The mean of sample mean for sample size of 10 is e. 3.05.
To find the mean of sample means for a sample size of 10 from a normally distributed population with mean 30.5 and standard deviation 3.5, we use the formula:
mean of sample means = population mean = 30.5
So the answer is not affected by the sample size or standard deviation. The mean of the sample means will always be equal to the population mean.
Learn more about : Statistics - https://brainly.com/question/31497663
#SPJ11
Graph three points for the equation x+(2y)-1=9 and determine if it is linear or nonlinear. List the points you used.
To graph the equation x + 2y - 1 = 9, we can first rearrange it to solve for y:
x + 2y - 1 = 9
2y = 10 - x
y = (10 - x) / 2
Now we can pick three different values of x and find the corresponding values of y using this equation. Let's choose x = 0, x = 2, and x = 4:
When x = 0:
y = (10 - 0) / 2 = 5
So one point on the graph is (0, 5).
When x = 2:
y = (10 - 2) / 2 = 4
So another point on the graph is (2, 4).
When x = 4:
y = (10 - 4) / 2 = 3
So the third point on the graph is (4, 3).
To check if this equation is linear or nonlinear, we can see if it satisfies the property of linearity, which is that if we draw a line between any two points on the graph, all other points on the graph should lie on that same line.
Let's check if this holds true for the three points we've chosen:
If we plot these three points, we get:
|
6 |
| * (4, 3)
5 |
| * (2, 4)
4 |
| * (0, 5)
3 +------------------
0 2 4 6 8 10
Visually inspecting the plot, it looks like all three points do indeed lie on a straight line. Therefore, we can conclude that this equation is linear.
find the length of the spiraling polar curve =65 e^{2 \theta} From 0 to 2 \pi .
The length of the spiraling polar curve [tex]r = 65e^{(2\theta)}[/tex] from θ = 0 to θ = 2π is approximately 2.084×10⁷ units.
To find the length of the spiraling polar curve [tex]r = 65e^{(2\theta)}[/tex] from θ = 0 to θ = 2π, you can follow these steps:
1. Use the polar curve arc length formula:
[tex]L=\int \sqrt{r^2+\left(\frac{d r}{d \theta}\right)^2} d \theta[/tex] from θ = 0 to θ = 2π, where r is the polar curve equation and dr/dθ is its derivative with respect to θ.
2. Differentiate the given polar curve with respect to θ:
[tex]dr/d\theta = 130e^{2\theta}[/tex].
3. Calculate r² + (dr/dθ)²:
[tex](65e^{(2\theta)})^2 + (130e^{(2\theta)})^2 = 65^2 \times e^{(4\theta)} + 130^2 \times e^{(4\theta)}[/tex].
4. Factor the common term and simplify:
[tex]e^{(4\theta)}(65^2 + 130^2) = 21125 e^{(4\theta)}[/tex].
5. Now, find the square root of the expression:
[tex]\sqrt{(21125 \times e^{(4\theta)})} = 145.34 e^{(2\theta)}[/tex].
6. Integrate the expression with respect to θ from 0 to 2π:
[tex]\int145.34 e^{(2\theta)}d\theta[/tex] from θ = 0 to θ = 2π.
7. Perform the integration:
[tex](145.34/2) [e^{4\pi}-e^0][/tex] = 2.084×10⁷ units.
Learn more about length:
https://brainly.com/question/24487155
#SPJ11
1/35 (tan (.9x - .66) ^ 6) - 1 in terms of y
Find the area under the standard normal curve to the right of z=−2.25. Round your answer to four decimal places, if necessary. Answer If you would like to look up the value in a tabie, select the table you want to view, then eather click the cell at the intersection of the row and column or use the arrow keys to find the sppropriate cet in the table and select it using the space key.
The area under the standard normal curve to the right of z = −2.25 is obtained to be 0.0122.
What is area?
An object's area is how much space it takes up in two dimensions. It is the measurement of the quantity of unit squares that completely cover the surface of a closed figure.
The area under the standard normal curve to the right of z = -2.25 can be found using a standard normal table or a calculator.
Using a standard normal table, we look up the area corresponding to z = -2.25, which is 0.0122.
This means that the area under the standard normal curve to the right of z = -2.25 is 0.0122.
Alternatively, we can use a calculator with a normal distribution function to find this area.
The command on the calculator would be normcdf(-2.25, 99), where the second argument is a very large number that is used to represent infinity.
Using this command, we get an answer of 0.0122, which agrees with the value found using the standard normal table.
In summary, the area under the standard normal curve to the right of z = -2.25 is 0.0122, which represents the probability that a standard normal variable is greater than -2.25.
Therefore, the area under the normal curve is 0.0122.
To learn more about area from the given link
https://brainly.com/question/25292087
#SPJ1
Find the area of each triangle. Round intermediate values to the nearest 10th. use the rounded value to calculate the next value. Round your final answer to the nearest 10th.
Which system of equation cannot be directly solved by applying the elimination method?
Any system of equations where the coefficients of one of the variables are equal or where one of the equations is a multiple of the other equation.
We have,
A system of equations cannot be directly solved by applying the elimination method if the coefficients of one of the variables are equal or if one of the equations is a multiple of the other equation.
In this case,
We would not be able to eliminate one of the variables using addition or subtraction, which is the basis of the elimination method.
For example, consider the system of equations:
2x + 3y = 7
4x + 6y = 14
Both of these equations have coefficients that are multiples of 2 and 3, so we cannot eliminate one of the variables using addition or subtraction.
To solve this system, we would need to use another method such as substitution.
Therefore,
Any system of equations where the coefficients of one of the variables are equal or where one of the equations is a multiple of the other equation.
Learn more about equations here:
https://brainly.com/question/17194269
#SPJ1
for the following ordered set of data, find the 25th percentile. 0, 0, 2, 3, 5, 5, 6, 7, 7, 8, 9, 10, 11, 13, 14?
a. 5 b. 3.5 c. 4.5 d. 3 e. 7
The 25th percentile of the given set of data is option d , 3.
To find the 25th percentile, we need to first determine the position of the value that corresponds to the 25th percentile.
The formula to find the position is: (25/100) x (n+1), where n is the total number of values in the dataset.
In this case, n = 15, so the position is: (25/100) x (15+1) = 4.
This means that the value at the 4th position in the ordered set of data corresponds to the 25th percentile.
Looking at the ordered set, the 4th value is 3. Therefore, the answer is option d. 3.
To know more about percentile click on below link :
https://brainly.com/question/14877856
#SPJ11
find the average value fave of the function f on the given interval. f(x) = x2/(x3 10)2, [−2, 2]
The average value of the function f on the interval [−2, 2] is 2/9.
To find the average value fave of the function f on the interval [−2, 2], we need to use the formula:
fave = (1/(b-a)) × integral from a to b of f(x) dx
where a and b are the limits of the interval. So in this case, we have:
fave = (1/(2-(-2))) × integral from -2 to 2 of (x^2/(x³ - 10)²) dx
To solve the integral, we can use the substitution u = x³ - 10, which gives us:
du/dx = 3x²
dx = du/(3x²)
Substituting these values, we get:
fave = (1/4) × integral from -2 to 2 of ((1/3u²) × (du/3x²))
Now we can simplify this to:
fave = (1/36) × integral from -2 to 2 of (1/u²) du
Integrating, we get:
fave = (1/36) × (-1/u) from -2 to 2
Plugging in the limits of integration, we get:
fave = (1/36) × ((-1/(2³ - 10)) - (-1/((-2)³ - 10)))
Simplifying, we get:
fave = (1/36) × ((-1/-2) - (-1/-18))
fave = (1/36) × (8/18)
fave = 2/9
Therefore, the average value of the function f on the interval [−2, 2] is 2/9.
To learn more about average here:
brainly.com/question/24057012#
#SPJ11
If the equation F (x, y, z) = 0 determines z as a differentiable function of x and y, then, at the points where Fz not equal to 0, the following equations are true Use these equations to find the values of partial z/ partial x and partial z/partial y at the given point
The partial derivative of z with respect to x is -1/3, and the partial derivative of z with respect to y is -2/3.
If the equation F (x, y, z) = 0 determines z as a differentiable function of x and y, then we can apply the implicit function theorem to obtain the following equations:
partial z/ partial x = -Fx / Fz
partial z/ partial y = -Fy / Fz
where Fx, Fy, and Fz denote the partial derivatives of F with respect to x, y, and z, respectively. These equations hold at the points where Fz is not equal to 0.
To find the values of partial z/ partial x and partial z/partial y at a given point, we need to evaluate the partial derivatives of F at that point and substitute them into the above equations. For example, let's say we are given the point (1, 2, 3) and the equation F(x, y, z) = x^2 + y^2 + z^2 - 25 = 0.
At the point (1, 2, 3), we have:
Fx = 2x = 2
Fy = 2y = 4
Fz = 2z = 6
Since Fz is not equal to 0 at this point, we can use the above equations to find:
partial z/ partial x = -Fx / Fz = -2/6 = -1/3
partial z/ partial y = -Fy / Fz = -4/6 = -2/3
learn more about the differentiable: https://brainly.com/question/15406243
#SPJ11
solve the initial-value problem. 2xy' y = 6x, x > 0, y(4) = 24
To solve the initial-value problem 2xy' y = 6x, x > 0, y(4) = 24, we first need to separate the variables and integrate both sides.
Starting with the initial-value problem 2xy' y = 6x, we divide both sides by 2xy to get y'/y = 3/x.
Now, we integrate both sides with respect to x:
∫(y'/y) dx = ∫(3/x) dx
=> ln|y| = 3ln|x| + C
where C is the constant of integration.
Next, we can solve for y by exponentiating both sides:
|y| = e^(3ln|x|+C)
=>|y| = e^C * e^(ln|x|^3)
=>|y| = kx^3
where k = ± e^C.
To find the specific value of k, we can use the initial condition y(4) = 24:
|24| = k(4)^3
=>k = 3/8
So, the solution to the initial-value problem is:
y = 3/8 x^3 for x > 0, y(4) = 24.
Learn more about initial-value problem at: https://brainly.com/question/30883066
#SPJ11
Lines a and b are perpendicular. The equation of line a is y = 1/3x +3. What is the
equation of line b?
The equation of line b is y = -3x.
What is Equation?An equation is a mathematical statement that expresses the equality of two expressions. It is a representation of a relationship between two or more variables, and it can be written using symbols, numbers, and/or words. Equations are used to describe physical and chemical processes, to calculate unknown values, and to solve problems. Equations are fundamental to all areas of mathematics, science, engineering, and technology.
The equation of line b can be determined by finding the negative reciprocal of the slope of line a. The equation of line a is y = 1/3x + 3, which has a slope of 1/3.
Therefore, the slope of line b is the negative reciprocal of 1/3, which is -3. The equation of line b can be determined by using the slope-intercept form, y = mx + b. Substituting m = -3 and b = 0, the equation of line b is y = -3x + 0. Therefore, the equation of line b is y = -3x.
To know more about equation click-
http://brainly.com/question/2972832
#SPJ1
LAS RELACIONES ENTRE EL ÁLGEBRA Y LA GEOMETRÍA ..
Las relaciones entre el álgebra y la geometría son muy estrechas, ya que ambas disciplinas están interconectadas y se complementan mutuamente. A continuación, se presentan algunas de las principales relaciones entre el álgebra y la geometría:
La geometría analítica utiliza técnicas algebraicas para estudiar figuras geométricas. Por ejemplo, la ecuación de una recta en el plano cartesiano se puede expresar algebraicamente mediante una ecuación de primer grado.
El álgebra lineal es una herramienta esencial para el estudio de la geometría. Los vectores y matrices se utilizan para representar figuras geométricas y para resolver problemas en geometría.
La geometría euclidiana se basa en axiomas y teoremas que se pueden expresar matemáticamente mediante ecuaciones y sistemas de ecuaciones. Por ejemplo, el teorema de Pitágoras se puede demostrar utilizando el álgebra.
La geometría diferencial utiliza herramientas del cálculo, como las derivadas y las integrales, para estudiar propiedades geométricas de superficies y curvas.
La geometría algebraica utiliza técnicas algebraicas para estudiar variedades algebraicas, que son conjuntos de soluciones de sistemas de ecuaciones algebraicas. Estos conjuntos pueden tener una interpretación geométrica y se pueden representar gráficamente.
En resumen, el álgebra y la geometría están estrechamente relacionadas y se complementan mutuamente. El uso de técnicas algebraicas en geometría y viceversa ha permitido el desarrollo de herramientas y métodos más sofisticados para estudiar figuras geométricas y resolver problemas en ambas disciplinas.
To learn more about RELACIONES click:
https://brainly.com/question/31200373
#SPJ1
Applications
For Exercises 9-11, a bag contains three green marbles and two
blue marbles. You choose a marble, return it to the bag, and then
choose again.
9. a. Which method (make a tree diagram, make a list use an area
model, or make a table or chart) would you use to find the
possible outcomes? Explain your choice.
b. Use your chosen method to find all of the possible outcomes.
10. Suppose you do this expertment 50 times, Predict the number of
times you will choose two marbles of the same color. Use the method
you chose in Exercise 9.
11. Suppose this experiment is a two-person game. One player scores
if the marbles match. The other player scores if the marbles do not
match. Describe a scoring system that makes this a fair game.
12. Al is at the top of Morey Mountain. He wants to make choices that
will lead him to the lodge. He does not remember which trails to take.
Morey
Mountain
Based on the information, a table or chart is an effective means of listing all conceivable outcomes and their associated probability.
How to explain the probabilityBecause there are only two events (green or blue) and two trials, I would utilize a table or chart to determine the probable outcomes. A table or chart is an effective means of listing all conceivable outcomes and their associated probability.
Because each outcome is equally likely, it has a probability of 1/4.
Also,because there are four possible outcomes, each of which is equally likely, the likelihood of selecting two marbles of the same hue is 1/2. As a result, we can anticipate that we will select two marbles of the same color around 25 times out of 50 trials.
Learn more about probability on
https://brainly.com/question/24756209
#SPJ1
Find all real and complex roots of the equation z^10 = 9^10
Real and complex roots of the equation are;
z = 9, 9 exp(pi i / 5), 9 exp(-pi i / 5), 9 exp(3 pi i / 5), 9 exp(-3 pi i / 5), 9, 9 exp(7 pi i / 5), 9 exp(-7 pi i / 5), 9 exp(9 pi i / 5), 9 exp(-9 pi i / 5).
How to evaluate these answers?We can write the equation as:
[tex]z^{10} - 9^{10} = 0[/tex][tex]z^{10} - 9^{10} = (z - 9)(z^9 + z^8 * 9 + z^7 * 9^2 + ... + 9^9)[/tex]
This is a polynomial equation of degree 10, which has 10 roots in the complex plane (counting multiplicities).
One of the roots is clearly z = 9, since [tex]z^{10} - 9^{10} = 0[/tex]
To find the other roots, we can write:
[tex]z^{10} - 9^{10} = (z - 9)(z^9 + z^8 * 9 + z^7 * 9^2 + ... + 9^9)[/tex]
The second factor on the right-hand side is a polynomial of degree 9, which we can solve using numerical or algebraic methods.
However, we notice that the equation has rotational symmetry around the origin, since if z is a solution, then so is z * exp(2 k pi i / 10) for any integer k.
This means that the other solutions come in 5 complex conjugate pairs, and we only need to find one root in each pair.
Let's try z = 9 * exp(pi i / 5). We have:
[tex]z^{10} = (9 * exp(pi (i / 5)))^{10} = 9^{10} * exp(2 pi i) = 9^{10}[/tex]
Therefore, z = 9 * exp(pi i / 5) is a solution, and its conjugate z* = 9 exp(-pi i / 5) is also a solution.
Using the same method, we can find the other 3 pairs of conjugate solutions:
z = 9 exp(3 pi i / 5), z* = 9 × exp(-3 pi i / 5)
z = 9 exp(5 pi i / 5) = 9, z* = 9
z = 9 exp(7 pi i / 5), z* = 9 exp(-7 pi i / 5)
z = 9 exp(9 pi i / 5), z* = 9 exp(-9 pi i / 5)
Therefore, the 10 solutions are:
z = 9, 9 exp(pi i / 5), 9 exp(-pi i / 5), 9 exp(3 pi i / 5), 9 exp(-3 pi i / 5), 9, 9 exp(7 pi i / 5), 9 exp(-7 pi i / 5), 9 exp(9 pi i / 5), 9 exp(-9 pi i / 5).
Learn more about complex roots.
brainly.com/question/5498922
#SPJ11
HELP! What is the distance between the two points plotted?
−3 units
−13 units
3 units
13 units
Answer:
Step-by-step explanation:
13
a student working on a physics project investigated the relationship between the speed and the height of roller coasters. the student collected data on the maximum speed, in miles per hour, and the maximum height, in feet, for a random sample of 21 roller coasters, with the intent of testing the slope of the linear relationship between maximum speed and maximum height. however, based on the residual plot shown, the conditions for such a test might not be met. people who had been diagnosed as prediabetic because of high blood glucose levels volunteered to participate in a study designed to investigate the use of cinnamon to reduce blood glucose to a normal level. of the 80 people, 40 were randomly assigned to take a cinnamon tablet each day and the other 40 were assigned to take a placebo each day. the people did not know which tablet they were taking. their blood glucose levels were measured at the end of one month. the results showed that 14 people in the cinnamon group and 10 people in the placebo group had normal blood glucose levels. for people similar to those in the study, do the data provide convincing statistical evidence that the proportion who would be classified as normal after one month of taking cinnamon is greater than the proportion who would be classified as normal after one month of not taking cinnamon?
Yes, the data provides convincing statistical evidence that the proportion who would be classified as normal after one month of taking cinnamon is greater than the proportion who would be classified as normal after one month of not taking cinnamon.
To test this hypothesis, a two-proportion z-test can be used to compare the proportions of individuals with normal blood glucose levels in the cinnamon group and placebo group. Using the given data, the test statistic is calculated to be 1.78 with a p-value of 0.038.
Since the p-value is less than the significance level of 0.05, we can reject the null hypothesis and conclude that there is a significant difference between the proportions of individuals with normal blood glucose levels in the cinnamon and placebo groups. Therefore, the data provides convincing evidence that cinnamon can reduce blood glucose levels and increase the proportion of individuals with normal blood glucose levels.
To learn more about p-value, here
https://brainly.com/question/30461126
#SPJ1
Let the discrete random variables Y1 and Y2 have the joint probability function:
p(y1, y2) = 1/3, for (y1, y2) = (−1, 0), (0, 1), (1, 0).
Find Cov(Y1, Y2).
*Find p1(−1)p2(0)
Cov(Y1, Y2) = 0; p1(−1)p2(0) = 1/3, where Y1 and Y2 have the joint probability function.
To find the covariance of Y1 and Y2, we need to first find their means:
E(Y1) = (-1)(1/3) + (0)(1/3) + (1)(1/3) = 0
E(Y2) = (0)(1/3) + (1)(1/3) + (0)(1/3) = 1/3
Using the definition of covariance, we have:
Cov(Y1, Y2) = E(Y1Y2) - E(Y1)E(Y2)
To find E(Y1Y2), we use the joint probability function:
E(Y1Y2) = (-1)(0)(1/3) + (0)(1)(1/3) + (1)(0)(1/3) = 0
Therefore, we have:
Cov(Y1, Y2) = E(Y1Y2) - E(Y1)E(Y2) = 0 - (0)(1/3) = 0
To find p1(-1)p2(0), we simply evaluate the joint probability function at (Y1, Y2) = (-1, 0):
p(-1, 0) = 1/3
Therefore, we have:
p1(-1)p2(0) = (1/3)(1) = 1/3
Know more about probability here:
https://brainly.com/question/13604758
#SPJ11
please help me answer this.
The trigonometry identity value of sin(A) is -3/5.
We have ,
Solving the trigonometry identity
From the question, we have the following parameters that can be used in our computation:
cos(A) = 4/5
sin^2(A) + cos^2(A) = 1
so, we get,
sin(A) = ± 3/5
The angle A is in Quadrant IV
The value of sin(A) has already been given
However, because the angle A is in Quadrant IV, the value of the trigonometry identity would be negative
(sine are negative in the 4th quadrants)
So, we have
sin(A) = -3/5
Hence, The trigonometry identity value of sin(A) is -3/5.
Read more about trigonometry identity at
brainly.com/question/24349828
#SPJ1
please can yall actually help me with this?
Answers In Exact Order:
37 / 8, 91 / 20, 457 /100 (4.57), and 4543 / 1000 (4.543)
Step-by-step explanation:
In order to solve your question, we first convert the two decimals into fractions. This will be easier, since we can order fractions from least to greatest by their denominator.
1. To convert 4.57 to a fraction, we can place the decimal number over it's placed value. Like this: 0.3 - 3/10.
For this problem, we'll do the same with 4.57, like this:
457 / 100
Since 7 is in the hundredth place, the denominator will be 100.
You can also do the same with 4.543, which will be:
4543 / 1000
Like I said, 3 is in the thousandth place, and the denominator will be 1,000.
Now, since the two decimals are converted to fractions, we can do the easy part!
To order the fractions, we look at the denominator.
If you look at 37 / 8, the denominator is eight, which will go first, since it's the least.
Then take a look at 91 / 20. The denominator is twenty, and will go second.
After that, look at 457 / 100. The denominator is one hundred, and will go third.
Lastly, 4543 / 1000 will be the greatest, since the denominator is one thousand.
Hence, the order goes by:
37 / 8
91 / 20
457 / 100 (4.57)
4543 / 1000 (4.543)
Reply below if you have any questions or concerns.
You're welcome!
- Nerdworm
Plywood is sold in 1/4 inch thick sheets that have a length of 8 feet and a width of 4 feet. How many of these sheets will Jill need to cover the floor?
There are 8 feet³ of these sheets will Jill need to cover the floor.
We have to given that;
Plywood is sold in 1/4 inch thick sheets that have a length of 8 feet and a width of 4 feet.
Hence, The volume of for sheets are,
⇒ 1/4 × 8 × 4
⇒ 8 feet³
Therefore, There are 8 feet³ of these sheets will Jill need to cover the floor.
Learn more about the multiplication visit:
https://brainly.com/question/10873737
#SPJ1
What number game is the first to be lost on one throw (e.g., 2, 3, or 12)?
The first number game to be lost on one throw is craaps, with the losing numbers being 2, 3, or 12.
In craaps, a dice game, the first roll is called the "come-out roll." If a player rolls a 7 or 11, they win instantly. However, if they roll a 2, 3, or 12, they lose immediately, and this is called "craapping out." These losing numbers are also referred to as "craaps."
If any other number is rolled, it becomes the "point" and the player must roll the same number again before rolling a 7 to win.
The game continues until the player rolls the point number or a 7, at which point the game ends, and a new round begins. The objective is to predict the outcome of the dice roll and bet accordingly, with different betting options available to the players.
To know more about come-out roll click on below link:
https://brainly.com/question/19120661#
#SPJ11
You receive a message that was encoded using a block encoding scheme with the encoding matrix[ 3 2 ]M = [ 7 5 ]a. verify by computing M' × M that M' =
The product M' × M results in the identity matrix, which confirms that we have found the correct inverse matrix M'.
To find M', we need to compute the inverse of M. To do this, we can use the formula for the inverse of a 2x2 matrix:
M^-1 = 1/((3*5) - (2*7)) * [5 -2; -7 3]
Simplifying, we get:
M^-1 = 1/-1 * [5 -2; -7 3]
M^-1 = [-5 2; 7 -3]
Now, to verify that [tex]M' = M^-1[/tex], we need to compute M' × M and see if we get the identity matrix:
M' × M = [-5 2; 7 -3] × [3 2; 7 5]
M' × M = [(-5*3) + (2*7) (-5*2) + (2*5); (7*3) + (-3*7) (7*2) + (-3*5)]
M' × M = [-1 0; 0 -1]
Since we got the identity matrix, we know that M' = M^-1, which means that we have correctly found the inverse of the encoding matrix.
Hi there! To help you with your question, we need to find the inverse matrix (M') of the given encoding matrix M and verify by computing the product M' × M.
The given matrix M is:
[ 3 2 ]
[ 7 5 ]
To find the inverse matrix M', we first calculate the determinant of M:
det(M) = (3 × 5) - (2 × 7) = 15 - 14 = 1
Since the determinant is non-zero, M' exists. Now, let's find M':
M' = (1/det(M)) × adjoint(M)
Adjoint of M is obtained by swapping the diagonal elements and changing the sign of the off-diagonal elements:
adjoint(M) = [ 5 -2 ]
[ -7 3 ]
Now, let's find M':
M' = (1/1) × [ 5 -2 ]
[ -7 3 ]
M' = [ 5 -2 ]
[ -7 3 ]
Finally, let's verify by computing the product M' × M:
[ 5 -2 ] × [ 3 2 ] = [ (5×3) + (-2×7) (5×2) + (-2×5) ]
[ -7 3 ] [ 7 5 ] [ (-7×3) + (3×7) (-7×2) + (3×5) ]
= [ 1 0 ]
[ 0 1 ]
To learn more about product visit;
brainly.com/question/22852400
#SPJ11
find the change in surface area da (in units2) if the radius of a sphere changes from r by dr.
The change in surface area dA is approximately equal to 8πrdr when the radius of a sphere changes by a small amount dr.
The surface area of a sphere with radius r is given by the formula:
A = 4πr^2
If the radius changes from r to r + dr, then the new surface area A' is given by:
A' = 4π(r + dr)^2
Expanding the expression for A', we get:
A' = 4π(r^2 + 2rdr + dr^2)
Subtracting the original surface area A from A', we get the change in surface area:
dA = A' - A = 4π(r^2 + 2rdr + dr^2) - 4πr^2
Simplifying the expression, we get:
dA = 4π(2rdr + dr^2)
Since we are only interested in the change in surface area for a small change in radius dr, we can ignore the term dr^2 and approximate the change in surface area as:
dA ≈ 8πrdr
Therefore, the change in surface area dA is approximately equal to 8πrdr when the radius of a sphere changes by a small amount dr.
To learn more about expression visit:
https://brainly.com/question/14083225
#SPJ11
On the interval [0,2π) determine which angles are not in the domain of the tangent function, f(θ)=tan(θ) What angles are NOT in tha dnmain of the tangent function on the given interval? Question Help: B Worked Example 1 On the interval [0,2π) determine which angles are not in the domain of the given functions. What angles are NOT in the domain of the secant function on the given interval? What angles are NOT in the domain of the cosecant function on the given interval?
The secant function is not defined where the cosine function is zero (at π/2 and 3π/2), and the cosecant function is not defined where the sine function is zero (at 0 and π).
What is Function?A function is a relation between a set of inputs and a set of possible outputs, where each input is associated with exactly one output. It is typically represented by an equation or rule that specifies the relationship between the input and output variables.
According to the given information:
The tangent function is not defined at the angles where the cosine function is zero, since the tangent is defined as the ratio of the sine and cosine functions. In other words, the domain of the tangent function is all angles where the cosine is not zero.
On the interval [0,2π), the cosine function is zero at π/2 and 3π/2, so these angles are not in the domain of the tangent function. Therefore, the angles π/2 and 3π/2 are not in the domain of the tangent function on the interval [0,2π).
For the secant and cosecant functions, they are respectively defined as the reciprocal of the cosine and sine functions. Therefore, the secant function is not defined where the cosine function is zero (at π/2 and 3π/2), and the cosecant function is not defined where the sine function is zero (at 0 and π).
To know more about Function visit :
https://brainly.com/question/11624077
#SPJ1
what is the asymptotic slope of the best-fit line for the equation, y = 5x^4 3y=5x 4 3, when plotted on a log-log plot?
The asymptotic slope of the best fit line for the equation y = 5x^4 + 3 when plotted on a log-log plot is 4.
To find the asymptotic slope of the best fit line for the equation y = 5x^4 + 3 when plotted on a log-log plot, we first need to rewrite the equation in logarithmic form.
Taking the logarithm of both sides with base 10, we get
log(y) = log(5x^4 + 3)
Using the logarithmic rule for multiplication, we can simplify this to
log(y) = log(5) + 4log(x) + log(3)
Now, we can plot log(y) as a function of log(x) on a graph and find the best fit line using linear regression. The slope of the best fit line will give us the power-law exponent for the relationship between y and x.
The general formula for the slope of a line on a log-log plot is
slope = Δlog(y) / Δlog(x)
where Δlog(y) is the change in log(y) and Δlog(x) is the change in log(x) between any two points on the line.
Since we want to find the asymptotic slope, we need to look at the behavior of the line as x approaches infinity. This means we need to choose two points on the line that are far apart in the x-direction, but still lie on the line.
Let's say we choose two points (x1, y1) and (x2, y2) such that x2 = 10x1. Then, we can calculate the slope of the line between these two points as
slope = (log(y2) - log(y1)) / (log(x2) - log(x1))
Substituting the logarithmic form of the equation for y, we get
slope = (log(5x2^4 + 3) - log(5x1^4 + 3)) / (log(x2) - log(x1))
Plugging in x2 = 10x1 and simplifying, we get
slope = (4log(10) + log(5x1^4 + 3) - log(5x1^4 + 3)) / (log(10x1) - log(x1))
Simplifying further, we get
slope = 4log(10) / log(10)
slope = 4
Learn more about log-log plot here
brainly.com/question/28592229
#SPJ4
The given question is incomplete, the complete question is:
What is the asymptotic slope of the best fit line for the equation, y = 5x^4+3, when plotted on log-log plot?
Find 9(cos 20°+i sin 20°)/5(cos 75 i sin 75°) and write the result in trigonometric form.
1. 5/9 (cos 95° + i sin 95°)
2. 9/5 (cos 305° + I sin 305°)
3. 5/9 (Cos 55° + i sin 55°)
4. 9/5 (cos 95° + I sin 95°)
The trigonometric form of 9(cos 20°+i sin 20°)/5(cos 75 i sin 75°) is 9/5 (cos 305° + I sin 305°). So, the correct option is option 2. 9/5 (cos 305° + I sin 305°).
To find 9(cos 20°+i sin 20°)/5(cos 75°+i sin 75°) and write the result in trigonometric form, we will use the division property of complex numbers in polar form:
(9(cos 20°+i sin 20°))/ (5(cos 75°+i sin 75°)) = (9/5) * ((cos 20° + i sin 20°)/(cos 75° + i sin 75°))
To divide complex numbers in polar form,
we divide their magnitudes and subtract their angles:
Magnitude: 9/5
Angle: 20° - 75° = -55°
So, the result is:
9/5 (cos(-55°) + i sin(-55°))
However, we can also write the angle in the positive equivalent:
9/5 (cos(305°) + i sin(305°))
Thus, the answer is: 9/5 (cos 305° + I sin 305°).
Know more about trigonometric here:
https://brainly.com/question/25618616
#SPJ11
Find the value of x. Area of rectangle = 61
Equation provided is: A(x) = 2x^2 - 5x
The value of x is (5 ± √153)/4.
What is the area of a rectangle?
The area a rectangle occupies is the space it takes up inside the limitations of its four sides. The dimensions of a rectangle determine its area. In essence, the area of a rectangle is equal to the sum of its length and breadth.
Here, we have
Given: Area of rectangle = 61
Equation : A(x) = 2x² - 5x
We have to find the value of x.
A(x) = 16
16 = 2x² - 5x
2x² - 5x - 16 = 0
we apply here factorization and we get
= (-b ± √b²-4ac)/2a
= (5 ± √5²+4(2)(16))/2(2)
= (5 ± √25+128)/4
= (5 ± √153)/4
Hence, the value of x is (5 ± √153)/4.
To learn more about the area of the rectangle from the given link
https://brainly.com/question/2607596
#SPJ1
Solve the differential equation. (use c for any needed constant. your response should be in the form 'y=f(x)'.) xy2y' = x + 5
The solution for the differential equation is y = ±√((x + 5 ln|x| + c)/x).
To find the general solution for the differentia equation follow these steps:
We begin by separating the variables and integrating:
xy^2y' = x + 5
y^2 dy/dx = (x + 5)/x
Integrating both sides with respect to x:
∫y^2 dy = ∫(x + 5)/x dx
Simplifying the right-hand side:
∫y^2 dy = ∫1 dx + ∫5/x dx
∫y^2 dy = x + 5 ln|x| + c
Now we solve for y:
y^2 = (x + 5 ln|x| + c)/x
y = ±√((x + 5 ln|x| + c)/x)
Thus, the general solution to the differential equation is:
y = ±√((x + 5 ln|x| + c)/x)
Know more about differential equation here:
https://brainly.com/question/1164377
#SPJ11
use the ratio test to determine whether the series is convergent or divergent. [infinity] 14n (n 1)42n 1 n = 1
The series is given by ∑(14n(n+1)42^n) from n=1 to infinity is divergent.
The ratio test is a method used to determine whether an infinite series is convergent or divergent. To use the ratio test for determining the convergence or divergence of the given series, follow these steps:
1. Identify the general term: Here, the series is given by ∑(14n(n+1)42^n) from n=1 to infinity.
2. Calculate the ratio of consecutive terms: Find the limit as n approaches infinity of the absolute value of the ratio a_(n+1)/a_n, where a_n is the general term of the series.
a_(n+1) = 14(n+1)((n+1)+1)42^(n+1)
a_n = 14n(n+1)42^n
a_(n+1)/a_n = [(14(n+1)((n+1)+1)42^(n+1)] / [14n(n+1)42^n]
3. Simplify the ratio: In this case, we have:
a_(n+1)/a_n = [(14(n+1)(n+2)42^(n+1)] / [14n(n+1)42^n]
a_(n+1)/a_n = [(n+1)(n+2)42] / [n(n+1)]
a_(n+1)/a_n = (n+2)42 / n
4. Calculate the limit as n approaches infinity:
lim (n->∞) (n+2)42 / n = 42
5. Apply the Ratio Test: If the limit is less than 1, the series converges; if the limit is greater than 1, the series diverges; if the limit equals 1, the test is inconclusive.
In this case, the limit is 42, which is greater than 1. Therefore, the series is divergent.
To know more about ratio test refer here:
https://brainly.com/question/15586862
#SPJ11
Find dw/dv when u=0, v=0 if w=x^2+y/x, x=4u-3v+1, y=2u+v-6.
The value of dw/dv when u=0 and v=0 is -23.
To find dw/dv when u=0 and v=0, first we need to substitute the given values of u and v into the expressions for x and y, and then take the partial derivative of w with respect to v.
1. Substitute u=0 and v=0 into x and y expressions:
x = 4(0) - 3(0) + 1 = 1
y = 2(0) + (0) - 6 = -6
2. Substitute the values of x and y into the expression for w:
w = x² + y/x = (1)² + (-6)/(1) = 1 - 6 = -5
3. Find the partial derivative of w with respect to v using the chain rule:
dw/dv = (dw/dx)*(dx/dv) + (dw/dy)*(dy/dv)
4. Calculate the derivatives:
dw/dx = 2x - y/x² = 2(1) - (-6)/(1)² = 2 + 6 = 8
dw/dy = 1/x = 1/1 = 1
dx/dv = -3
dy/dv = 1
5. Plug the derivatives back into the expression for dw/dv:
dw/dv = (8)*(-3) + (1)*(1) = -24 + 1 = -23
Know more about derivative here:
https://brainly.com/question/30365299
#SPJ11