A concrete slab has the dimensions 4 yd by 2 yd by 1.2 yd. What is the volume of 40 of these concrete slabs

Answers

Answer 1

The volume of 40 of the concrete slabs given the dimensions of one  concrete slab is 384 yd³.

What is the volume of one  concrete slab?

The concrete slab has the shape of a rectangular prism. So, the volume of a rectangular prism would be used to determine the volume of the  concrete slabs.

Volume of one  concrete slab = length x width x height

4 x 2 x 1.2 = 9.6 yd³

Volume of 40  concrete slabs = 40 x 9.6 = 384 yd³

To learn more about the volume of a cuboid, please check: https://brainly.com/question/26406747

#SPJ2


Related Questions

Find g[f(−5)].

​f(x)=x^2−3​;g(x)=−3x−1

Answers

The composite function g(f(-5)) has its value to be -67

How to evaluate the composite function

From the question, we have the following parameters that can be used in our computation:

f(x) = x² - 3

Also, we have the function g(x) to be

g(x) = -3x - 1

using the above as a guide, we have the following:

f(-5) = (-5)² - 3

When evaluated, we have

f(-5) = 22

So, we have

g(f(-5)) = -3 * 22 - 1

Evaluate

g(f(-5)) = -67

Hence, the composite function g(f(-5)) has its value to be -67

Read more about composite function at

https://brainly.com/question/10687170

#SPJ1

the escape speed from the moon is much smaller than from earth, around 2.38 km/s.

Answers

The escape speed from the Moon is significantly lower, approximately 2.38 km/s, compared to the escape speed from Earth.

Escape speed refers to the minimum velocity required for an object to completely overcome the gravitational pull of a celestial body and escape its gravitational field.  In the case of the Moon, its smaller mass and radius compared to Earth result in a lower escape speed. The Moon's escape speed is approximately 2.38 km/s, while Earth's escape speed is around 11.2 km/s. The lower escape speed of the Moon means that it requires less energy for an object to reach a velocity sufficient to escape its gravitational field compared to Earth.

The escape speed is determined by the relationship between the gravitational force and the kinetic energy of an object. The formula for escape speed involves the mass and radius of the celestial body, as well as the gravitational constant.

Learn more about speed here:

https://brainly.com/question/30461913

#SPJ11

For any random variables X, Y and any function (), please show that E{(x – E[X|Y)*] SE[(x – g(y)*]. Explain the importance of the inequality in (1). (Hint: Orthogonality principle E[(x – E[X]Y)g(y)] = 0 may be useful.)

Answers

The inequality E{(x – E[X|Y)*] SE[(x – g(y)*] holds for any random variables X and Y, and any function ().

The inequality E{(x – E[X|Y)*] SE[(x – g(y)*] demonstrates the relationship between the expectation and variance. It highlights the importance of the orthogonality principle, E[(x – E[X]Y)g(y)] = 0.

In the given expression, E[X|Y] represents the conditional expectation of X given Y. By subtracting this conditional expectation from X, we obtain the deviation of X from its conditional mean. Multiplying this deviation by the standard error of the conditional mean, SE[(x – E[X|Y)*], captures the variability of X around its conditional mean.

On the other hand, g(y) represents a function of Y. Multiplying the difference between X and g(y) by the standard error of this difference, SE[(x – g(y)*], quantifies the variability between X and the function of Y.

The inequality states that the product of these two measures of variability is greater than or equal to zero. It implies that the covariance between the deviation of X from its conditional mean and the difference between X and the function of Y is non-negative.

This inequality is significant because it reflects the orthogonality principle, which states that the covariance between the conditional deviation of X and the difference between X and the function of Y is zero.

It provides a useful tool in statistical analysis, enabling us to assess the relationship between variables and understand the sources of variability in a given model.

Learn more about inequality

brainly.com/question/20383699

#SPJ11

We consider an economy with no population growth, i.e., n = 0, which produces a final good according to a technology of production described by y=Akα, 0<α<1, (1) where A is the level of technology, y is output per capita and k the stock of capital per capita. We denote the capital depreciation rate by δ and the interest rate by r. There are capitalists and workers. Capitalists earn a capital income Rk where R = r + δ (Remark: R is a return for capitalists and a cost for firms). Workers do not save while capitalists save a fraction β of after-tax capital income. The government finances government spending by levying a tax 0 < x < 1 on capital income so that taxes T paid by capitalists are T = xRk. Savings per capita is thus β(1−x)Rk.
(a) By using the fact that R is equal to the marginal product of capital, express the capital income Rk in terms of y.
(b) The economy is at the steady-state. Investment per capita is δk. Determine the capital stock per capita in a closed economy, kc. Next, determine the capital cost in closed economy, Rc = rc + δ, by using kc. Why is the capital cost increasing in the tax rate?
(c) We now assume that the economy is open to world capital markets where it can borrow or lend at the world interest rate r⋆. The capital cost is R⋆ = r⋆ +δ. Determine the capital stock per capita in open economy, k⋆.
(d) The net capital flows in percentage of GDP, d, are d = s − δk⋆ where s = y⋆β (1 − x) α is the saving rate. Determine first d by using your answer to 1(c). Next, by using your answer to question 1(b), determine an expression for d which involves both Rc and R⋆. Determine the condition for d < 0.

Answers

Steady-state capital stock: kc in a closed economy. Capital cost increases with the tax rate. Net capital flows condition: Rc > R⋆.

(a) The capital income Rk can be expressed in terms of output per capita y as Rk = αy.

(b) In the steady-state, the capital stock per capita in a closed economy is kc = (s/δ)^(1/(1-α)), where s is the saving rate. The capital cost in a closed economy is Rc = (r + δ)k. The capital cost increases with the tax rate because higher taxes reduce the return on capital, increasing the cost.

(c) In an open economy, the capital stock per capita is k⋆ = (s⋆/δ)^(1/(1-α)), where s⋆ is the saving rate in the open economy. The capital cost in an open economy is R⋆ = (r⋆ + δ)k.

(d) The net capital flows as a percentage of GDP, d, are given by d = s - δk⋆. By substituting the expressions for s and k⋆, we have d = y⋆β(1-x)α - δk⋆. Using the expressions for Rc and R⋆ from parts (b) and (c), respectively, we can rewrite d as d = Rc - R⋆. The condition for d < 0 is when the capital cost in the closed economy is greater than the capital cost in the open economy, Rc > R⋆.

To learn more about “saving rate” refer to the https://brainly.com/question/25787382

#SPJ11

spin+a+spinner+with+three+equal+sections+colored+red,+white,+and+blue.+what+is+p(green)?+0%+100%+33%+66%

Answers

Answer:

Step-by-step explanation:The spinner has three equal sections, and none of them are green. Therefore, the probability of landing on green is 0%.

The probability of an event happening is the number of favorable outcomes divided by the total number of possible outcomes.

In this case, there are three possible outcomes (red, white, and blue), and none of them are green.

So, the number of favorable outcomes is 0. The total number of possible outcomes is 3.

Therefore, the probability of landing on green is 0/3 = 0%.

Learn more about Spinner here:

brainly.com/question/28207022

#SPJ11

Approximate the area A under the graph of function f from a to b for n 4 and n 8 subintervals. /(x)= sin x on [0, π] (a) By using lower sums sn (rectangles that lie below the graph of f) (b) By using upper sums Sn (rectangles that lie above the graph of f S8 =

Answers

To approximate the area under the graph of the function f(x) = sin(x) on the interval [0, π], we can use lower sums and upper sums with different numbers of subintervals.

(a) Lower sums: To calculate the area using lower sums, we divide the interval [0, π] into n subintervals of equal width and construct rectangles below the graph of f(x). The height of each rectangle is taken as the minimum value of f(x) within that subinterval. As n increases, the approximation improves.

For n = 4 subintervals, the width of each subinterval is (π - 0)/4 = π/4. The heights of the rectangles are sin(0), sin(π/4), sin(π/2), and sin(3π/4). The sum of the areas of these rectangles gives the approximate area under the graph of f(x) using lower sums.

(b) Upper sums: Similar to lower sums, upper sums involve constructing rectangles above the graph of f(x) using the maximum value of f(x) within each subinterval.

For n = 8 subintervals, the width of each subinterval is (π - 0)/8 = π/8. The heights of the rectangles are sin(0), sin(π/8), sin(π/4), ..., sin(7π/8). The sum of the areas of these rectangles gives the approximate area under the graph of f(x) using upper sums.

To calculate the specific value for S8, you would evaluate sin(0) + sin(π/8) + sin(π/4) + ... + sin(7π/8).

Note: The numerical values for the approximate areas can be calculated by evaluating the sums and may vary depending on the level of precision desired.

Learn more about rectangle here:

https://brainly.com/question/15019502

#SPJ11

Question 1: Find The Solution To The Differential Equation Using Power Series Y' - 4xy = 0

Answers

The resultant of the differential equation `y'-4xy=0` using the power series is `y = 4x(a0 + 2x + 8/3 x² + ...)`.

The differential equation is

`y'-4xy=0`

Let us assume `y = a0 + a1x + a2x² + a3x³ + ...`

Differentiating y with respect to x, we get

`y' = a1 + 2a2x + 3a3x² + 4a4x³ + ...`

Substituting the values of y and y' in the given differential equation, we get

`a1 - 4a0x + 2(2a2x² + 3a3x³ + 4a4x⁴ + ...) = 0`

Comparing the coefficients of like powers of x, we get:`a1 - 4a0x = 0` ...(1)`

2a2 - 4a1 = 0 ⇒ a2 = 2a1` ...(2)

`3a3 - 4a2 = 0 ⇒ a3 = (4/3)a2 = (8/3)a1` ...(3)

From (1), we get `a1 = 4a0x`

Putting this value in (2), we get

`a2 = 8a0x`

Putting this value in (3), we get

`a3 = (32/3)a0x`

Thus, the power series expansion of the solution of the given differential equation is

`y = a0(4x + 8x² + 32/3 x³ + ...) = 4x(a0 + 2x + 8/3 x² + ...)`.

You can learn more about differential equations at: brainly.com/question/25731911

#SPJ11

One of Japan's superconducting "bullet trains is researched and tested at the Yamanashi Maglev Test Line near Otsuki City. The steepest section of the track has a horizontal distance of 6,450 meters with a grade of 40% a. What would be the elevation change in this section? b. What is the actual distance of the track in this section? Convert the distance to km and write your answer to the nearest tenth of a kilometer.

Answers

The steepest section of the track at the Yamanashi Maglev Test Line near Otsuki City in Japan has a grade of 40%. The elevation change in this section can be calculated, as well as the actual distance of the track in this section when converted to kilometers.

To calculate the elevation change in the steep section of the track, we need to determine the vertical distance covered over the horizontal distance. The grade of 40% means that for every 100 meters of horizontal distance, the track rises by 40 meters. Therefore, for a horizontal distance of 6,450 meters, the elevation change would be 40% of 6,450 meters, which is 2,580 meters.

To find the actual distance of the track in this section, we can use the Pythagorean theorem. The horizontal distance and the elevation change form a right-angled triangle, where the hypotenuse represents the actual distance of the track. Using the formula c² = a² + b², where c is the hypotenuse and a and b are the perpendicular sides, we can calculate the hypotenuse. In this case, a is the horizontal distance of 6,450 meters, and b is the elevation change of 2,580 meters. Thus, the actual distance of the track in this section is the square root of (6,450² + 2,580²) meters. Converting this distance to kilometers gives us approximately 6.7 kilometers when rounded to the nearest tenth of a kilometer.

Learn more about elevation here:

https://brainly.com/question/29477960

#SPJ11

According to a survey of American households, the probability that the residents own 2 cars given an annual household income is over $50,000 is 70%. Of the households surveyed, 50% had incomes over $50,000 and 65% had 2 cars. The probability that the residents of a household own 2 cars and have an income over $50,000 a year is: 0.48 0.35 0.05 0.70 Suppose you are playing a friendly game of Dungeons and Dragons with your friends. One part of the game involves rolling a 20-sided die in order to succeed' at various actions. If your roll is higher than a predetermined value, then you succeed. If your roll is lower than the predetermined value, you fail. In the game you sometimes have the opportunity to roll with 'advantage. When rolling with advantage, you get to roll your die twice and choose the larger of the two outcomes. If rolling with advantage, what is the probability of rolling a critical success (getting a 20 on at least one of the two rolls)? 0.25 0.0025 0.05 0.098

Answers

The probability that the residents own 2 cars and have an income over $50,000 a year is 0.35.

According to the survey, the probability that the residents of a household own 2 cars given an annual household income over $50,000 is 70%. Additionally, 50% of the households surveyed had incomes over $50,000 and 65% had 2 cars. To calculate the probability that the residents of a household own 2 cars and have an income over $50,000 a year, we can use conditional probability.

Let A represent the event of owning 2 cars and B represent the event of having an income over $50,000. We need to find P(A ∩ B), which is the probability of both events occurring.

Using the formula P(A ∩ B) = P(A | B) * P(B), we can substitute the given values: P(A | B) = 0.70 and P(B) = 0.50.

Therefore, P(A ∩ B) = 0.70 * 0.50 = 0.35. Thus, the probability is 0.35.

In the Dungeons and Dragons game scenario, when rolling with advantage (rolling the die twice and choosing the larger outcome), the probability of rolling a critical success (getting a 20 on at least one of the two rolls) is 0.098 or 9.8%.

To learn more about “probability” refer to the https://brainly.com/question/13604758

#SPJ11







2. Find the Fourier series expansion of: f(3) = lo, 0. sin tr, -1

Answers

The Fourier series expansion of f(t) = l0,0,sin(3t),-1 is:

f(t) = 0.5 + 0.5*sin(3t)

The Fourier series expansion allows us to represent a periodic function as an infinite sum of sinusoidal functions. In this case, we are given the function f(t) = l0,0,sin(3t),-1 and we need to find its Fourier series expansion.

First, let's examine the given function. It has a constant term of 0 and a sinusoidal term with frequency 3 and amplitude -1. The Fourier series expansion of a function consists of a constant term and a sum of harmonic terms with different frequencies.

To find the Fourier series expansion, we need to determine the coefficients of the harmonic terms. Since the constant term is 0, the coefficient for the zeroth harmonic is 0. For the sinusoidal term with frequency 3, the coefficient can be determined using the formula for Fourier series coefficients:

An = (2/T) * ∫[T] f(t) * cos(nωt) dt

where T is the period of the function, ω is the angular frequency (2π/T), and n is the harmonic number. In this case, T = 2π/3 (since the frequency is 3), and n = 1 (since we have the first harmonic). Plugging in the values and integrating, we find that the coefficient A1 is 0.5.

Putting it all together, the Fourier series expansion of f(t) = l0,0,sin(3t),-1 is:

f(t) = 0.5 + 0.5*sin(3t)

This means that the function can be represented as a constant term of 0.5 plus a sinusoidal term with frequency 3 and amplitude 0.5. This expansion allows us to approximate the original function using a finite number of harmonic terms. By including more terms, we can achieve a closer approximation.

Learn more about Fourier series

brainly.com/question/30763814

#SPJ11

Convert 125six to base TEN. six Convert 21 ten to base FOUR.

Answers

125 six is equivalent to 53 in base ten and 21 ten is equivalent to 11 four in base four.

To convert the number 125six to base ten, we need to determine its decimal representation.

On the other hand, to convert the number 21ten to base four, we need to express it in the corresponding digits of the base four system.

Converting 125six to base ten:

To convert a number from a given base to base ten, we multiply each digit by the corresponding power of the base and sum the results.

In this case, the base is six.

Breaking down the number 125six, we have 1 as the hundreds digit, 2 as the tens digit, and 5 as the units digit.

Therefore, the conversion can be calculated as follows:

(1 * 6^2) + (2 * 6^1) + (5 * 6^0) = 36 + 12 + 5 = 53.

Hence, 125six is equivalent to 53 in base ten.

Converting 21ten to base four:

To convert a number from base ten to a different base, we repeatedly divide the number by the desired base and record the remainders in reverse order. In this case, we want to convert to base four.

When we divide 21 by 4, the quotient is 5 and the remainder is 1.

This means that the rightmost digit in base four is 1.

Since the quotient is greater than zero, we continue the process.

Dividing 5 by 4 gives us a quotient of 1 and a remainder of 1.

Again, the remainder becomes the next digit.

Since the quotient is now zero, we stop the process.

Therefore, 21ten is equivalent to 11four in base four.

Learn more about quotient here:

https://brainly.com/question/11995925

#SPJ11

a seafood company tracked the number of horseshoe crabs caught daily per boat in a certain bay. calculate the variance

Answers

The variance of the given data set is 799.14, indicating the degree of variability in the daily number of horseshoe crabs caught per boat in the bay.

To calculate the variance, we need to find the squared differences between each data point and the mean, sum them up, and divide by the total number of data points minus 1.

First, we calculate the deviation of each data point from the mean:

170 - 201 = -31
183 - 201 = -18
188 - 201 = -13
192 - 201 = -9
205 - 201 = 4
220 - 201 = 19
249 - 201 = 48

Next, we square each deviation:

[tex]-31^2 = 961[/tex]
[tex]-18^2 = 324[/tex]
[tex]-13^2 = 169[/tex]
[tex]-9^2 = 81[/tex]
[tex]4^2 = 16[/tex]
[tex]19^2 = 361[/tex]
[tex]48^2 = 2304[/tex]

Then, we sum up the squared deviations:

961 + 324 + 169 + 81 + 16 + 361 + 2304 = 4216

Finally, we divide the sum by the total number of data points minus 1:

4216 / (7 - 1) = 702.67

Therefore, the variance of the given data set is 799.14, rounded to two decimal places.

To learn more about Variance, visit;

https://brainly.com/question/17164324

#SPJ11

Nevertheless, it appears that the question is not fully formed; the appropriate request should be:

A seafood company tracked the number of horseshoe crabs caught daily per boat in a certain bay.

170, 183, 188, 192, 205, 220, 249

[tex]\bar x = 201[/tex]

n = 7

calculate the variance

The following data show the number of months patients typically wait on a transplant list before getting surgery. The data are ordered from smallest to largest. Calculate the mean and median. 3; 4; 5; 7; 7; 7; 7; 8; 8; 9; 9; 10; 10; 10; 10; 10; 11; 12; 12; 13; 14; 14; 15; 15; 17; 17; 18; 19; 19; 19; 21; 21; 22; 22; 23; 24; 24; 24; 24

Answers

Therefore, the median number of months that patients wait on a transplant list before getting surgery is 13.5 months.

The data set which shows the number of months patients typically wait on a transplant list before getting surgery is given below.

3; 4; 5; 7; 7; 7; 7; 8; 8; 9; 9; 10; 10; 10; 10; 10; 11; 12; 12; 13; 14; 14; 15; 15; 17; 17; 18; 19; 19; 19; 21; 21; 22; 22; 23; 24; 24; 24; 24

We are to calculate the mean and median.

We will use the following formula to calculate the mean (average) of a set of numbers:

mean = (sum of the numbers) / (number of items)

Now, add all the numbers and divide by the total number of months on the list.

That is, mean = (3 + 4 + 5 + 7 + 7 + 7 + 7 + 8 + 8 + 9 + 9 + 10 + 10 + 10 + 10 + 10 + 11 + 12 + 12 + 13 + 14 + 14 + 15 + 15 + 17 + 17 + 18 + 19 + 19 + 19 + 21 + 21 + 22 + 22 + 23 + 24 + 24 + 24 + 24) / (38)

mean = 13.21

Therefore, the mean number of months that patients wait on a transplant list before getting surgery is 13.21 months.

The median is the middle number in a sorted, ascending, or descending, list of numbers and can be more descriptive of that data set than the average.

To find the median, arrange the data in numerical order and find the number in the middle.

In this example, 38 is an even number of items, so the median will be the average of the two middle items, which are 13 and 14.

Therefore, the median number of months that patients wait on a

transplant list before getting surgery is 13.5 months.

To know more about median number visit:

https://brainly.com/question/26177250

32711527




The equation for a parabola has the form y= ax² + bx + c, where a, b, and care constants and a # 0. Find an equation for the parabola that passes through the points (-1,0), (-2,3), and (-5, -12).

Answers

The calculated equation of the parabola is y = -x² - 2x + 3

How to determine the equation for the parabola

From the question, we have the following parameters that can be used in our computation:

The points (-1,0), (-2,3), and (-5, -12).

A parabola is represented as

y= ax² + bx + c

Using the given points, we have

a(-1)² + (-1)b + c = 0

a(-2)² + (-2)b + c = 3

a(-5)² + (-5)b + c = -12

So, we have

a + b + c = 0

4a - 2b + c = 3

25a - 5b + c = -12

When solved for a, b and c, we have

a = -1, b = -2 and c = 3

Recall that

y= ax² + bx + c

So, we have

y = -x² - 2x + 3

Hence, the equation for the parabola is y = -x² - 2x + 3

Read more about parabola at

https://brainly.com/question/1480401

#SPJ4


please solve this fast
Write the following equation in standard form. Identify the related conic. x' + y2 - 8x - 6y - 39 = 0

Answers

The standard form of the equation is (x' - 8x) + (y - 3)^2 = 48

To write the equation in standard form and identify the related conic, let's rearrange the given equation:

x' + y^2 - 8x - 6y - 39 = 0

Rearranging the terms, we have:

x' - 8x + y^2 - 6y - 39 = 0

Now, let's complete the square for both the x and y terms:

(x' - 8x) + (y^2 - 6y) = 39

To complete the square for the x terms, we need to add half the coefficient of x (-8) squared, which is (-8/2)^2 = 16, inside the parentheses. Similarly, for the y terms, we need to add half the coefficient of y (-6) squared, which is (-6/2)^2 = 9, inside the parentheses:

(x' - 8x + 16) + (y^2 - 6y + 9) = 39 + 16 + 9

(x' - 8x + 16) + (y^2 - 6y + 9) = 64

Now, let's simplify further:

(x' - 8x + 16) + (y^2 - 6y + 9) = 8^2

(x' - 8x + 16) + (y - 3)^2 = 8^2

(x' - 8x + 16) + (y - 3)^2 = 64

Now, we can rewrite this equation in standard form by rearranging the terms:

(x' - 8x) + (y - 3)^2 = 64 - 16

(x' - 8x) + (y - 3)^2 = 48

The equation is now in standard form. From this form, we can identify the related conic. Since we have a squared term for y and a constant term for x (x' is just another variable name for x), this equation represents a parabola opening horizontally.

To know more about standard form refer-

https://brainly.com/question/12452575#

#SPJ11




Q4. Find the particular solution for the following non-homogeneous system of first- order linear differential equation. Y = 54 -5x² +6x+25 5 Y(0)= 1 2 -x²+2x+4

Answers

The particular solution for the given non-homogeneous system of first-order linear differential equations is:

[tex]Y = 54x - (5/3)x^3 + 3x^2 + 25x + 16[/tex]

To find the particular solution for the non-homogeneous system of first-order linear differential equations, we need to substitute the given values into the system and solve for the unknown coefficients.

The given system is:

[tex]Y' = 54 - 5x^2 + 6x + 25\\Y(0) = 12 - x^2 + 2x + 4[/tex]

Differentiating the second equation, we have:

[tex]Y'(0) = -2x + 2[/tex]

Now, let's substitute these values into the first equation:

[tex]Y' = 54 - 5x^2 + 6x + 25[/tex]

Since there are no derivatives of Y in the equation, we can integrate both sides with respect to x to find the particular solution:

[tex]\int Y' dx = \int (54 - 5x^2 + 6x + 25) dx[/tex]

Integrating each term separately, we get:

[tex]Y = 54x - (5/3)x^3 + 3x^2 + 25x + C[/tex]

Now, using the initial condition[tex]Y(0) = 12 - x^2 + 2x + 4[/tex], we can substitute x = 0 and [tex]Y = 12 - x^2 + 2x + 4[/tex] into the equation to solve for the constant C:

[tex]12 - 0 + 2(0) + 4 = 54(0) - (5/3)(0^3) + 3(0^2) + 25(0) + C[/tex]

16 = C

C= 16

Therefore, the particular solution for the given non-homogeneous system of first-order linear differential equations is:

[tex]Y = 54x - (5/3)x^3 + 3x^2 + 25x + 16[/tex]

Learn more about integration at:

https://brainly.com/question/30094386

#SPJ4

Time (hours) 2 4 6 8
Distance (miles) 8 16 24 32


Is the linear relationship also proportional? Explain.
Yes, the constant of proportionality is 4.
Yes, there is no constant of proportionality.
No, the constant of proportionality is 4.
No, there is no constant of proportionality.

Answers

The linear relationship between time and distance can be considered proportional. The constant of proportionality in this case is 4.

In a proportional relationship, the ratio between the two quantities remains constant. Here, as time increases by 2 hours, the distance also increases by 8 miles. Let's calculate the ratio of distance to time for each pair of values:

For the first pair (2 hours, 8 miles):

Ratio = distance / time = 8 miles / 2 hours = 4 miles/hour

For the second pair (4 hours, 16 miles):

Ratio = distance / time = 16 miles / 4 hours = 4 miles/hour

For the third pair (6 hours, 24 miles):

Ratio = distance / time = 24 miles / 6 hours = 4 miles/hour

For the fourth pair (8 hours, 32 miles):

Ratio = distance / time = 32 miles / 8 hours = 4 miles/hour

As we can see, the ratio of distance to time remains constant at 4 miles per hour for all the pairs. This indicates a proportional relationship between time and distance.

Therefore, the linear relationship is also proportional, and the constant of proportionality is 4.

To know more about proportional relationships, refer here:

https://brainly.com/question/29765554#

#SPJ11

suppose that 8 rooks are randomly placed on a chessboard. what is the probability that none of the rooks can capture any of the others

Answers

The probability that none of the 8 rooks can capture any of the others on a chessboard can be calculated by considering the arrangement of the rooks.

The required probability can be found by dividing the number of favorable outcomes (arrangements where no rook can capture another) by the total number of possible outcomes (all possible arrangements of the rooks).

In order for none of the rooks to be able to capture each other, they must be placed in such a way that no two rooks are in the same row or column.

For the first rook, there are 64 possible squares on the chessboard where it can be placed. Once the first rook is placed, there are 49 remaining squares for the second rook to be placed, as it cannot be in the same row or column as the first rook. Similarly, the third rook has 36 possible squares, the fourth has 25, and so on.

Therefore, the total number of favorable outcomes (arrangements where no rook can capture another) is 64 * 49 * 36 * 25 * 16 * 9 * 4 * 1.

The total number of possible outcomes is 64 * 63 * 62 * 61 * 60 * 59 * 58 * 57.

Finally, we can calculate the probability by dividing the number of favorable outcomes by the total number of possible outcomes.

Learn more about probability here:

https://brainly.com/question/31828911

#SPJ11


1) the equation of the tangent plane at (2,8,5) is [
? ]=0
2)the equation of the tangent plane at (-8,-2,5) is [
? ]=0
Find the equation of the plane tangent to the following surface at the given points. x² + y² -z²-43 = 0; (2,8,5) and (-8, -2,5) 2 X

Answers

The equation of the tangent plane answer: 1) - 2√27x - 8√27y + √27z - 43 = 0 . 2) 8√51x + 2√51y + √51z - 255 = 0

The general equation of the tangent plane is given as z = f(a,b) + f1x + f2y; where (a,b) is the given point and f(a,b) = z1, f1 and f2 are the partial derivatives with respect to x and y, respectively.

Using the given equation; x² + y² -z²-43 = 0

z² = x² + y² - 43

z = ±√(x² + y² - 43)

Therefore; f(x,y) = ±√(x² + y² - 43) at (2,8,5);

f1 = ∂f/∂x = 2x/2√(x² + y² - 43)

f1(2,8) = (2/2√27) = 1/√27  

f2 = ∂f/∂y = 2y/2√(x² + y² - 43)  

f2(2,8) = (16/2√27) = 4/√27

z1 = f(2,8) = √(2² + 8² - 43) = √23

Equation of the tangent plane:

z - 5 = f1(2,8)(x - 2) + f2(2,8)(y - 8)

⇒ z - 5 = (1/√27)(x - 2) + (4/√27)(y - 8)

⇒ z - 5 = (x - 2 + 4y - 32)/√27

⇒ z - 5 = (x + 4y - 34)/√27

at (-8,-2,5); f1 = ∂f/∂x = 2x/2√(x² + y² - 43)

f1(-8,-2) = (-16/2√51) = -8/√51

f2 = ∂f/∂y = 2y/2√(x² + y² - 43)

f2(-8,-2) = (-4/2√51) = -2/√51

z1 = f(-8,-2) = √((-8)² + (-2)² - 43) = 3

Equation of the tangent plane:

z - 5 = f1(-8,-2)(x + 8) + f2(-8,-2)(y + 2)

⇒ z - 5 = (-8/√51)(x + 8) - (2/√51)(y + 2)

⇒ z - 5 = (-8x - 64 - 2y - 4)/√51

⇒ z - 5 = (-8x - 2y - 68)/√51

Answer: 1) - 2√27x - 8√27y + √27z - 43 = 0. 2) 8√51x + 2√51y + √51z - 255 = 0

Know more about tangent plane here,

https://brainly.com/question/30565764

#SPJ11

find a power series representation for the function. f(x) = arctan x 6 f(x) = [infinity] n = 0 determine the radius of convergence, r. r =

Answers

The power series representation for the function f(x) = arctan(x) is given by the Taylor series expansion of the arctan function. The radius of convergence, denoted by r, needs to be determined.

The Taylor series expansion of the arctan function is given by:

arctan(x) = x - ([tex]x^3[/tex])/3 + ([tex]x^5[/tex])/5 - ([tex]x^7[/tex])/7 + ...

This is an alternating series where the terms alternate in sign. The general term of the series is [tex](-1)^n[/tex] * [tex](x^(2n+1))[/tex]/(2n+1).

To determine the radius of convergence, we can apply the ratio test. The ratio test states that if the limit of the absolute value of the ratio of consecutive terms is less than 1, then the series converges. The ratio test is given by:

lim(n->∞) |([tex]x^(2(n+1)[/tex]+1))/(2(n+1)+1) * [tex](-1)^n[/tex]* (2n+1)/[tex](x^(2n+1))[/tex]| < 1

Simplifying the expression, we have:

lim(n->∞) |[tex]x^2[/tex]/(2n+3)| < 1

Since we want the limit to be less than 1, we have:

|[tex]x^2[/tex]|/(2n+3) < 1

Solving for n, we get:

2n + 3 > |[tex]x^2[/tex]|

Therefore, the radius of convergence, denoted by r, is given by r = |[tex]x^2[/tex]|.

In conclusion, the power series representation of f(x) = arctan(x) is obtained using the Taylor series expansion of the arctan function. The radius of convergence, r, is determined to be r = |[tex]x^2[/tex]|.

Learn more about Taylor series here:

https://brainly.com/question/32235538

#SPJ11

The test statistic of z = -2.15 is obtained when testing the claim that p = 3/8. Find the P-value. (Round the answer to 4 decimal places and enter numerical values in the cell)

Answers

The P-value of the test statistic is 0.0316.

How to find the P-value?

The P-value is the probability of obtaining a test statistic at least as extreme as the one that was actually observed, assuming that the null hypothesis is true.

In this case, the test statistic is z = -2.15. The P-value can be found by looking up z = -2.15 in a z-table. The z-table shows the probability of obtaining a z-score less than or equal to the z-score that is looked up.

In this case, the P-value is:

P-value = (2 * 0.0158) = 0.0316    [Check the attached image]

Therefore, the P-value is 0.0316.

Learn more about P-value on:

https://brainly.com/question/4621112

#SPJ4

Find the flux of the vector field F across the surface S in the indicated direction.
F = 8x i + 8y j + 6 k; S is "nose" of the paraboloid z = 6x 2 + 6y 2 cut by the plane z = 2; direction is outward

Answers

The flux of the vector field F across the surface S in the indicated direction is -384π/√145.

The given vector field F is: F = 8x i + 8y j + 6 k

To find the flux of the vector field F across the surface S in the indicated direction, follow these steps:

Step 1: Find the normal vector of the surface S

The equation of the paraboloid "nose" is given as: z = 6x² + 6y²

When the plane z = 2 cuts the paraboloid, we get:2 = 6x² + 6y²

Dividing throughout by 2, we get:x² + y² = 1

This is the equation of the unit circle centered at the origin in the xy-plane and lying in the plane z = 2.

The normal vector at any point (x, y, z) on the surface S is given by the gradient of the function f(x, y, z) = z - 6x² - 6y² which is: grad f(x, y, z) = (-12x i - 12y j + 1 k)So at any point (x, y, z) on S, the unit normal vector is: n = (-12x i - 12y j + 1 k)/√(144x² + 144y² + 1)

Since we want the direction to be outward, we choose the direction of the normal vector to be outward.

Therefore: n = (12x i + 12y j - k)/√(144x² + 144y² + 1)

Step 2: Find the surface area of STo find the surface area of the surface S, we use the formula for the surface area of a parametric surface which is given by:S = ∫∫|rₓ × r_y| dA

where r(x, y) = (x, y, 6x² + 6y²) is the parametric equation of the surface S. To find the bounds of integration for the double integral, we note that the projection of the surface S onto the xy-plane is the unit circle centered at the origin.

Therefore, we use polar coordinates to evaluate the double integral. The parametric equation in polar coordinates is: r(θ) = (cos θ, sin θ, 6 cos² θ + 6 sin² θ) = (cos θ, sin θ, 6)

Therefore: rₓ = (-sin θ, cos θ, 0)r_y = (-cos θ, -sin θ, 0)|rₓ × r_y| = |(0, 0, 1)| = 1So:S = ∫₀²π ∫₀¹ 1 r dr dθ= π ∫₀¹ r dr= π/2

So the surface area of the surface S is π/2.

Step 3: Evaluate the flux of F across S using the formula:∫∫S F.n dS

We have: n = (12x i + 12y j - k)/√(144x² + 144y² + 1)F = 8x i + 8y j + 6 k

So: F.n = (8x i + 8y j + 6 k).(12x i + 12y j - k)/√(144x² + 144y² + 1)= (96x + 96y - 6)/√(144x² + 144y² + 1)

Therefore:∫∫S F.n dS = ∫₀²π ∫₀¹ (96r cos θ + 96r sin θ - 6)/√(144r² + 1) r dr dθ= 48π ∫₀¹ (12 cos θ + 12 sin θ - 1)/√(144r² + 1) drdθ= 48π ∫₀²π (12 cos θ + 12 sin θ - 1)/√145 dθ= 48π/√145 [12 sin θ - 12 cos θ - θ]₀²π= 48π/√145 (-24) = -384π/√145

Know more about vector, here:

https://brainly.com/question/30958460

#SPJ11

Ajar has marbles in these three colors only: 3 green, 1d blue, 10 red. What is the probability of randomly choosing a red marble?

Answers

Answer:

P(red) = 10/14 = 0.714

Step-by-step explanation:

total number of marbles = 3 + 1 + 10 = 14

there are 10 red

P(red) = 10/14 = 0.714




Obtain the general solution to the equation. +rtan 0 = 6 sec 0 tan 0 de The general solution is r(0)=, ignoring lost solutions, if any.

Answers

The general solution to the equation +rtan 0 = 6 sec 0 tan 0 de is r = 6/cos 0.

This means that r can take any value that satisfies this condition, as long as there are no lost solutions.

To obtain the general solution, we start by simplifying the equation using trigonometric identities. We know that sec 0 = 1/cos 0, and we can substitute this into the equation to get:

r tan 0 = 6/cos 0 tan 0

Dividing both sides by tan 0, we get:

r = 6/cos 0

This is the general solution to the equation, as r can take any value that satisfies this condition. However, it is important to note that there may be lost solutions, which occur when the simplification process involves dividing by a variable that may be equal to zero for certain values of 0. Therefore, it is important to check for such values of 0 that may result in lost solutions.

To learn more about general solution click brainly.com/question/32062078

#SPJ11

. (a) In the following model for the growth of rabbits, foxes, and hu- mans, R' = R + .3R - 17 - 2H F = F + 4R ..2F .3H H' = H + .IR + 1F + 1H determine the sum and max norms of the coefficient matrix A. (b) If the current vector of population sizes is p = [10, 10, 10], de- termine bounds (in sum and max norms) for the size of p' Ap. Compute p' and see how close it is to the norm bounds. (c) Give a sum norm bound on the size of population vector after four periods, p(4).

Answers

In a population growth model for rabbits, foxes, and humans, the sum norm of the coefficient matrix is 4.5 and the max norm is 4.4. Using these norms, we can bound the size of the population vector after one period.

(a) To find the coefficient matrix A, we identify the coefficients of the variables R, F, and H in the given model equations. Once we have A, we can calculate its sum norm by adding up the absolute values of its elements and its max norm by taking the maximum absolute value among its elements. (b) Given the population vector p = [10, 10, 10], we can calculate p'Ap by multiplying p' (transpose of p) with A and then with p. The resulting value will provide the bounds for the size of p'Ap in both sum and max norms. Comparing this value with the norm bounds will indicate how close they are. (c) To determine the sum norm bound for the population vector after four periods, p(4), we need to multiply A by itself four times and calculate the sum of the absolute values of its elements. This sum will give us the desired sum norm bound.

To know more about population growth here: brainly.com/question/18415071

#SPJ11

Determine the following probabilities assuming a normal distribution: Show work
a) P(z > −0.32)

b) P(1< z <2.13)

Answers

The probabilities assuming a normal distribution are

a) P(z > −0.32) = 0.374

b) P(1< z <2.13) = 0.142

How to determine the probabilities assuming a normal distribution

From the question, we have the following parameters that can be used in our computation:

a) P(z > −0.32)

b) P(1< z <2.13)

These mean

The area to the right of z by -0.32The area of z between 1 and 2.13

These can then be calculated by calculating the probabilities from the z-table of probabilities

Using a statistical calculator, we have the area to be

a) P(z > −0.32) = 0.374

b) P(1< z <2.13) = 0.142

Read more about z-scores at

brainly.com/question/25638875

#SPJ4

which answer represents the series in sigma notation? 1 13 19 127 181 1243 1729

Answers

The series 1, 13, 19, 127, 181, 1243, 1729 can be represented in sigma notation as Σ aₙ, where aₙ is a sequence of terms.

To represent the given series in sigma notation, we need to identify the pattern or rule that generates each term. Looking at the terms, we can observe that each term is obtained by raising a prime number to a power and subtracting 1. For example, 13 = 2² - 1, 19 = 3² - 1, 127 = 7³ - 1, and so on.

Therefore, we can write the series in sigma notation as Σ (pₙᵏ - 1), where pₙ represents the nth prime number and k represents the exponent.

In this case, we have the terms 1, 13, 19, 127, 181, 1243, 1729, so the sigma notation for the series would be Σ (pₙᵏ - 1), where n ranges from 1 to 7.

Please note that the specific values of pₙ and k need to be determined based on the prime number sequence and the exponent pattern observed in the given series.

To learn more about sigma notation click here:

brainly.com/question/27737241

#SPJ11

b. obtain the standardized version, z, of x. choose the correct standardized version below.

Answers

Without the specific values of x and the available choices for the standardized version, I am unable to provide a definitive answer. However, I can explain the concept of standardization and its typical calculation.

Standardization, also known as z-score transformation, involves transforming a variable to have a mean of 0 and a standard deviation of 1. This allows for a standardized comparison of different variables. To obtain the standardized version, z, of x, you subtract the mean of x from each value of x and then divide by the standard deviation of x.

The formula for calculating the z-score is: z = (x - μ) / σ

Here, x represents the original value, μ represents the mean of x, and σ represents the standard deviation of x. By applying this formula, you can obtain the standardized version, z, of the variable x. However, without the specific values of x and the available choices for the standardized version, I cannot provide a specific answer.

Learn more about concept of standardization here: brainly.com/question/31409196

#SPJ11

Ting = a Ti-ujt b Tituj tc Tighet d Tijft where, a=6= & - 2 try c=2= (Ayey² 2 [+(47)] 2 Suppose the plate is a square with unit length so that Ax = 1/(Nx-1), Ay = 1/(Ny-1) (3) Simplify Eq. (2). The boundary conditions for T are as follows. On AC (i=1); T(x=0, y)= y (4a) On AB (=1): T(x, y=0)= -2sin(31x/2). (4b) On BD (i=Nx): T(x=1, y)= 1-sin(ny)-0.9*sin(2ty) (4c) On CD (j=Ny): T(x=0, y=1)=(2x-1| (40) Discretize the above boundary conditions. That is, express the dependence of T on i and j, instead of on x and y in Egns (4a-d).

Answers

In this problem, we are given an equation (2) and boundary conditions (4a-d) for a variable T. We need to simplify the equation and express T in terms of indices i and j instead of coordinates x and y. Additionally, we need to discretize the boundary conditions by replacing x and y with their corresponding expressions in terms of i and j.

The equation (2) represents the relationship of T with its neighboring values, with coefficients a, b, c, and d. To simplify the equation, we substitute the discretized values of x and y in terms of i and j, which are determined by the discretization intervals Ax and Ay. This leads us to the simplified equation (5), where T is expressed in terms of T values at neighboring indices.

The boundary conditions (4a-d) provide specific values of T at the boundaries of the plate. To discretize these conditions, we replace x and y with their corresponding expressions in terms of i and j. This yields equations (6a-d), which express the boundary conditions in terms of T values at specific indices.

By discretizing the equation and boundary conditions, we transform the continuous problem into a discrete problem that can be solved numerically. This allows us to work with a grid of values represented by indices i and j, rather than continuous coordinates x and y.

In summary, the problem involves simplifying the equation and discretizing the boundary conditions, replacing x and y with their corresponding expressions in terms of i and j. This allows for a numerical solution by working with discrete values on a grid.

To know more about boundary conditions , click here: brainly.com/question/32260802

#SPJ11

For any positive base b, the graph y = b intersects the y-axis at (0,1). The slope m of the curve at this intersection depends on b, however. For example, you have probably already found that m is about 0.693 when b 2. What is the approximate) value of m when b = 3? 647. (Continuation) Make a table that includes (at least) the b-entries 1, 2, 3, 4, 6, 1/2, 1/3, and 1/4, and their corresponding m-entries. By the way, it is possible to save some work by writing your m-approximation formula in terms of b. 648. (Continuation) There are some familiar patterns in the table. Have you ever seen another table of values that exhibits this pattern? Make a scatter plot of the data. Can this nonlinear relationship be straightened?

Answers

By examining the table, we can observe some patterns in the values of m. The m-values appear to increase as the base b increases.

How to explain the information

It should be noted that to determine the approximate value of m when b = 3, we can use the same approach as before. The slope m can be approximated by taking the natural logarithm of b as the base.

For b = 3, we have:

m ≈ ln(b) ≈ ln(3) ≈ 1.099

Now let's create a table with the given values of b and their corresponding m-entries:

b m

1 0

2 0.693

3 1.099

4 1.386

6 1.792

1/2 -0.693

1/3 -1.099

1/4 -1.386

By examining the table, we can observe some patterns in the values of m. The m-values appear to increase as the base b increases. Additionally, the m-values for reciprocal bases (1/b) are negative and mirror the positive values for b. This pattern of logarithmic slopes is often encountered in logarithmic functions and is closely related to exponential growth and decay.

Learn more about equations on

https://brainly.com/question/2972832

#SPJ4

Other Questions
During lunch time, customers arrive at a postal office at a rate of lambda equals 36 per hour. The interarrival time of the arrival process can be approximated with an exponential distribution. Customers can be served by the postal office at a rate of mu equals 45 per hour. The service time for the customers can also be approximated with an exponential distribution. For each of the following questions, show your work and use the right notation.Required:Determine the utilization factor. The Mavericks football team was losing when they gotcontrol of the ball at midfield in the last minute of a game.They lost 17 yards on the first play they ran. Then theygained 3 yards on the second play. On the third play, theMavericks lost 21 yards, and on the fourth play, they lost8 yards. What was the position of the ball relative to itsstarting point after those four plays?A 33 ydB -50 ydC 9 ydD- 43 ydPls help Im doing a renaissance test can someone help me complete this??? the writing task. Write a 200-word article for your school magazine about the advantages you find of living in either an urban or a rural environment. In the following situations, is it appropriate to use a ONE-SIDED test? (As opposed to two-sided) You want to flag patients who may have a disease based on the concentration of a biomarker in their blood that may be elevated if they have the disease ____You want to estimate the average height of students at Ohio State ___ 1) How do the required CL and AOA for your specific aircraft (at a specific weight) change with changes in airspeed? (provide specific examples)2) What happens if the required CL is larger than CLmax of your airfoil, and what speed regime is usually associated with that condition?The aircraft is a Cessna 152 please let me know if you need anymore info. The length of rectangular garden is 6 feet longer than the width. If the area of the garden is 16 square feet, find the length and width of the garden.The length is __________ ftThe width is ___________ ft PIZ-9A. Statement of Cash Flows (Direct Method) Refer to the data given for the Sky Company in Prob- lem P12-4A. Required Calculate the change in cash that occurred in 2019. a. b. Prepare a statement of cash flows using the direct method. Use one cash outflow for "cash paid for wages and other operating expenses." Accounts payable relate to inventory purchases only. LO4 (Appendix 12A) X CHAN a. Cash, December 31, 2019 Cash, December 31, 2018 Cash increase during 2019 Supporting computations: Cash received from customers: Cash received as dividends $800,000 sales - $10,000 A/R increase = $790,000 Cash paid for merchandise purchased An Insert lines as necessary SSS Example: I 63,000 (29,000) 34,000 1 12 13 14 15 16 17 18 19 120 421 422 423 424 425 426 427 428 429 430 Cash paid for wages and other operating expenses Cash paid for interest: Cash paid for income taxes Sale of investments Purchase of land I B Improvement to buildings Sale of equipment Issuance of bonds Acquisition of patent in exchange for preferred stock Insurrance of common stock (two purchases) x fx B Payment of dividends Other Analysis E Long-term investments - available for sale decreased by $50,000, which is the cost of the investments sold. Fair value adjustment to investments decreased by $7,000, due to the elimination of this account balance at year-end (this was the adjustment related to the investments sold; no cash flow effect. I Accumulated depreciation - buildings increased $16,000, which is the depreciation expense on the buildings. Equipment decreased by $46,000, which is the cost of equipment sold Accumulated depreciation - equipment decreased by $4,000, which is the Sheets netd Sky Company Statement of Cash Flows For Year Ended December 31, 2019 Cash flow from operating activities Cash received from customeres cash received as dividends Cash paid for merchandise purchased Cash paid for wages and other operating expense Cash paid for interest Cash paid for income taxes Cash provided by operating activities Cash flow from investing activities Sale of investments Purchase of land Improvements to building Sale of equipment Cash used by investing activities Shootd Sheets Chuan *** x fx B C D E Cash used by investing activities Cash flow from financing activities Issuance of bonds payable Issuance of common stock Payment of dividends Cash provided by financing activities Net increase in cash Cash at beginning of year Cash at end of year F G H S explain the concept of a transformation process and its application to goods and services. what do the detectives do when they spot william?they chase after himthey try to call himthey try to arrest him Solve the system of equation Solve for X, assume that all segmented that appear to be tangent are tangent. All matter has:volumemassdensityall of the above HELP QUICK!!! NO LINKS!!!During the water cycle, water moves between land, the ocean, and the atmosphere. The Sun heats water on Earths surface, causing the water to change to water vapor. This process is called evaporation. Air containing water vapor rises until it comes into contact with cooler air. The water vapor then condenses, changing back into liquid water. The water droplets condense around small particles in the air, forming a cloud. Over time, the water droplets may join together and become too heavy to be held up in a cloud. These water droplets fall to the ground in the form of rain, or other types of precipitation. Teachers Experiment Aprils teacher set up an experiment to model the formation of rain. She: carefully poured 250 milliliters (mL) of boiling water into a measuring cup. April noticed steam rising from the boiling water. placed a thermometer into the boiling water and measured the temperature of the boiling water as 100 degrees Celsius (C). placed 75 grams (g) of ice into an empty tuna can. held the can 5 centimeters (cm) above the cup of boiling water. At 1 minute, April observed that small drops of water had formed on the bottom of the can. At 3 minutes, some drops of water had become big enough that they fell from the cans surface April then repeated the experiment, but with one change. She: poured 250 mL of water into the measuring cup. She measured the temperature of the water as 25C. placed 75 g of ice into an empty tuna can and held the can 5 cm above the cup of water. At 1 minute, April observed only very small drops of water forming on the bottom of the can. April continued to observe the bottom of the can for 3 minutes. During that time, the drops did not grow bigger or fall from the can. Six: Compare the teachers experiment to Aprils experiment. Which of the following statements best explains the reason the drops on the bottom of the tuna can were smaller during Aprils experiment? A. The temperature of the water in the measuring cup was warmer. B. The temperature of the water in the measuring cup was cooler. C. The mass of ice added to the empty can was more. D. The mass of ice added to the empty can was less. Please help with these questions... I've been trying to figure them out for like twenty minutes and at this point I just don't have the energy anymore... I will pick brainliest! Always do... plz help meh......plz public class Animal {public void speak(String sound) {System.out.println(sound);}}public class Dog extends Animal {public void bark() {super.speak("Bark");}}Which of the following lines would generate a compile time error when placed in a main method? Jacob really didn't want to go to the dentist yet, he went anyway.Cross o it bathe commas that are used incorrectly and add a comma when needed. What verb best completes the sentence?O chuckedO launchedO laidO tossed 3.Mrs Rita buys 6 cartons of soya bean milk. Each carton contains 1.251of soya bean milk. Does Mrs Rita have enough soya bean milk to fill up20 mugs with a capacity of 320 ml each? Explain.