Here
Acceleration and initial velocities are constant.According to first equation of kinematics.
[tex]\\ \sf\longmapsto v=u+at[/tex]
[tex]\\ \sf\longmapsto v=0+at[/tex]
[tex]\\ \sf\longmapsto v=at[/tex]
[tex]\\ \sf\longmapsto v\propto t[/tex]
Time was t at velocity vTime will be 4t at velocity 4vSophie applies a 50 n force to push a box 2 meter across the floor calculate the smount of work done in the box
did the deadliest hurricanes happen recently or in the distant past
Answer:
Galveston hurricane of 1900
Explanation:
also called Great Galveston hurricane, hurricane (tropical cyclone) of September 1900, one of the deadliest natural disasters in U.S. history, claiming more than 8,000 lives.
Determine the rTo understand the concept of nodes of a standing wave.
The nodes of a standing wave are points where the displacement of the wave is zero at all times. Nodes are important for matching boundary conditions, for example that the point at which a string is tied to a support has zero displacement at all times (i.e., the point of attachment does not move).
Consider a standing wave, where y represents the transverse displacement of a string that extends along the x direction. Here is a common mathematical form for such a wave:
y(x,t)=Acos(kx)sin(ωt),
where A is the maximum transverse displacement of the string (the amplitude of the wave), which is assumed to be nonzero, k is the wavenumber, ω is the angular frequency of the wave, and t is time.
Part A
Which one of the following statements about wave y(x,t) is correct?
adius of the 236U nucleus.
Answer:
The nodes of a standing wave are points where the displacement of the wave is zero at all times nodes are important for matching boundary conditions for example that the point at which a string is tied to a support has zero displacement at all times ie the point of attachment does not move consider a standing
Which variable mentioned in Table 2-1 is kept constant? a. amount of time spent swimming b. type of swimming stroke c. number of calories used d. the person swimming
Answer:
a. amount of time spent swimming
A block of mass m=10 kg at rest slides down a rough incline plane of θ=30° and length l=5 m. The coefficient of kinetic friction between the block and the incline is μ_k=0.1. At the bottom of the plane the block continues to slide on a frictionless surface and hits a spring with spring constant k=100 N/m.
The speed of the block at point B = 6.36 m/s
Given data :
Mass ( m ) = 10 kg
Angle of inclination ( θ ) = 30°
Length of incline = 5 m
Determine the speed of the block at a point B on the incline
First step : Calculate the work done by frictional force
given that there is no friction on the horizontal plane. Vinclined = Vhorizontal
∴ Work done by frictional force ( Wf ) = F * L cos 180
= - ( μ_k * N ) L
= - (0.1 * 84.86 ) * 5 = - 42.4 Joule
where N = mg cos 30°
= 10 * 9.8 * 0.866 = 84.86
Next step : Calculate the speed of the block at point B
applying work energy theorem
Wf = ΔK.E + ΔP.E
= ( 1/2 mv² - 0 ) + ( 0 - mgh )
∴ - 42.48 = 1/2 mv² - mgh
1/2 mv² = mgh - 42.48
= 10 * 9.8 * 5 sin 30° - 42.4
v² = 40.52
V ( speed of the block at point B ) = 6.36 m/s
Hence we can conclude that the speed of the block at point B = 6.36 m/s
Learn more about speed on frictionless surface : https://brainly.com/question/9968388
Attached below is the complete question related to your question
What is the unit of pressure
is it P=F/A?
Answer:
Units of pressure include: Pa, bar, at, atm, torr, lbf/in^2
Explanation:
P = F/A is a formula for pressure not a unit.
Pa = Pascal
Bar = Bar
at = Technical Atmosphere
Torr = Torr
lbf/in^2 = pounds per square inch
A rifle is aimed horizontally at a target 47 m away. The bullet hits the target 2.3 cm below the aim point.
Answer:
Is your question asking for the muzzle velocity of the bullet?
Explanation:
I will assume it does
The bullet travels horizontally to the target in the same amount of time it falls 2.3 cm from vertical rest
s = ½at²
t = √(2s/g) = √(2(0.023) / 9.8) = 0.0685118...s
v = d/t = 47/0.0685118 = 686.01242...
v = 690 m/s
How do you find the capacitance in this?
Answer:
Explanation:
parallel capacitances add directly
Series capacitances add by reciprocal of sum of reciprocals.
Ceq = [ C ] + [1 / (1/C + 1/C)] + [1 / (1/C + 1/C + 1/C)]
Ceq = [ C ] + [C / 2] + [C / 3]
Ceq = [ 6C/6 ] + [3C / 6] + [2C / 6]
Ceq = 11C/6
How do we become children of Abraham and sons of God?
Answer:
we already are.
Explanation:
God created us, and we are the descendants of Abraham. if you want to choose to live against it, you'll be doing something similar to fighting a current. gods love is unfathomable. he is the only true God, and is our father in heaven.
Select the best reason for studying the past and its effect on us today based on "The Terror of the Middle Ages." A. to learn what people did on a daily basis B. to enjoy stories about where people used to live O C. to study the causes of diseases and learn to prevent them D. to learn about earlier cultures and lifestyles
it is D for sure im good with history
Answer: D
Explanation: Its just s that guy ca get brainlist :D
During a car accident on the NJ Turnpike, the airbags deploy. A 79 kg passenger traveling at 32 m/s makes impact with the airbag over a time of 0.25 seconds. What
was the impact force experienced by the passenger?
Hi there!
Recall that:
Impulse = Δ in momentum = mΔv
Impulse = Force · time
Begin by calculating the change in momentum, or impulse.
I = mΔv = m(vf - vi)
I = (79)(0 - 32) = -2528 Ns
Now, we can use the equation relating force and time to impulse.
I = Ft
Rearrange for time:
I/F = t
-2528/0.25 = -10112 N
**OR, if magnitude ⇒ |-10112| = 10112 N
The gradual increase in activity over time is called
Answer:Progression is the way in which an individual should increase the load. It is a gradual increase either in frequency, intensity, or time or a combination of all three components.
Explanation:
Predict changes in state according to change in particle motion. Know the vocabulary used to describe changes of state.
The change in the state of matter causes change in the motion of the particles of the matter. The gaseous state of matter has the greatest speed while the solid state has the least speed.
The change in state of every matter is accompanied by lost or gained of energy.
Example is water.
The solid state of water is ice. The motion of particles of the water is relatively zero because the molecules are held at a fixed position.
The liquid state of water occurs when the temperature of the ice is increased above zero degree Celsius. The speed of the particles of water in liquid state is greater than solid state.
The gaseous state of water occurs when the temperature of the liquid water is increased beyond 100 degree Celsius. The speed of water in gaseous state is greater than liquid state.
Learn more about different state of matter here: https://brainly.com/question/9402776
hey if you talk to me i will mark you as a brainliest and if you answer all my question
huh huh huh
Answer:
what will happen if i will answer ur questions?
Explanation:
is there gonna be a bad thing or a good thing
Who actually asked Abraham to sacrifice his son?
I think god did ??? I searched it up okay
God asked him to scarface his sons life
If you have a final velocity of 50 m/s and travelled for 120 seconds. What
is your acceleration?
Answer:
a=v-u/t
Explanation:
use this formula and initial velocity is 0
Answer:
Acceleration (a) is 0.416666667 m/ s^2
Explanation:
Acceleration (a) is the change in velocity (Δv) over the change in time (Δt), represented by the equation
a = Δv/Δt.
What is the significance of Isaac's name?
[tex] \large \bf{Answer:-}[/tex]
The name Isaac means “one who laughs” or “one who rejoices.” In the Old Testament of the Bible, Isaac is the firstborn son of Abraham. He is one of the three biblical patriarchs revered by Jews, Christians, and Muslims.
i need some help getting started on an essay for physics. i decided on the topic of roller costers and dont know how to start it. see the image on my requirements.
Explanation:
force , motion , electric current
4. Trilobites are animals that lived during the Paleozoic era. They populated all parts of the
ocean showed consistent evolution over time and left behind fossils that are large
enough to be studied without a microscope. All of these characteristics make trilobites
the ideal
a. Trace fossil
b. Keystone species
c. Index fossil
d. Reference point
dnreserve the remains of dead
Answer:
c. index fossil
Explanation:
Trilobite fossils are found worldwide, with many thousands of known species. Because they evolved rapidly, and molted like other arthropods, trilobites serve as excellent index fossils. (Arthropods periodically shed their old exoskeletons, or molt.) An index fossil is one that is useful for dating and correlating the strata in which it is found.
how is the atomic mass determined?
Answer:
Atomic mass is defined as the number of protons and neutrons in an atom, where each proton and neutron has a mass of approximately 1 amu (1.0073 and 1.0087, respectively). The electrons within an atom are so miniscule compared to protons and neutrons that their mass is negligible.
Explanation:
1. A roller coaster with a mass of 800 kg sits stationary at the top of a section of track, 75 m above
the ground as shown. When the brake is released, it starts to roll down the track
2. For each height represented in the diagram, calculate the gravitational potential energy using
Ep = mgh. Show ONE SAMPLE calculation in the calculations section below and fill in Table 1 for
each of the heights of the roller coaster. (6 marks)
3. Assuming there is no friction, determine the mechanical kinetic energy using Ek = Etotal - Ep.
Show ONE SAMPLE calculation in the calculations section below and fill in Table 1 for each of
the heights of the roller coaster. (6 marks)
4. For each height represented in the diagram, calculate the velocity using = �2
. Show ONE
SAMPLE calculation in the calculations section below and fill in Table 1 for each of the heights of
the roller coaster. (6 marks)
5. Use your answers to graph how gravitational potential energy, mechanical kinetic energy, and
velocity change as the roller coaster changes height. Use different colours for the three lines on
the graph. Graph paper is provided below. (3 marks)
6. Repeat steps 1 – 5 above for a roller coaster cart that has a mass of 300 kg and enter your
results in Table 2.
Calculations:
800 kg roller coaster cart:
Sample calculation for gravitational potential energy:
Sample calculation for Mechanical kinetic energy:
Sample calculation for velocity:
300 kg roller coaster cart:
Sample calculation for gravitational potential energy:
Sample calculation for mechanical kinetic energy:
Sample calculation for velocity:
Results:
Table 1: Potential energy, kinetic energy, total energy, and velocity of the 800 kg roller coaster cart
Table 2: Potential energy, kinetic energy, total energy, velocity of the 300 kg roller coaster cart.
Graphs:
It’s graphing time. These graphs are a bit different than the ones you did in the
data analysis assignment at the beginning of the course. In this case you have
three things to graph on each graph. (One graph for the 800 kg roller coaster cart
and one graph for the 300 kg roller coaster cart.) You need to graph the
gravitational potential energy with respect to height, the mechanical kinetic
energy vs height, and the velocity vs height.
Let’s look at the energy graphs first. In this case both kinetic energy and
mechanical energy cover the same range of values. This means they can use the
same scale on the y-axis. So, you will use the left y-axis and the x-axis to graph
the kinetic energy vs height and the potential energy vs height. You will need a
legend to explain which line is which. Colour coding is a nice way to highlight this.
The velocity values are much different than the energy values. This means you
need a totally different scale. So, your left y-axis won’t work. You need to make a
second scale on the right y-axis for your velocity values. You will plot the points
the same way as normal, but you will use the numbers on the right-hand scale
instead. Again, be sure to add your velocity line to the legend with a separate
colour code.
Discussion Questions:
1. Describe the relationship between the gravitational potential energy and the mechanical kinetic
energy of the roller coaster on your graph. (2 marks)
2. Describe the shapes of each of the three lines in the graph. Explain why the velocity is different.
(4 marks)
3. Describe how mass affects the speed at the bottom of the roller coaster. (2 marks)
4. Describe how mass affects the gravitational potential energy and the mechanical kinetic energy
of the roller coaster. (2 marks)
5. At what point does the roller coaster have a maximum value for the following? Justify your
answer by explaining why. (2 marks each)
a. Gravitational potential energy
b. Mechanical energy
c. Velocity
6. In your calculations, you assumed that the roller coaster was frictionless. All real roller coasters
encounter friction. Describe how the actual values of the variables would differ, or not differ,
from your calculated values for a real roller coaster. (Hint: what form of energy would some of
the total energy be converted to if there was friction in the system?) (4 marks)
How you will be graded:
Grades will be based on answering questions to demonstrate an understanding of the material covered
in this unit. Point form answers are okay if ideas are complete and use vocabulary (Word Bank)
provided. For questions out of 4 marks, there are 4 responses expected.
Answer:
Give me some hint please
Based on the calculations, potential energy of this roller coaster at a height of 75 meters is equal to 588,000 Joules.
How to calculate potential energy?Mathematically, potential energy is calculated by using this formula:
P.E = mgh
Where:
P.E represents potential energy.m is the mass.h is the height.g is acceleration due to gravity.Note: Acceleration due to gravity is equal to 9.8 m/s².
At a height of 75 m, we have:
P.E = 800 × 9.8 × 75
P.E = 588,000 Joules.
At a height of 60 m, we have:
P.E = 800 × 9.8 × 60
P.E = 470,400 Joules.
At a height of 45 m, we have:
P.E = 800 × 9.8 × 45
P.E = 352,800 Joules.
At a height of 30 m, we have:
P.E = 800 × 9.8 × 30
P.E = 235,200 Joules.
At a height of 15 m, we have:
P.E = 800 × 9.8 × 15
P.E = 117,600 Joules.
In conclusion, we can deduce that the potential energy of this roller coaster decreases with a decrease in height.
Read more on potential energy here: https://brainly.com/question/1242059
#SPJ2
a rocket ship is moving through space at 1000 m/s. It accelerates in the same direction at 4m/s/s. What is its speed after 100 seconds
Answer:
Acceleration = (final velocity - starting velocity) / time
4 = (x-1000) / 100
<br/>x = 1400 m/s
Explanation:
The final velocity of the rocket ship which is moving with an initial velocity of 1000 m/s and acceleration of 4 m/s² after 100 seconds is 1400 m/s.
What is velocity?Velocity of a moving body is the rate of its speed. Mathematically velocity is the ratio of distance travelled to the time taken with a unit of m/s. Acceleration is the rate of change in velocity of moving body. The unit of acceleration is 4 m/s² .
Thus acceleration can be determined from the change in velocity with respect to the change in time. Now, the relation between initial velocity, acceleration, a and time, t with the final velocity is written in the equation below:
v = u + at.
Where, v is the final velocity and u be the initial velocity.
Given here the initial velocity is 1000 m/s. Acceleration of the rocket is 4 m/s² . Thus the velocity after 100 seconds is calculated as follows:
v = 1000 m/s + ( 4 m/s² × 100 s )
= 1400 m/s.
Hence, the speed of the rocket after 100 seconds will be 1400 m/s.
To find more about velocity, refer the link:
https://brainly.com/question/28738284
#SPJ5
The magnetic field B at all points within the colored circle of the figure (Figure 1) has an initial magnitude of 0.780 T. (The circle could represent approximately the space inside a long, thin solenoid.) The magnetic field is directed into the plane of the diagram and is decreasing at the rate of 0.0300 T/s.
a) What is the magnitude of the induced electric field at any point on the circular conducting ring with radius r = 0.100 m ?
b) What is the direction of this field at any point on the circular conducting ring?
c) What is the current in the ring if its resistance is 4.00 Ω ?
d) What is the emf between points a and b on the ring?
e) If the ring is cut at some point and the ends are separated slightly, what will be the emf between the ends?
The magnitude of the induced electrical field is 0.0015V/m, the field is pointing towards the clockwise direction while the current in the ring will be 0.0002355A if the resistance is 4 ohms. The emf between point a and b is zero and the EMF across the point if they're slightly separated between the ends is 0.000942V
To solve this question, we would have to go about each one individually
Data:
[tex]r=10cm=0.1m\\[/tex]
a.
The magnitude of the induced electrical field at any point within the radius is
[tex]\int\limits^a_b {E} \, du=\frac{dU}{dt}=\pi \frac{dB}{dt}=\pi r^{2}\frac{dB}{dt}\\E*2\pi r=\pi r^{2}\frac{dB}{dt} \\E=\frac{r}{2}\frac{dB}{dt}=\frac{0.1}{2}*0.03=0.0015V/m[/tex]
b.
The field is pointing towards the clockwise direction.
c.
The current in the ring if we are given a resistance of 4ohms
[tex]I=\frac{emf}{R}=\frac{\pi r^{2}\frac{dB}{dt} }{R} =\frac{\pi (0.1)^2*0.03}{4} =0.0002355A[/tex]
d.
The emf between point a and b is zero
e.
The EMF across two points if they're separated by small distance across the ring is
we would use the formula to solve for the EMF
[tex]E=\pi r^{2}\frac{dB}{dt}=\pi (0.1)^2*0.03=0.000942V[/tex]
https://brainly.com/question/9719792
You hang a light in front of your house using an
elaborate system to keep the 12-kg object in static
equilibrium (Figure 1). What are the magnitudes of the
forces that the ropes must exert on the knot connecting
the three ropes if 02 = 639 and 03 = 45° ?
The magnitudes of the forces that the ropes must exert on the knot connecting are :
F₁ = 118 N F₂ = 89.21 N F₃ = 57.28 NGiven data :
Mass ( M ) = 12 kg
∅₂ = 63°
∅₃ = 45°
Determine the magnitudes of the forces exerted by the ropes on the connecting knota) Force exerted by the first rope = weight of rope
∴ F₁ = mg
= 12 * 9.81 ≈ 118 kg
b) Force exerted by the second rope
applying equilibrium condition of force in the vertical direction
F₂ sin∅₂ + F₃ sin∅₃ - mg = 0 ---- ( 1 )
where: F₃ = ( F₂ cos∅₂ / cos∅₃ ) --- ( 2 ) applying equilibrium condition of force in the horizontal direction
Back to equation ( 1 )
F₂ = [ ( mg / cos∅₂ ) / tan∅₂ + tan∅₃ ]
= [ ( 118 / cos 63° ) / ( tan 63° + tan 45° ) ]
= 89.21 N
C ) Force exerted by the third rope
Applying equation ( 2 )
F₃ = ( F₂ cos∅₂ / cos∅₃ )
= ( 89.21 * cos 63 / cos 45 )
= 57.28 N
Hence we can conclude that The magnitudes of the forces that the ropes must exert on the knot connecting are :
F₁ = 118 N, F₂ = 89.21 N, F₃ = 57.28 N
Learn more about static equilibrium : https://brainly.com/question/2952156
A converging-diverging nozzle has a throat area of 10 cm2 and an exit area of 28.96 cm2 . A normal shock stands in the exit when the back pressure is sea-level standard. If the upstream tank temperature is 400 K, estimate (a) the tank pressure and (b) the mass fl ow
The tank pressure is 5.08 kPa and the mass flow rate is 2.6 kg/s.
The given parameters:
Throat area of the nozzle, [tex]A^*[/tex] = 10 cm² = 0.001 m²The exit area of the nozzle, A = 28.96 cm² = 0.002896 m²Air pressure at sea level = 101.325 kPaThe ratio of the areas of the converging-diverging nozzle is calculated as follows;
[tex]= \frac{A}{A^*} \\\\= \frac{0.002896}{0.001} \\\\= 2.896[/tex]
From supersonic isentropic table, at [tex]\frac{A}{A^*} = 2.896[/tex], we can determine the following;
[tex]M_e = 2.6 \ kg/s\\\\\frac{P_o}{P_e} = 19.954[/tex]
The tank pressure is calculated as follows;
[tex]\frac{P_o}{P_e} = 19.954 \\\\P_e = \frac{P_o}{19.954} \\\\P_e = \frac{101.325 \ kPa}{19.954} \\\\P_e = 5.08 \ kPa[/tex]
Thus, the tank pressure is 5.08 kPa and the mass flow rate is 2.6 kg/s.
Learn more about converging-diverging nozzle design here: https://brainly.com/question/13889483
Explain how the graphic organizer helped you formulate your decision and participate in the discussion.
Answer:
The graphic organizers help to keep track of the details. They are a visual representation of knowledge that rescue the important aspects of a concept using labels within a scheme. They also present information in a concise manner, highlighting the organization and the relationship of the concepts. Graphic organizers help students organize their thinking process and their writing.
Explanation:
A car accelerating from rest for 20s to reach velocity of 15 m/s and it keeps on. moving with this velocity for 50s an then it applied the break
Stop in 30s what is the displacement?
WILL GIVE BRAINLY best answer with steps
Answer:
1125m
Explanation:
The car moves with a uniformly accelerated motion for 20s:
s = 1/2·a·t² + v0·t + s0 (note that vo = 0 and s0 = 0, with v0 being the initial velocity and s0 the initial displacement).
So: s = 1/2·a·t²
The acceleration will be: Δv/Δt = 15m/s / 20s = 0.75 m/s²
s1 = 1/2·0.75 m/s² · (20 s)^2 = 150m
Then it continues with the velocity he acquired (v = a·t = 0.75 m/s²·20s = 15 m/s):
s2 = vt = 15m/s·50s = 750m
The final acceleration, when stopping, will be:
a = Δv/Δt = -15m/s / 30s = -1/2 m/s²
s3 = 1/2·(1/2m/s²)·(30s)² = 225m.
Now we sum s1 with s2 and s3:
s1 + s2 + s3 = 150m + 225m + 750m = 1125m
PLEASE ANSWER THIS QUICK
GIVING BRAINLIEST TO THE ONE WHO ANSWERS
Rust is a compound that occurs when the element iron and oxygen combine. Do they create a physical or a chemical change?
Answer:
I think it's a chemical change.
For a wave, the _____ the amplitude, the _____ energy the wave carries.
Multiple choice question.
A)
larger, more
B)
smaller, more
C)
larger, less
D)
smaller, same
Answer:
HIGHER & MORE OR LARGER OR MOREHENCE, THE ANSWER IS A. :)
Explanation:
#CARRYONLEARNING
BRAINLIEST PLEASE I REALLY NEED IT
Ram jumps onto a cement floor from a height of 1m and comes to rest in 0.1sec.
Then he jumps onto a sand floor from a height of 9m and comes to rest in 1sec.
Find the ratio of forces of cement floor and sand floor.
Answer:
3/10 F.
Explanation:
Height ( h ) = 1m
Time taken ( t ) = 0.1 second
Height² ( h² ) = 9m
Time taken² ( t² ) = 1 second
Solution,
F = ma
= m ( v - u ) / t
= m √2gh / t
now,
F/F² = √h/h² × t/t²
F¹ = 3/10 F.
answer !!