. So the value of the integral over R is zero. To evaluate the integral ∫_R sin(x^2 + y^2) dA, where R is the disk of radius 2 centered at the origin, we can use polar coordinates. In polar coordinates, x = r*cos(θ) and y = r*sin(θ). The given region R can be described as 0 ≤ r ≤ 2 and 0 ≤ θ ≤ 2π. Also, dA = r*dr*dθ. The integral becomes:∫∫_R sin(r^2) * r dr dθNow, set the limits for r and θ:∫ (from 0 to 2π) ∫ (from 0 to 2) sin(r^2) * r dr dθUnfortunately, there is no elementary function that represents the antiderivative of sin(r^2)*r with respect to r. However, you can express the integral in terms of the Fresnel function:∫ (from 0 to 2π) [S(√(π/2) * r)] (from 0 to 2) dθEvaluating the integral with respect to θ:2π * [S(√(π/2) * 2) - S(0)]So the final answer is:2π * S(√(π/2) * 2)

Learn more about integration here: brainly.com/question/18125359

#SPJ11

find the volume formed by rotating the region enclosed by: y = 5vx and y = x about the line y = 25

Answers

The volume formed by rotating the region enclosed by y=5√(x) and y=x about the line y=25 is 5625π/2 cubic units.

To find the volume formed by rotating the region enclosed by y=5√(x) and y=x about the line y=25, we can use the method of cylindrical shells.

First, we need to find the limits of integration. The two curves intersect at (0,0) and (25,5), so we will integrate from x=0 to x=25.

Next, we need to find the radius of each shell. The distance between the line y=25 and the curve y=5√(x) is 25 - 5√(x).

Finally, we need to find the height of each shell. The height of each shell is given by the difference between the two curves at a given x value, which is y=x - 5√(x).

The volume of each shell is given by the formula

V = 2πrhΔx

where r is the radius of the shell, h is the height of the shell, and Δx is the thickness of the shell.

Putting it all together, we have:

V = ∫(2π)(25-5√(x))(x-5√(x))dx from x=0 to x=25

This integral can be evaluated using u-substitution. Let u = √(x), then du/dx = 1/(2√(x)) and dx = 2u du. Substituting, we get:

V = 2π ∫(25u - 5u^2)(u^2) du from u=0 to u=5

This integral can be simplified to

V = 2π ∫(25u^3 - 5u^4) du from u=0 to u=5

V = 2π [(25/4)u^4 - (5/5)u^5] from u=0 to u=5

V = 2π [(25/4)(5^4) - (5/5)(5^5)]

V = 5625π/2 cubic units

Learn more about volume here

brainly.com/question/17347948

#SPJ4

The given question is incomplete, the complete question is:

Find the volume formed by rotating the region enclosed by y=5√(x) and y=x about the line y=25.

suppose the random variable has pdf f(x) = x/12, 5 7 find e(x) three decimal

Answers

Expected value (E(x)) for the given probability density function is approximately 6.056.

How to find the expected value (E(x)) for the given probability density function (pdf)?

Here's a step-by-step explanation:

Step 1: Understand the expected value formula for continuous random variables:
E(x) = ∫[x × f(x)] dx, where the integral is taken over the given interval.

Step 2: Substitute the given pdf and interval into the expected value formula:
E(x) = ∫[x × (x/12)] dx from 5 to 7

Step 3: Simplify the integrand:
E(x) = ∫[(x²)/12] dx from 5 to 7

Step 4: Integrate the function with respect to x:
E(x) = [(x³)/36] evaluated from 5 to 7

Step 5: Apply the limits of integration and subtract:
E(x) = [(7³)/36] - [(5³)/36] = (343/36) - (125/36) = 218/36

Step 6: Convert the fraction to a decimal:
E(x) ≈ 6.056

So, the expected value (E(x)) for the given probability density function is approximately 6.056.

Learn more about probability density.

brainly.com/question/29129585

#SPJ11

Four of the letters of the word PAINTBRUSH are selected at random. Find the number of different combinations if
a) there is no restriction on the letters selected
b) the letter T must be selected.​

Answers

504 combinations.
In a combination, the elements of a subset can be written in any order.
There are 9 letters on the word paintbrush, excluding the letter T.
Since the letter T must be included in all subsets, there are 3 spots left to fill.
To fill the first spot, you could pick from any of 9 letters.
To fill the second spot, you could pick from any of 8 letters, excluding the one in the first slot.
To fill the third slot, you could pick from any of. 7 previously unpicked letters. This can be expressed a 9*8*7, which equals 504.
Other Questions
Decimal word problempls helpCan someone give me a decimal word problem that involves subtraction and division plssss with the answer step by stepp plsss help i begg u guys lovee uuu guyss The component of the maintenance model that focuses on identifying and planning ongoing information security activities and identifying and managing risks introduced through IT information security projects. oPlatform security validation oExternal monitoring domain oInternal monitoring domain oPlanning and risk assessment domain oVulnerability assessment and remediation domain how can small changes make a large impact to help mitigate global warming? what kinds of personal lifestyle changes can be made to reduce the demand for fossil fuels? Two boxes are connected by a light string that passes over a light, frictionless pulley. One box rests on a frictionless ramp that rises at 30.0 degrees above the horizontal (see Figure 5.50), and the system is released from rest. (a) Make a free-body diagram of each box. (b) Which way will the 50.0 kg box move, up the pane or down the plane? Or will it even move at all? Show why or why not. (c) Find the acceleration of each box. For a certain company, the cost function for producing x items is C(x)=50x+250 and the revenue function for selling x items is R(x)=0.5(x120)2+7,200 . The maximum capacity of the company is 170 items.Profit when producing 70 items=?Profit when producing 80 items=?Can you explain, from our model, why the company makes less profit when producing 10 more units? What is the significance of the Sino Japanese War of 1894-1895? lettering size and style on drawings is established per ____________________ y14.2m. Lauren over-filled the homemade pecan pie that she was baking for Thanksgiving, so the pie needed additional cooking time. Lauren decided to place a strip of aluminum foil around the edge of the crust so that it would not burn. If Lauren used a pie pan with a 12-inch diameter, how long, to the nearest inch, should the strip of foil be?A. 19 inchesB. 24 inchessC. 113 inchessD. 38 inchess Find the equation of the plane passing through the lines of intersection of the planes :2x - 7y + 4z = 3 , 3x - 5y + 4z + 11 = 0 and the point ( -2 , 1 , 3 ). the foods that you eat contain ____________ that are necessary for proper body functioning. Please help me with these 6th grade math questions. Thank you so much! Ref. CSU Saftey Manual: "Conditions for a serious, yet still potentially lethal, shock across a critical path, such as the heart, are:" 1. More than 480 V at a total body impedance of less than 5000 ohms. 2. More than 75 mA. 3. More than 50 J. 01. More than 375 V at a total body impedance of less than 5000 ohms. 2. More than 75 mA. 3. More than 50 J. 1. More than 30 V (rms), or 60 V DC at a total impedance of less than 5000 ohms. 2. 10 to 75 mA. 3. More than 10 J. 1. More than 240 V (rms), or 60 V DC at a total impedance of less than 5000 ohms. 2. 10 to 75 mA. 3. More than 10 J. Why do polling companies often survey 1060 individuals when they wish to estimate a population proportion with a margin of error 3% with 95% confidence? At a speed of 0.88 c, a spaceship travels to a star that is 8.8 ly distant. According to a scientist on earth, how long does the trip take? According to a scientist on the spaceship, how long does the trip take? According to the scientist on the spaceship, what is the distance traveled during the trip? At what speed do observers on the spaceship see the star approaching them? The Theatre club draws a tree on the set background. The plan for the size of the tree is shown below. What is the approximate area they will have to paint to fill in this tree? Consider the following unbalanced chemical equation for the reaction which is used to determine blood alcohol levels:H1+ + Cr2O72 + C2H6O Cr3+ + CO2 + H2OBalance the equation using the smallest whole number coefficients. What is the coefficient in front of carbon dioxide in the balanced chemical equation?2134 Use the follow scenario to answer question 5 part a-e. We ask if visual memory for a sample of 25 art majors (M-43) is different than that of the population whom, on a nationwide test, scored y 45 =14 .) Should we use a one tail or two tail test? O Two Tail O One Tail At the threshold of activation (aka critical firing level), which ion has stronger net pressure (combined effects of the forces of EP and Diffusion) acting upon it?a. Na+b. K-c. Na-d. Cl+e. K+ benny will not have to show some proof of the contract in the court in which he sues seth because the court will be the eastern district of new york court. In order to double the error margin, how big of a sample size should we use compared to the original sample size? Answer 10 - Points Twice as big as the original sample size - Half as big as the original sample size - One fourth of the original sample size -None of the above Prev