The magnifying glass should be held 16.4 cm away from the nickel to obtain an image with a magnification of +1.53.
Using the thin lens equation, 1/f = 1/o + 1/i, where f is the focal length, o is the object distance, and i is the image distance, and the magnification equation, M = -i/o, where M is the magnification, we can solve for the object distance.
First, solve for the image distance i:
M = -i/o
1.53 = -i/o
i = -1.53o
Then, substitute i into the thin lens equation:
1/0.103 = 1/o + 1/(-1.53o)
Solving for o, we get:
o = 16.4 cm
To know more about focal length, here
brainly.com/question/29870264
#SPJ1
Macmillan Learning
When a massive star reaches the end of its life, it is possible for a supernova to occur. This may result in the formation of a very
small, but very dense, neutron star, the density of which is about the same as a neutron. A neutron has a mass of 1.7 x 10-27 kg
and an approximate radius of 1.2 x 10-15 m. The mass of the sun is 2.0 x 1030 kg.
Okay, let's break this down step-by-step:
1) A neutron has a mass of 1.7 x 10-27 kg and an approximate radius of 1.2 x 10-15 m.
So we know the mass and radius of a single neutron.
2) The mass of the sun is 2.0 x 1030 kg.
So we know the total mass of the sun, which is much greater than a neutron.
3) When a massive star reaches the end of its life, it can explode as a supernova.
This supernova can form a neutron star.
4) A neutron star has a density about the same as a neutron.
So we can conclude that a neutron star has a density of:
Density = Mass / Volume
= (1.7 x 10-27 kg) / (4/3 * pi * (1.2 x 10-15 m)3)
= 1.6 x 1017 kg/m3
5) A neutron star forms from the core collapse of a massive star during supernova.
So it has a mass on the order of 1-2 times that of the sun (2 x 1030 kg),
but compressed into a sphere only about 10-20 km in radius.
So its mass would be huge, around 2 x 1030 kg, but confined to a tiny volume,
giving it an immense density, around 1.6 x 1017 kg/m3, the same as a neutron.
Does this help explain the concepts and walk through the calculations? Let me know if you have any other questions!
1. Which characteristic of a substance is constant?
a phase
b mass
Ospecific heat
d kinetic energy
Nuclear fusion in a star produces elements up to, but no heavier than, ________.
A. iron
B. lead
C. carbon
D. nitrogen
Answer:
A. iron.
In the process of nuclear fusion, lighter elements are fused together to form heavier elements. This process releases energy and is what powers the star. However, the fusion of elements heavier than iron requires energy, rather than releasing it. Therefore, once a star has produced iron in its core, it is no longer able to sustain nuclear fusion and will eventually undergo a supernova explosion.