claire boarded the airplane in richmond, va, and flew 414 miles directly to Charleston, sc. The total flight time was 3/4 hours. How fast did Claire's airplane fly, in mile per hour

Answers

Answer 1

Answer:

552 mph

Step-by-step explanation:

414 / 3/4 = 414 * 4/3 = 1656/3 = 552


Related Questions

B={x|x is an integer and -4

Answers

The resultant answer in roster form is B = {-3, -2, -1, 0, 1, 2, 3, 4, 5}.

What is roster form?

In the set-builder form, a short, statement, or formula is written inside a pair of curly braces, as opposed to the roster form, where the listed items are enclosed in a pair of curly braces and separated by commas.

Roster or tabular form: In roster form, all of the components of a set are listed, with commas used to divide them and braces used to enclose them.

For instance, Z = the set of all integers = {…,−3,−2,−1,0,1,2,3,…}.

So, we have:

B = {x:x is an integer and -4 < x < 6}

B has numbers from -4 and 6.

Now, write B in roster form as:

B = {-3, -2, -1, 0, 1, 2, 3, 4, 5}


Therefore, the resultant answer in roster form is B = {-3, -2, -1, 0, 1, 2, 3, 4, 5}.

Know more about the roster form here:

https://brainly.com/question/24130735

#SPJ1

Complete question:

Write the following sets in roster form:

B = {x:x is an integer and -4 < x < 6}

A man walks for 2 hours at a certain speed. He then cycles at three times that seed for
4 hours. He goes 77km altogether. Find the speed at which he walks.

Answers

5.5km/hr is the speed at which he walks.

What is Equation?

Two or more expressions with an Equal sign is called as Equation.

Given

w = walking speed

t = time walking = 2

Given, A man walks for 2 hours at a certain speed which is 2w

He then cycles at three times that seed for 4 hours.

We can form a equation by given data

2w + 3×w×4 = 77

2w+12w=77

14w = 77

Divide both sides by 14

w = 5.5 km/hr

Hence, 5.5km/hr is the speed at which he walks.

To learn more on Equation:

https://brainly.com/question/10413253

#SPJ1

The function c(r) = 0.47x + 20 represents the cost (in dollars) of a one-day truck rental when the truck is
driven x miles.
a. What is the truck rental cost when you drive 80 miles?
b. How many miles did you drive when your cost is $35.51?

Answers

Answer:  the cost is $35.51, That must mean it would be driven 33.0 miles.

Step-by-step explanation: The given function c(r) represents the cost of a one-day truck rental when the truck is driven x miles. This means that the cost in dollars is a linear function of the number of miles driven.

To answer the first part of the question, we can plug in x = 80 into the function to find the truck rental cost when we drive 80 miles:

$$c(r) = 0.47x + 20 = 0.47(80) + 20 = \boxed{35.6}$$

To answer the second part of the question, we can solve the equation $c(r) = 0.47x + 20 = 35.51$ for x to find the number of miles driven when the cost is $35.51:

$$35.51 = 0.47x + 20 \Rightarrow 15.51 = 0.47x \Rightarrow x = \boxed{33.0}$$

Therefore, when the cost is $35.51, we must have driven 33.0 miles.

Use the figure to find the missing angles

Answers

Answer:

Angel 5 is 73

Angel 1 is 37

Angel 2 is 42

Angel 3 is 132

Angel 4 is 73

Angel 6 is 30

Step-by-step explanation:

Find dy, dx if f(x) = (x + 1)2x.

Options:
A. 2xln(x + 1)

B. 2 times the natural log of the quantity x plus 1 plus 2 times x divided by the quantity x plus 1

C. 2x(x + 1)(2x - 1)

D. the product of the quantity 2 times the natural log of the quantity x plus 1 plus 2 times x divided by the quantity x plus 1, and the quantity x plus 1 raised to the 2x power

Answers

Answer:

D, I've taken the test already!

Step-by-step explanation:

there

For triangle ABC, tell what information is given (i.e. SAS, SSS, ASA, etc.) in Column A. Solve for the indicated angle or side in Column B. If there are two solutions, give both. Express answers to the nearest tenth.
1. A=52°, b=120, c = 160, find a
2. a=13.7, A=2543°, B=78°, find b
3. A=38°, B=63°, c=15, find b
4. a=1.5, b=2.3, c=1.9, find B
5. b=795.1, c=775.6, B=51.85°, find C
6. b=40, c=45, A=51°, find a
7. b=50, a=33, A=132°, find B
8. a=20, b=12, c=28, find C
9. a=125, A=25°, b=150, find B
10. b=15.2, A=12.5°, C=57.5°, find c

Answers

Using the laws of sines and cosines, answers to the questions are as follows,

1. A=52°, b=120, c = 160,  

SAS property,  a=128

2. a=13.7, A=25.43°, B=78°,

AAS property, b=31.21

3. A=38°, B=63°, c=15,

ASA property, b=14

4. a=1.5, b=2.3, c=1.9,

SSS property, B=84

5. b=795.1, c=775.6, B=51.85°,

SAS property, C=50

6. b=40, c=45, A=51°,

SAS property, a=37

8. a=20, b=12, c=28

SAS property, C=120

9. a=125, A=25°, b=150

SAS property, 2 solutions are there, B1=149, B2=30.4

10. b=15.2, A=12.5°, C=57.5°

SAS property, c=14

What are the laws of sine and cosine?

We can determine a triangle's one side's length or one of its angles' measurements using the laws of sine and cosine.
In most cases, the unknown sides or angles of an oblique triangle are calculated using the law of sines formula.
The equation that connects the lengths of the triangle's sides and the cosines of its angles is known as the law of cosine or cosine rule.

1. Given A=52°, b=120, c = 160.

If we construct the triangle, we see that it is satisfying the SAS property

By using the law of cosine we get,

[tex]a^{2}=b^{2} +c^{2}-2.b.c.\cos A\\a=\sqrt{b^{2}+c^{2}-2.b.c.\cos A}\\a=\sqrt{120^{2}+160^{2}-2.120.160.\cos 52}\\a=127.9[/tex]

2. Given, a=13.7, A=25.43°, B=78°

From angle A, angle B, and side a, we calculate side b, by using the Law of Sines,

[tex]\frac{b}{a}=\frac{\sin B}{\sin A}\\b=a.\frac{\sin B}{\sin A}\\b=13.7. \frac{\sin 78}{\sin 25.43}\\b=31.21[/tex]

3. A=38°, B=63°, c=15

From angle A and angle B, we calculate angle C,

[tex]A+B+C=180\\C=180-A-B\\C=180-38-63\\C=79[/tex]

Next, From angle A, angle C, and side c, we calculate side a, by using the Law of Sines

[tex]\frac{a}{c}=\frac{\sin A}{\sin C}\\a=c.\frac{\sin A}{\sin C}\\a=15. \frac{\sin 38}{\sin 79}\\a=9.41[/tex]

Calculation of the third side b of the triangle using a Law of Cosines,

[tex]b^{2}=a^{2} +c^{2}-2.a.c.\cos B\\b=\sqrt{a^{2}+c^{2}-2.a.c.\cos B}\\b=\sqrt{9.1^{2}+15^{2}-2.9.41.15.\cos 63}\\b=13.68[/tex]

4. a=1.5, b=2.3, c=1.9

Calculation of the inner angles of the triangle using a Law of Cosines

[tex]b^{2}=a^{2}+c^{2}-2.a.c.{\cos B}\\B=arc {\cos} \frac{a^{2}+c^{2}-b^{2} }{2.a.c} \\ B=arc {\cos} \frac{1.5^{2}+1.9^{2}-2.3^{2} }{2 . 1.5.1.9}\\B=84.15[/tex]

5. b=795.1, c=775.6, B=51.85°

From angle B, side c, and side b, we calculate side a. by using the Law of Cosines and quadratic equation:

[tex]b^2 = c^2 + a^2 - 2.c. a. {\cos B} \\ 795.1^2 = 775.6^2+a^2-2. 775.6. a . \cos 51\ \\ a > 0 \\ a = 989.175[/tex]

Calculation of angle C of the triangle using a Law of Cosines

[tex]c^{2}=a^{2}+b^{2}-2.a.b.{\cos C}\\C=arc {\cos} \frac{a^{2}+b^{2}-c^{2} }{2.a.b} \\ C=arc {\cos} \frac{989.175^{2}+795.1^{2}-775.6^{2} }{2 . 989.795}\\C=50.5[/tex]

6. b=40, c=45, A=51°

Calculation of the third side a of the triangle using a Law of Cosines

[tex]a^{2}=b^{2} +c^{2}-2.b.c.\cos A\\a=\sqrt{b^{2}+c^{2}-2.b.c.\cos A}\\a=\sqrt{40^{2}+45^{2}-2.0.45.\cos 51}\\a=36.87[/tex]

8. a=20, b=12, c=28

Calculation of angle C of the triangle using a Law of Cosines

[tex]c^{2}=a^{2}+b^{2}-2.a.b.{\cos C}\\C=arc {\cos} \frac{a^{2}+b^{2}-c^{2} }{2.a.b} \\ C=arc {\cos} \frac{20^{2}+12^{2}-28^{2} }{2 . 20.12}\\C=120[/tex]

9.  a=125, A=25°, b=150

2 solutions are possible for this,

solution for B1:

From the angle A, side b, and side a, we calculate side c. by using the Law of Cosines and quadratic equation:

[tex]a^2 = b^2 + c^2 - 2b c \cos A \ \\ 125^2 = 150^2 + c^2 - 2 \cdot \ 150 \cdot \ c \cdot \ \cos 25\degree \ \ \\ c > 0 \ \\ c = 28.21[/tex]

Calculation of angle B of the triangle using a Law of Cosines

[tex]b^{2}=a^{2}+c^{2}-2.a.c.{\cos B}\\B=arc {\cos} \frac{a^{2}+c^{2}-b^{2} }{2.a.c} \\ B=arc {\cos} \frac{125^{2}+28.21^{2}-150^{2} }{2 . 125.28}\\B=149[/tex]

solution for B2:
From the angle A, side b, and side a, we calculate side c. by using the Law of Cosines and quadratic equation:

[tex]a^2 = b^2 + c^2 - 2b c \cos A \ \\ 125^2 = 150^2 + c^2 - 2 \cdot \ 150 \cdot \ c \cdot \ \cos 25\degree \ \ \\ c > 0 \ \\ c = 243.679[/tex]

Calculation of angle B of the triangle using a Law of Cosines

[tex]b^{2}=a^{2}+c^{2}-2.a.c.{\cos B}\\B=arc {\cos} \frac{a^{2}+c^{2}-b^{2} }{2.a.c} \\ B=arc {\cos} \frac{125^{2}+243^{2}-150^{2} }{2 . 125.243}\\B=30.28[/tex]

10.  b=15.2, A=12.5°, C=57.5°

From angle A and angle C, we calculate angle B:

[tex]A+B+C=180\\B=180-A-C\\B=180-12.5-57.5\\B=110[/tex]

From the angle A, angle B, and side b, we calculate side a, by using the Law of Sines.

[tex]\ \\ \dfrac{ a }{ b } = \dfrac{ \sin A }{ \sin B } \\ a = b \cdot \ \dfrac{ \sin A }{ \sin B } \\ a = 15.2 \cdot \ \dfrac{ \sin 12.30 }{ \sin 110\degree } = 3.5[/tex]

Calculation of the third side c of the triangle using a Law of Cosines

[tex]c^{2}=a^{2} +b^{2}-2.a.b.\cos C\\c=\sqrt{a^{2}+b^{2}-2.a.b.\cos C}\\c=\sqrt{15.2^{2}+3.5^{2}-2.15.4.\cos 57.30}\\c=13.64[/tex]

Therefore, we have found the solutions of all of the above bits using the law of sine and cosine.

To learn more about the laws of sine and cosine, visit the following page:
https://brainly.com/question/16231938

#SPJ4

a) The base of the pyramid is a Hexagon
b) The height of the pyramid is
c) The vertex of the pyramid is
Blank 1: Hexagon
Blank 2:

Answers

For the given hexagonal pyramid, the base of the pyramid is a Hexagon, The height of the pyramid is 13 units, and the vertex of the pyramid is 7.

What is a hexagonal pyramid?

A hexagonal pyramid features isosceles triangles as the faces that join the pyramid together at the top and a hexagonal-shaped base.

Given, for a hexagonal pyramid

a) The base of the pyramid is a Hexagon.

b) The height of the pyramid is 13 units.

c) The vertex of the pyramid is 7.

To learn more about a hexagonal pyramid

https://brainly.com/question/3506226

#SPJ4

determine each feature of the graph of the given function

f(x)= -5/2x-1


horizontal asymptote: y =
vertical asymptote: x =
y intercept: ( _, 0)
x intercept: (0, _ )
hole: ( _ , _ )

Answers

Answer:

Step-by-step explanation:

HORIZONTAL ASYMPTOTE

lim x-> oo  -5/(2x-1)

-5/(oo-1)

-5/oo

0

y = 0


VERTICAL ASYMPTOTE

2x - 1 = 0

2x = 1

2/2 x = 1/2

x = 1/2


y INTERCEPT

-5/(0-1)

-5/-1

5

(5,0)


X INTERCEPT

-5 = 0

Impossible

no x intercept


What is the answer to -6v-1+v

Answers

Answer:

-6v-1+v

collect the like terms

-6v + v - 1

you have

-5v-1

Answer:

answer is 5v-1

Step-by-step explanation:

add the common varribles which are V,

Find the missing length in the triangle below. Round to the nearest
tenth if necessary. Show all your work for credit.
0:05
9 ft
X
4 ft
The missing length in the triangle
is approximately
feet.

Answers

32 feet in length for the triangle

I need help with this

Answers

Step-by-step explanation:

If M is the midpoint of AB then,

AM = BB so we can write the following equation:

4x + 13 = 3x + 17

transfer like terms to the same side of the equation

4x - 3x = 17 - 13

add/subtract

x = 4

Now on to the length of BM, we can replace x with 4 to find it.

3*4 + 17 = 29

Kaitlyn is trying to put in a water pipe underneath the
ground for her pool. The pipe will run from point G(c,6) to
point H(-5,d) on the coordinate grid. Which expression
represents the shortest distance between M and N in
units.

Answers

The shortest distance between the two points is √[(c + 5)² + (6 - d)²]

How to determine the shortest distance between the two points?

From the question, we have the following points that can be used in our computation:

G = (c, 6) and H = (-5, d)

The distance between the two points can be calculated using the following distance equation

distance = √[(x₂ - x₁)² + (y₂ - y₁)²]

Where

(x, y) = (c, 6) and (-5, d)

Substitute (x, y) = (c, 6) and (-5, d) in distance = √[(x₂ - x₁)² + (y₂ - y₁)²]

distance = √[(c + 5)² + (6 - d)²]

Hence, the distance expression is √[(c + 5)² + (6 - d)²]

Read more about distance at

brainly.com/question/7243416

#SPJ1

What is the remainder when 3x^3-5x^2-23x+24 is divided by x-3?

Answers

The remainder you got when 3x³ - 5x² - 23x + 24 is divided by x - 3 is -9.

What is Polynomials?

Polynomials are expressions in algebra which consist of both variables and coefficients. Sometimes, variables are also known as indeterminates. Polynomials are classified as monomials, binomials, and trinomials based on the degree of the variables in the expression.

Variables in the monomials, binomials and trinomials have the highest degree equals 1, 2 and 3 respectively.

By doing the long division method, we will bet the quotient as 3x² + 4x - 11 and the remainder equals -9.

Let's check this using division algorithm.

Dividend = 3x³ - 5x² - 23x + 24

Divisor = x - 3

Quotient = 3x² + 4x - 11

Remainder = -9

By division algorithm,

Dividend = (Divisor × Quotient) + Remainder

3x³ - 5x² - 23x + 24  = [(x - 3) (3x² + 4x - 11)] + -9

                                 = [3x³ + 4x² - 11x - 9x² - 12x + 33] + -9

                                 = 3x³ + 4x² - 9x² - 11x - 12x + 33 - 9

                                 = 3x³ - 5x² - 23x + 24

Hence -9 is the remainder of this division process.

To learn more about Polynomials, click on the link given below:

https://brainly.com/question/11536910

#SPJ1

Use the quadrilateral below to help answer the next two questions.
If L is (-2,-5) and M is (4,-1), what should the slope of NO be in order for LMNO to be a parallelogram?
Note: Enter negatives when necessary with no space between the negative sign and the number.
If the answer is a fraction, leave as an improper fraction in simplest form. Ex. 4/3 for 8/6

Answers

The required slope of the side NO is given as 2/3 and the Slope of the LO is given as -3/2.

Given that,
A figure shown of a quadrilateral in order to prove the quadrilateral as a rectangle, the slope of the sides LO and NO is to be determined.

What is a rectangle?

The rectangle is 4 sided geometric shape whose opposites are equal in length and all angles are about 90°.

here,

Because of the parallel sides,
The slope of the side NO is  = Slope of the side LM
                                            = [-1 + 5] / [4 + 2] = 2/3


Because of the perpendicular sides,
The slope of the side LO = - 1 / slope of the side LM
                                = -1 / 2/3 = -3/2

Thus, the required slope of the side NO is given as 2/3 and the Slope of the LO is given as -3/2.

learn more about rectangles here:

brainly.com/question/15019502

#SPJ1

There were 169 tickets for a major league baseball game. The lower box tickets cost $12.50 and the upper box tickets cost $10.00. The total amount of money spent was $1795.00. How many of each kind of ticket were purchased?

Answers

Answer:

42 lower box127 upper box

Step-by-step explanation:

You want the number of tickets of each kind sold if 169 tickets were sold for $1795, and lower box tickets were $12.50 while upper box tickets were $10.

Setup

Let x represent the number of lower box tickets sold. Then 169 -x is the number of upper box tickets sold. The total revenue is ...

  12.50(x) + 10.00(169 -x) = 1795.00

Solution

Simplifying, we get

  2.50x +1690 = 1795

  2.5x = 105 . . . . . . . . . . . subtract 1690

  x = 42 . . . . . . . . . . . . divide by 2.5; the number of lower box ticket sold

  169 -42 = 127 . . . . . . the number of upper box tickets sold

42 lower box and 127 upper box tickets were purchased.

PLEASSEEEE HEELPPP ASAPPPPP!!! (FOR 10 POINTS!)

For each system of equations below, choose the best method for solving
and solve. Show your work.
a. 3x+y=24
-x-y=-10

Answers

The solution to the system of equations 3x+y=24 and -x-y=-10 is x = 7, y = 3

How to determine the solution to the system?

The system of equations is given as

3x+y=24

-x-y=-10

Make x the subject in the second equation

So, we have the following representation

x = 10 - y

Substitute x = 10 - y in the equation 3x+y=24

3(10 - y) +y=24

Expand the bracket

30 - 3y + y = 24

Evaluate the like terms

-2y = -6

Divide by -2

y = 3

Recall that

x = 10 - y

So, we have

x = 10 - 3

x = 7

Hence, the solution is x = 7, y = 3

Read more about system of equations at

https://brainly.com/question/13729904

#SPJ1

If a box of chocolate costs $8.00 and weighs 1 lb.
what is the cost per ounce?

Answers

Answer:

$0.50 per ounce

Step-by-step explanation:

To find the cost per ounce of the chocolate, you will need to divide the price of the box by the weight of the box in ounces. Since there are 16 ounces in a pound, the weight of the box in ounces is 1 * 16 = <<1*16=16>>16 ounces.

To find the cost per ounce, divide the price of the box by the weight of the box in ounces: $8.00 / 16 ounces = $0.50 per ounce.

Therefore, the cost per ounce of the chocolate is $0.50.

40 POINTS Use photo
Find BA.

Answers

top left: 6
top right: 3
bottom left: -3
bottom right: -14

bro i need help so bad
its congruent angles and whatever
GEOMETRY 50 POINTSS

Answers

Answer:

x = 20°y = 70°

Step-by-step explanation:

find the area of 10x^2+9x+2 when the the width is 2x+1

Answers

Multiply using foil method

(2x+1)(10x^2+9x+2)

1) 2x(10x^2+9x+2) + 1(10x^2+9x+2)

2) 20x^3+18x^2+4x+10^2+9x+2

3) 20x^3+28x^2+13x+2

At $4.20 per yd^3, how much will it cost to fill a container with dimensions of 3yd X 5yd X 7 1/3 yd?

Answers

Cost to fill the container = $ 462

The volume of the rectangular container:

The area that any three-dimensional solid occupies is known as its volume. These solids can take the form of a cube, cuboid, cone, cylinder, or sphere. Various forms have various volumes.

The formula for the volume of a rectangular container is given by  

           Volume = Length × Width × Depth  

                     

Here we have,

Dimensions of a container are 3yd × 5yd × 7 1/3 yd  

Here 7 1/3 = 22/3 yd

From the given formula,  

Area of the container =  3yd × 5yd × 22/3 yd  

= [tex](3 \times 5 \times \frac{22}{3} )yd^{3}[/tex]

= [tex]( 5 \times 22 )yd^{3}[/tex]      

= 110 yd³  

Given the cost per 1 yd³ = $ 4.20

=> cost of 110 yd³ = 110 × $ 4.20 = $ 462

Therefore,

Cost to fill the container = $ 462

 

Learn more about Volume of rectangular at

https://brainly.com/question/29571328

#SPJ1  

(2k^3)^2
answer should contain only positive exponents

Answers

Multiply 2•2 and multiply 2•3

Solution

4k^6

If R = {(x, y): y=x²-4 and y ≤5], then Find a) Domain and Range of R b) Inverse relation (R') c) Domain and Ranpe of R d) To Sketch the graphs of R. and Ro​

Answers

a) The Domain is [-∞, 5]

And the range is [-∞, 3]

b) The area covered by a relation's inverse is the same as its domain. In other words, the relationship's x-values are its inverse's y-values.

c) The Domain is [-∞, 5]

And the range is [-∞, 3]

d) The graph of R is shown below:

What is meant by Domain?

The set of inputs that a function will accept is referred to as the domain of the function in mathematics. It is important to note that in contemporary mathematical terminology, a function's domain is a component of its definition rather than a quality.

The function f can be plotted in the Cartesian coordinate system in the special case where X and Y are both subsets of R. In this example, the graph's x-axis shows the domain as the projection.

Given,

R = {(x, y): y=x²-4 and y ≤5]

For x=0, y=-4

For x=1, y=-3

For x=2, y=0

For x=3, y=5

Therefore, the Domain is [-∞, 5]

And the range is [-∞, 3]

The area covered by a relation's inverse is the same as its domain. In other words, the relationship's x-values are its inverse's y-values.

The graph of R is shown below:

To know more about domain, visit:

https://brainly.com/question/28135761

#SPJ1

The circumference of a tree at different heights above the ground is given in the table below. Assume that all horizontal cross-sections of the tree are circles. Estimate the volume of the tree.

Answers

Estimated volume of the tree as per given height and circumference using trapezoidal rule is equal to 30907.5 cubic inches.

As given in the question,

Given height 'x' and circumference 'y=f(x)',

Height (inches)  'x'            :       0    15     30    45      60      75      90

Circumference (inches) 'y=f(x)':      31   28    21    17      12      8        2

Trapezoidal rule :

Δx = (b - a ) n

Here b = 90

a = 0

n =6

Δx = ( 90 - 0)/6

    = 15

Substitute the value to get the volume using trapezoidal rule:

T₆=(Δx/2)[f(x₀)²+ 2{f(x₁)²+ f(x₂)²+f(x₃)² + f(x₄)²+f(x₅)²}+ f(x₅)²]

   = (15/2)[ 31² + 2 (28² + 21² + 17² + 8²) + 2² ]

   = ( 15/2) [961 + 2{ 784+ 441 + 289 + 64} + 4]

   = 15 × 2060.5

   =   30907.5 cubic inches

Therefore, the volume of the tree as per given given table using trapezoidal rule is equal to 30907.5 cubic inches.

The above question is incomplete , the complete question is:

The circumference of a tree at different heights above the ground is given in the table below. Assume that all horizontal cross-sections of the tree are circles. Estimate the volume of the tree using the trapezoid rule. There needs to be six subdivisions in the trapezoid rule.

Height (inches) :                  0    15     30    45      60      75      90

Circumference (inches):      31   28    21    17      12      8        2

Learn more about volume here

brainly.com/question/13338592

#SPJ4

what are two diffrent if-then statements implied by Theorem 2-13?

Answers

The two different if-then statements implied by Theorem 2-13 are:

If lines and are both not vertical then p || q if and only if the slope of the line p is equal to the slope of the line q.If lines p and q are both vertical then p || q.

What is the Parallel Lines & Perpendicular Lines?

Parallel Lines :Two or more lines that lie in the same plane and never intersect or meet each other are known as parallel lines,

Perpendicular Lines are formed when two lines meet each other at the right angle or 90 degrees.

Given: The theorem 2-13 is given.

We have to find what are two different if-then statements implied by Theorem 2-13.

The two different if-then statements implied by Theorem 2-13 are:

If lines and are both not vertical then p || q if and only if the slope of the line p is equal to the slope of the line q.If lines p and q are both vertical then p || q.

Hence, The two different if-then statements implied by Theorem 2-13 are:

If lines and are both not vertical then p || q if and only if the slope of the line p is equal to the slope of the line q.If lines p and q are both vertical then p || q.

To learn more about the Parallel Lines & Perpendicular Lines visit,

https://brainly.com/question/29632338

#SPJ1

The plane is perpendicular to the axis but does not go through the vertex.
The plane intersects the double cone at only the vertex.


The plane is not intersecting the vertex, not parallel to the axis, not perpendicular to the axis, not parallel to the side of the cone, and it intersects only one cone.


The plane is tangent to both of the cones.


answers:

line

point

circle

elipse


match these

Answers

The plane is perpendicular to the axis but does not go through the vertex. The plane intersects the double cone at only the vertex is ellipse.

What is an ellipse ?A planar curve with two focal points is called an ellipse if at every point on the curve the sum of the two distances from the focal points is constant. It generalises the shape of a circle, a unique variety of ellipse in which the two focus points coincide.The plane is not intersecting the vertex, not parallel to the axis, not perpendicular to the axis, not parallel to the side of the cone, and it intersects only one cone is circle.A circle is a closed, two-dimensional object where every point in the plane is equally spaced from a central point. The line of reflection symmetry is formed by all lines that traverse the circle. Additionally, every angle has rotational symmetry around the centre.

To learn more about ellipse refer :

https://brainly.com/question/16904744

#SPJ1

In the diagram, the length of segment VS is 39 units. Line n is a perpendicular bisector of line segment T V. It intersects line segment T V at point R. Line n also contains points Q and S. Line segment Q V is 3 x + 4. Line segment R V is 2 x + 5. Line segment T S is 6 x minus 3. What is the length of segment TV? 14 units 19 units 38 units 50 units

Answers

On solving the provided question, by help of the Linear Equation we got that TV = 38 units.

what is linear equation?

Any equation with a degree of 1 or above is considered linear. This shows that the exponent of the linear equation's variable is bigger than 1. A linear equation will always have a straight line as its graph.

RST and RSV, two equal right triangles, are shown in the illustration.

Notice that:

TS = VS

We know that,

TS = 6x - 3

VS = 39

6x - 3 =  39

6x = 42

[tex]x = \frac{42}{6}[/tex]

x = 7

Now, you can identify in the figure that:

RV = 2x + 5

The length of segment RV may be determined by substituting the above-calculated value of "x" into the equation and evaluating:

RV = 2(7)+ 5

RV = 19 units

Now,

TV = 19 + 19

TV = 38 units

To know more about linear equation visit:

https://brainly.com/question/11897796

#SPJ1

I need help with this.

Answers

Answer:

Step-by-step explanation:

ax² + bx + c = 0

D = b² - 4ac

If D > 0 , then quadratic equation has 2 roots.

If D = 0 , then quadratic equation has 1 roots.

If D > 0 , then quadratic equation has No roots in the set of real numbers.

~~~~~~~~~~~~~~~~~~~~

2y² + 4y = 3

2y² + 4y - 3 = 0

a = 2 , b = 4 , c = - 3

D = 4² - 4(2)( - 3) = 40 > 0 ( 2 solutions )

[tex]y_{12}[/tex] = ( - 4 ± 2√10 ) ÷ 4

[tex]y_{1}[/tex] = [tex]\frac{-2+\sqrt{10} }{2}[/tex]

[tex]y_{2}[/tex] = [tex]\frac{-2-\sqrt{10} }{2}[/tex]

Write the equation of the line in slope-intercept form (y = mx + b) based on the given information. 11. Passes through (12,-6) and perpendicular to y = 3x + 1

Answers

The equation of the line that is perpendicular to y = 3x + 1, in​ slope-intercept, is: y = -1/3*x - 2.

How to Write the Equation of a Perpendicular Line in Slope-intercept Form?

If we are given a line that passes a point (12, -6) and is perpendicular to y = 3x + 1, we can find the equation of the line in slope-intercept form following the steps below.

First, find the slope of y = 3x + 1. The slope is 3. Since both lines are perpendicular to each other, therefore, the slope of the line that passes through (12, -6) would be the negative reciprocal of 3, which is m = -1/3.

Substitute m = -1/3 and (a, b) = (12, -6) into y - b = m(x - a):

y - (-6)) = -1/3(x - 12)

y + 6 = -1/3(x - 12)

Rewrite in slope-intercept form:

y + 6 = -1/3*x + 4

y + 6 - 6 = -1/3*x + 4 - 6

y = -1/3*x - 2

Learn more about the slope-intercept form on:

https://brainly.com/question/1884491

#SPJ1

Which answer choice correctly complete the sentence?
The Problem Solving Plan is a method to
OA) show all your work in math.
O B) give an example of a real-life problem.
OC) make solving a word problem easier.
OD) check to see if your answer is reasonable.

Answers

Answer: C

Step-by-step explanation:

The problem solving plan is a method to make solving a word problem easier.

Other Questions
What is the slope of the line?What is the equation for the line? y = ________is the graph proportional? Y or N _____ is often referred to as the actions or strategies the united states government takes as it interacts with other countries and the rest of the world. a student pushes a 51.5 kilogram bookshelf across a smooth floor with a net force of 67 n. what is the approximate acceleration of the bookshelf? Based on current trends and patterns, which of the following statements best predicts how the human population will change over the next 50 years? Which substance has the stronger IMF's?NaCl or CCL Determine if a triangle exists with the given side lengths.3, 6, 2 the only study directly testing the relationship between imagery and personality used which personality trait? which style type helps you navigate in a document when you are using the navigation pane? why might it be beneficial to an organism for damaged cells to enter g-0 (zero) instead of dividing once they exist a client comes to the dermatology clinic with bright red patches covered with silvery scales on both arms. the health care provider orders calcipotriene. the diagnosis for this client is: Example 3: Threats Repair Shop was started on May 1 by Erica Threat. A summary of Maytransactions is presented below.1. Invested $10,000 cash to start the repair shop.2. Purchased equipment for $5,000 cash.3. Paid $400 cash for May office rent.4. Paid $500 cash for supplies.5. Incurred $250 of advertising costs in the Beacon News on account.6. Received $6,100 in cash from customers for repair service.7. Withdrew $1,000 cash for personal use.8. Paid part-time employee salaries $2,000.9. Paid utility bills $170.10. Provided repair service on account to customers $750.11. Collected cash of $120 for services billed in transaction (10).Instructions(a) Prepare a tabular analysis of the transactions, using the following column headings: Cash,Accounts Receivable, Supplies, Equipment, Accounts Payable, Owners Capital, OwnersDrawings, Revenues, and Expenses.(b) From an analysis of the owners equity columns, compute the net income or net loss for May Find the value of the decay constant of a radioactive substance having a half-life of0.02 seconds. Find the missing side and angle measures in triangle ABC. Round your answers to the neFind the missing side and angle measures in triangle ABC. Round your answers to the nearest tenth.arest tenth. Scalene triangle ABC with side AC labeled 23 and side BC labeled 15. Angle A measures 40 degrees. The measure of angle B is approximately . The measure of angle C is approximately . The length of side AB is approximately units. 64/8 Im the simplest form ngelique has not left her house for two years. she is completely terrified of going out. based on this description, she is probably suffering from: Express the radical using the imaginary unit, .Express your answer in simplified form.-18 = unintended consequences of term limits include voters a. all of these.b. effectively removing an officeholder just when the person has learned the scope of the job.c. limiting their choices of candidates through restricting the number of times a person could hold office.d. losing experienced legislators. A virus reproduces by tripling every half hour. If a single virus gets into your system and continues at this rate, how much of it will be in your system after a 24-hour period. (hint: there would be two instances of tripling after the first hour) Photosynthesis would occur in which of the following organisms?frogstree trunkshoneybeesgrass Similar Triangles Sorting Activity 1 (be sure each pair of triangle is in the right column)Similar Triangles*sorting mat*Similar TrianglesNOT Similar Triangles