A 6.47 mm high firefly sits on the axis of, and 12.3 cm in front of, the thin lens A, whose focal length is 5.77 cm. Behind lens A there is another thin lens, lens B, with a focal length of 20.9 cm. The two lenses share a common axis and are 58.1 cm apart.What is the height of this image? Express the answer as a positive number.

Answers

Answer 1

A 6.47 mm high firefly sits on the axis of, and 12.3 cm in front of, the thin lens A, whose focal length is 5.77 cm, the height of the image is 2.61 mm.

We can use the thin lens equation to find the image distance and then use the magnification equation to find the height of the image.

Let's call the distance between the firefly and lens A "d1", the distance between the lenses "d2", the image distance from lens B "d3", and the height of the firefly "h1".

Using the thin lens equation for lens A:

1/fA = 1/d1 + 1/d3

Since the firefly is very small, we can assume that the rays of light from it are parallel to the axis of the lenses, so d1 = 12.3 cm.

Solving for d3, we get:

1/d3 = 1/fA - 1/d1

1/d3 = 1/5.77 cm - 1/12.3 cm

d3 = -23.46 cm

The negative value for d3 indicates that the image is formed on the same side of lens B as the firefly, which means it is a virtual image.

Now we can use the magnification equation:

m = -d3/d2

where m is the magnification of the image. The negative sign indicates that the image is inverted.

Using the distance between the lenses, d2 = 58.1 cm, we get:

m = -(-23.46 cm) / 58.1 cm

m = 0.403

This tells us that the image is smaller than the firefly, and its height is:

h2 = m * h1

h2 = 0.403 * 6.47 mm

h2 = 2.61 mm

Therefore, the height of the image is 2.61 mm.

For more details regarding lens, visit:

https://brainly.com/question/17014859

#SPJ1


Related Questions

What speed must you toss a baseball straight upwards so that it takes 5 seconds to return to you?

Answers

The velocity of tossing the baseball is 24.5 m/s.

Time taken by the ball, t = 5 s

Displacement of the ball, s = 0

An object can be kept moving without the application of force. The only time a force is needed is to keep an acceleration going. Additionally, there is a downward force as well as a downward acceleration in the case of an upwardly moving projectile.

Applying the second equation of motion,

s = ut + 1/at²

s = ut + 1/2 (-g)t²

0 = ut - 1/2 gt²

ut = 1/2 gt²

Therefore, the velocity of toss,

u = 1/2 gt

u = 1/2 x 9.8 x 5

u = 24.5 m/s

To learn more about velocity, click:

https://brainly.com/question/19979064

#SPJ1

In the sketch below, the cylinder A has a mass of 13 kg and cross-sectional area of 2 m2 . The piston B has a cross-sectional area of 15000 mm2 and negligible weight. If the apparatus is filled with oil, ρ = 780 kg/m3 , with the aid of a complete free body diagram calculate the force F required for equilibrium.

Answers

the force F required for equilibrium is 128.397 N.

How do we calculate?

There are two main forces: the weight of the cylinder A and the hydraulic pressure acting on the piston B. The weight of A is given by:

W = m*g = 13 kg * 9.81 m/s^2 = 127.53 N

P = rho x gx h

where

h = (15000 mm^2) / (2 m^2) = 0.0075 m

pressure is:

P = 780 kg/m^3 * 9.81 m/s^2 * 0.0075 m = 57.79 N/m^2

Force = P*A

A = 15000 mm^2 = 0.015 m^2

Force = 57.79 N/m^2 * 0.015 m^2 = 0.867 N

Solving  for the force required for equilibrium:

Force = W + P*A

Force = 127.53 N + 57.79 N/m^2 * 0.015 m^2

= 127.53 N + 0.867 N

= 128.397 N

Learn more about force at: https://brainly.com/question/12970081

#SPJ1


What is mass? Write two differences between fundament .​

Answers

Mass is a measure of the amount of matter in an object and is a fundamental property of matter. Fundamental forces refer to the interactions between particles, whereas fundamental particles are the building blocks of matter.

Mass is a measure of the amount of matter in an object, usually measured in kilograms (kg). It is a fundamental property of matter that does not change with location or gravitational forces.

Two differences between fundamental forces and fundamental particles are:

1. Fundamental forces refer to the interactions between particles, whereas fundamental particles are the building blocks of matter that makeup everything in the universe.

2. There are four fundamental forces - gravitational, electromagnetic, weak nuclear, and strong nuclear - while there are six types of fundamental particles - quarks, leptons, bosons, neutrinos, antimatter particles, and Higgs bosons.

Therefore,A fundamental characteristic of matter is mass, which is a measurement of how much matter there is in an item. Fundamental particles are the building components of matter, whereas fundamental forces relate to the interactions between particles.

To learn more about the Higgs boson  click:

https://brainly.com/question/31640044

#SPJ1


The electrical signals sent to the brain indicate the
loudness, pitch, and quality
pitch
of a sound wave.
loudness
quality

Answers

The electrical signals sent to the brain indicate the loudness, pitch, and quality of a sound wave.

Option A is correct

What are electrical signals?

An electrical signal is described as a voltage or current which conveys information, usually it means a voltage. It is the term can be used for any voltage or current in a circuit.

The apparent strength of a sound wave is referred to as loudness, and it is commonly expressed in decibels. (dB). The perceived sound is louder the larger the amplitude of the sound wave.

The apparent highness or lowness of a sound is known as pitch, and it is based on the sound wave's frequency. When compared to lower frequency sound waves, higher frequency sound waves are perceived as having a higher pitch.

Learn more about electrical signal at: https://brainly.com/question/16783396

#SPJ1

How is thermal energy transferred during conduction? Check all that apply.
Thermal energy is transferred between particles that are not touching each other.
Thermal energy is transferred between particles that are in direct contact with each other.
Thermal energy is transferred between objects of different temperatures.
Thermal energy is transferred between objects of the same temperature.
Thermal energy is transferred from slow-moving particles to fast-moving particles.
Thermal energy is transferred from fast-moving particles to slow-moving particles.

Answers

The correct options for how thermal energy is transferred during conduction are " Thermal energy is transferred between particles that are in direct contact with each other.", "Thermal energy is transferred between objects of different temperatures.", and "Thermal energy is transferred from fast-moving particles to slow-moving particles." The correct options are B, C, and F.

During conduction, thermal energy is transferred through a material or between objects in direct contact with each other. The transfer of thermal energy occurs because of temperature differences between the two objects or regions. When two objects at different temperatures are in direct contact with each other, the hot object transfers thermal energy to the cold object through collisions between the particles of the two objects. The fast-moving particles in the hot object collide with the slow-moving particles in the cold object, transferring thermal energy from the hot object to the cold object. This process continues until the two objects reach thermal equilibrium, meaning they have the same temperature and there is no more net transfer of thermal energy between them.

Option A is not true because thermal energy is actually transferred between particles that are in direct contact with each other, not particles that are not touching each other.

Option D is not true because thermal energy does not transfer between objects that are already at the same temperature. Heat transfer only occurs when there is a temperature difference.

Option E is not true because thermal energy actually flows from hot objects to cold objects. Therefore, thermal energy is transferred from fast-moving particles to slow-moving particles, not the other way around.

Therefore, The correct answers are  B, C, and F.

To learn more about  the difference between conduction and convection click:

https://brainly.com/question/13104912

#SPJ1

Two parallel plates of area 5.68∙10-³ m²
have equal and opposite charges of
4.38 10-11 C placed on them. What is
the electric field between the plates?
[?] N/C

Answers

the electric field between the plates is 436.7 N/C.

How do we calculate?

The electric field between the plates of a parallel plate capacitor is given by:

E = σ/ε₀

where σ is the surface charge density and ε₀ is the permittivity of free space.

surface charge density =

σ = Q/A

σ = Q/A = (2 × 4.38 × 10^-11 C) / (2 × 5.68 × 10^-3 m²) = 3.861 × 10^-6 C/m²

We substitute this value of σ and the value of

ε₀ = 8.85 × 10^-12 F/m, we get:

E = σ/ε₀

E = (3.861 × 10^-6 C/m²) / (8.85 × 10^-12 F/m)

E = 436.7 N/C

Learn more about electric field at:

https://brainly.com/question/14372859

#SPJ1

the total mass of an object is 25.8kg. what is the gravitational potential energy of the mass at an attitude of 27.66 m?

Answers

Answer:

7.00 KJ

Explanation:

GPE = mgh

m equals mass (kg)

g is a constant which equals 9.81 m/s

h equals height (m)

GPE = (25.8 kg)(9.81 m/s)(27.66 m)

GPE = 7,000.69 J or 7.00 KJ

An impulse of 200 N.s is applied horizontally by a soccer player of mass 74 kg at the start of a sprint (initial velocity= 0). What is the player’s change in momentum and velocity reached

Answers

The velocity reached by the soccer player is 2.7 m/s.

Impulse applied by the soccer player = 200 Ns

Mass of the soccer player = 74 kg

According to impulse-momentum theorem, the average net external force multiplied by the time it takes for that force to take effect equals the impulse, which is equal to the change in momentum.

Impulse = Fnet × t

Fnet x t = ma × t = m × v

mv = ΔP

where ΔP is the change in momentum.

So,

The change in momentum of the player, ΔP = 200 Kgm/s

So, velocity reached, v = 200/74

v = 2.7 m/s

To learn more about impulse, click:

https://brainly.com/question/30466819

#SPJ1

How long does it take a current of 5 mA to deliver 15c of charge

Answers

Answer:

50 minutes

Explanation:

Since we need to find time, Time or T = Q / I. Thus, the time taken for current of 5mA to deliver 15c of charge is 3000 seconds which is equivalent to 50 minutes.

14. Two identical corks float in separate beakers. One beaker contains
water. The other contains a very salty water. Which of the following
statements is true?
The corks both float at the same level in the liquid.
The cork in the very salty water floats at a lower level than the other cork.
The corks will eventually sink.
Both corks are subject to the same buoyant force.

Answers

Answer:

Both Corks are subject to the same buoyant force

Explanation:

The buoyant force depends on the volume of the displaced liquid and the density of the liquid, but not the density of the floating object. So the buoyant forces will be the same on each cork whether the water it's floating in is normal or salty.

v=√gr tan 31.0 grados

Answers

This is an equation that can be used to calculate the velocity (V) required to launch an object from a ramp at an angle of 31.0 degrees with the horizontal, neglecting air resistance.

In the equation, g is the acceleration due to gravity (approximately 9.8 m/s^2) and r is the radius of curvature of the ramp. Since the radius is not given, we can assume it to be constant or ignore it altogether if it is not necessary.

The expression tan 31.0 degrees represents the slope of the ramp. By taking the tangent of the angle, we can determine the vertical component of the slope. This is important because it affects the force of gravity acting on the object. By taking the square root of the product of g and tan 31.0 degrees, we can determine the velocity needed to launch the object at the given angle.

To know more about velocity, here

brainly.com/question/17127206

#SPJ1

--The complete question is, What does this equation describes, V=√gr tan 31.0 grados?--

A jar of tea is placed in sunlight until it
reaches an equilibrium temperature of 32.4
◦C .
In an attempt to cool the liquid, which has a
mass of 177 g , 95.3 g of ice at 0.0
◦C is added.
At the time at which the temperature of the
tea is 30.7
◦C , find the mass of the remaining
ice in the jar. The specific heat of water
is 4186 J/kg ·
◦ C . Assume the specific heat
capacity of the tea to be that of pure liquid
water.
Answer in units of g.

Answers

The tea absorbs 2613420 J of heat energy when it is placed in sunlight until it reaches an equilibrium temperature of 32.4°C.

To calculate the heat energy absorbed by the tea, we can use the formula:

Q = mcΔT

where Q is the heat energy absorbed by the tea, m is the mass of the tea, c is the specific heat capacity of water, and ΔT is the temperature change of the tea.

Using the given values, we get:

m = 500 g

c = 4186 J/kg·°C

ΔT = 32.4°C - 20°C = 12.4°C

Substituting these values into the formula, we get:

Q = (500 g)(4186 J/kg·°C)(12.4°C) = 2613420 J

To know more about temperature, here

brainly.com/question/11464844

#SPJ1

--The complete Question is, A jar of tea with a mass of 500 g is initially at a temperature of 20°C. If the jar is placed in sunlight until it reaches an equilibrium temperature of 32.4°C, how much heat energy is absorbed by the tea? Assume the specific heat capacity of the tea to be that of pure liquid water, which is 4186 J/kg·°C.--

6) How do you conduct a scientific study
write a flowchart ​

Answers

A scientific research consists of numerous critical phases. Here's a high-level summary of the procedure: Create a research question, then conduct a review of the literature. Create a hypothesis. Create your research, Gather information, Examine data, Interpret findings and communicate them.

Create a research question: Begin by picking a topic of interest and creating a clear and precise question that you wish to answer via your research.

Conduct a literature review : before beginning your study to establish what is already known about your issue and what research questions have not yet been answered.

Create a hypothesis: Based on your research topic and analysis of the literature, create a hypothesis that you can evaluate using your study

Plan your research as follows: Determine your data collecting and analysis approach, including the research design, population/sample, data gathering methods, and statistical analysis.

Gather information: Carry out your research and gather data in accordance with your approach.

Analyse data: Once you've gathered your information, use relevant statistical tools to test your hypothesis.

Results should be interpreted as follows: Interpret your findings and develop conclusions about your research issue based on your analysis.

Disseminate findings: Share your discoveries with others by publishing them in a scientific journal, giving a presentation at a conference, or another method.

To know more about research :

https://brainly.com/question/18723483

#SPJ1.

Find the moment of inertia about the y-axis for three masses in an equilateral triangle if m = 2.00 kg and the sides are 0.500 m. (The connecting rods are massless).

Answers

To find the moment of inertia about the y-axis for three masses in an equilateral triangle, we can use the parallel axis theorem. First, we need to find the moment of inertia of the equilateral triangle with respect to its centroid.

The centroid of an equilateral triangle is the intersection point of its medians, which is also the center of mass. The medians of an equilateral triangle are equal in length and intersect at a point that is two-thirds of the way from each vertex to the opposite side. Therefore, the distance from the centroid to each vertex is:

h = (√3/2) s

where s is the length of a side. Substituting s = 0.500 m, we get:

h = (√3/2) (0.500 m) ≈ 0.433 m

The moment of inertia of an equilateral triangle with respect to its centroid is:

I = (1/12) m s^2

Substituting m = 2.00 kg and s = 0.500 m, we get:

I = (1/12) (2.00 kg) (0.500 m)^2 = 0.0417 kg m^2

Now, we can use the parallel axis theorem to find the moment of inertia about the y-axis. The parallel axis theorem states that the moment of inertia about any axis parallel to the centroidal axis is equal to the moment of inertia about the centroidal axis plus the product of the total mass and the square of the distance between the two axes.

In this case, the y-axis is parallel to the centroidal axis and passes through the center of the equilateral triangle. The distance between the two axes is the distance from the centroid to the center, which is:

d = h/2 = (√3/4) s

Substituting s = 0.500 m, we get:

d = (√3/4) (0.500 m) ≈ 0.2165 m

The total mass of the system is:

M = 3m = 6.00 kg

Therefore, the moment of inertia about the y-axis is:

Iy = I + Md^2 = 0.0417 kg m^2 + (6.00 kg) (0.2165 m)^2 ≈ 0.573 kg m^2

So, the moment of inertia about the y-axis for three masses in an equilateral triangle with m = 2.00 kg and sides of 0.500 m is approximately 0.573 kg m^2.

(a) What is the characteristic time constant (in s) of a 25.5 mH inductor that has a resistance of 3.80 ?


(b) If it is connected to a 12.0 V battery, what is the current (in A) after 12.5 ms?

Answers

L/R = L / R is the formula for an RL circuit's time constant. 7.50 mH 3.00 = 2.50 ms with LR = 7.50 mH 3.00.

What does the RF circuit time constant mean?

Circuit capacitance and circuit resistance combine to form the RC time constant ().(C). In contrast, a capacitor linked in series with a resistor takes time to charge up to around 36.8% of its full value. It is a significant metric since it represents the growth or decay rate of the circuit.

Tau is relatively simple since = RC. The time constant of an RC circuit is important because it ties the values of R and C to the capacitor voltage directly. A capacitor may be charged to a 63% charge by applying a single continuous charge, according to experiments.

learn more about Circuit capacitance

https://brainly.com/question/30905469

#SPJ1

Calculate the moment of force F=8i-4j+3k about point 0(2i +0j+k).if the force is applied at the point p(6i+2j+3k)​

Answers

Answer:

Moment of the force = (-10i-28j+32k)Nm

Explanation:

Moment of a force is expressed mathematically as force(F) multipled by its distance(d) and its unit is in newton metre (Nm).

F×d

(8i-4j+3k)×[(6i+2j+3k)-(2i+0j+k)]

-10i-28j+32k

11.
Which of the following animals do not communicate with infrasound?
bats
elephants
cats
giraffes

Answers

Answer:
bats
Explanation:
bats communicate with ultrasound.

Suppose you are hiking down the Grand Canyon. At the top, the temperature early in the morning is a cool 3 °C. By late afternoon, the temperature at the bottom of the canyon has warmed to a sweltering 34 °C. What is the difference, between the higher and lower temperatures in Fahrenheit degrees.​

Answers

The difference, between the higher and lower temperatures in Fahrenheit degrees is 87.8  °F.

What is the difference, between the temperatures?

​The difference, between the higher and lower temperatures in Fahrenheit degrees is calculated as follows;

The difference in the temperatures = 34 °C  -  3°C = 31 °C

Convert the temperature to Fahrenheit degrees as follows;

31 °C = 1.8C + 32

31 °C = 1.8 x 31  + 32

31 °C = 87.8  °F

Thus, the difference, between the higher and lower temperatures in Fahrenheit degrees is calculated using the conversion factor.

Learn more about temperature conversion here: https://brainly.com/question/26141817

#SPJ1

Three different mass projectiles are launched from the top of a building each at different angles of
elevation. Each particle has the same initial kinetic energy. Which particle has the greatest kinetic
energy just as it impacts with the ground?

Answers

The projectile with the smallest angle of elevation will have the greatest kinetic energy just before impact.

All three projectiles have the same initial kinetic energy, which means that they all start with the same amount of energy. However, the kinetic energy of a projectile is related to its velocity and mass.

When a projectile is launched at an angle of elevation, its initial velocity will have both horizontal and vertical components. The vertical component of velocity will affect the time it takes for the projectile to reach the ground, but it does not affect the kinetic energy of the projectile just before impact.

Therefore, the projectile with the greatest kinetic energy just as it impacts with the ground will be the one with the largest horizontal component of velocity, which means it will travel the furthest horizontally before hitting the ground.

The horizontal component of velocity is determined by the angle of elevation and the initial velocity of the projectile. Therefore, the projectile with the smallest angle of elevation will have the largest horizontal component of velocity and therefore the greatest kinetic energy just before impact.

To know more about relation between kinetic energy and angle of projection, visit:https://brainly.in/question/489269

You and your family are attending an annual 4th of July fireworks display. During the show, you observe that the sound from the exploding fireworks arrives 2.5 seconds after the light from the explosions. Knowing that the air temperature that night was 26°C, determine the distance (in meters) between you and the fireworks.

Round to the nearest whole number.

Technical Note: The setup for this problem assumes that the sound from the exploding firework takes time to reach you (on the order of a second) but that you see the explosion without a time delay. This is an oversimplification! However, light travels really, really fast (about 300,000,000 m/s). The light travel time at a fireworks show is on the order of millionths of a second, so for the purposes of this problem it is OK to approximate that you are seeing the fireworks without a time delay.

Please show all work!

Answers

Answer:  The speed of sound in air depends on temperature, pressure, and humidity. For dry air at 26°C, the speed of sound is approximately 346 meters per second.

Let's call the distance between you and the fireworks "d". We can use the fact that the time it takes for the sound to reach you is 2.5 seconds longer than the time it takes for the light to reach you:

d = speed of sound x time delay

d = 346 m/s x 2.5 s

d = 865 meters

Therefore, the distance between you and the fireworks is approximately 865 meters.

A stone of mass 2 kg rolls off the flat roof of a building reaches the ground with a speed of 10 m/s.
a.Calculate the kinetic energy of the stone when it reaches the ground
b the gravitational potential energy of the stone when it was on the roof
cthe height of the roof. Neglect air resistance.​

Answers

Answer:

KE = 100J and PE = 100J

Explanation:

[tex]KE = 0.5*m*v^2\\PE = m*g*h\\KE = 0.5*2*100 = 100 J[/tex]

Potential energy at the start has to equal the kinetic energy at the end due to conservation of energy

One particular lightbulb has a 0.22-meter length of the tungsten wire used as its filament. This tungsten wire filament has a resistance of 19 ohms at a temperature of 20°C. The tungsten wire filament has a resistance of 240 ohms when this bulb is operated at a potential difference of 120 volts.

Calculate the cross-sectional area of this tungsten wire filament. [Show all work, including the equation and substitution with units.]

Calculate the power of this lightbulb when it is being operated at a potential difference of 120 volts. [Show all work, including the equation and substitution with units.]

Answers

The cross-sectional area of this tungsten wire filament is 6.544 x 10⁻⁹m² and the power of this lightbulb when it is being operated at a potential difference of 120 volts is 60 watts.

What is resistance?

The amount that a substance or a device obstructs the passage of an electric current is known as its resistance. It is described as the proportion of the voltage across a conductor to the current flowing through it.

How do you determine it?

The resistance formula may be used to get the tungsten wire filament's cross-sectional area:

R = (ρ * L) / A

where R is the resistance, is the tungsten's resistivity, L is the wire's length, and A is its cross-sectional area.

The resistance of the wire is 19 ohms at 20 °C. To find A, we can rearrange the equations as follows:

A = (ρ * L) / R

Inputting the values results in:

A = (5.6 x 10^-8 Ωm * 0.22 m) / 19 Ω

A = 6.544 x 10^-9 m^2

The tungsten wire filament's cross-sectional area is 6.544 x 10^-9 m^2, as a result.

The power formula may be used to determine the lightbulb's power:

P = V^2 / R

where P denotes power, V denotes potential difference, and R denotes resistance of the tungsten wire filament at 120 volts.

The wire's resistance at 120 volts is 240 ohms. Inputting the values results in:

P = (120 V)^2 / 240 Ω 

P = 60 W

Therefore, while the lightbulb is operating at a 120 volt potential difference, its output is 60 watts.

To know more about resistance, visit:

https://brainly.com/question/29427458

#SPJ9

1. An object, constrained to move along the x-axis is acted upon by a force F(x) where = a = 5 N/m, b = -2N/m F(x) = ax + bx² The object is observed to proceed directly from x = 1m to x = 3.0m. How much work was done by the object by the force? Does the process of integration take into account the fact that the force F(x) changes sign in the interval.​

Answers

To find the work done by the force, we need to use the work-energy principle, which states that the work done on an object is equal to the change in its kinetic energy. Since the object is constrained to move along the x-axis, we can assume that it has no kinetic energy in the y or z directions.

The change in the object's kinetic energy is given by:

ΔK = Kf - Ki

where Kf is the final kinetic energy and Ki is the initial kinetic energy.

Since the object starts from rest, its initial kinetic energy is zero. The final kinetic energy can be found using the work-energy principle:

W = ΔK

where W is the work done by the force.

The work done by the force is equal to the integral of the force over the displacement:

W = ∫ F(x) dx

W = ∫ (ax + bx^2) dx

W = (1/2)ax^2 + (1/3)bx^3 + C

where C is the constant of integration.

We can evaluate the constant of integration by using the given initial and final values of x:

W = (1/2)a(3.0)^2 + (1/3)b(3.0)^3 - (1/2)a(1)^2 - (1/3)b(1)^3

W = 22.5 - 1.0

W = 21.5 J

Therefore, the work done by the force is 21.5 J.

When we integrate the force F(x) over the interval from x = 1m to x = 3.0m, the fact that the force changes sign in the interval is automatically taken into account. This is because the integral of the negative part of the force cancels out the integral of the positive part of the force, resulting in the net work done by the force.

What approximate temperature is required to begin fusion in a star?
A. 93 billion kelvins
B. Fusion occurs randomly and is not based on temperature.
C. 14 million kelvins
D. 9 billion kelvins

Answers

Answer:

The approximate temperature required to begin fusion in a star is C. 14 million kelvins. This temperature is high enough to overcome the electrostatic repulsion between positively charged atomic nuclei, allowing them to fuse and form heavier elements.

Two ohmic resistors (R, and R₂) are connected in series with a cell.
Find the resistance and power of R2, given that the current flowing
through R, and R₂ is 0.25A and that the voltage across the cell is 6 V, R₁ = 1 22.
R₂=?
R₁-19
V=6 V
I=0,25 A

Answers

Answer:

23 ohm

Explanation:

I = I1 = I2 = 0.25A

V = 6 V

V = V1 + V2

6 = I1R1 + I2R2

6 = ( 0.25 × 1 ) + ( 0.25 × R2 )

6 = 0.25 + 0.25 R2

6 - 0.25 = 0.25 R2

5.75 = 0.25 R2

5.75 ÷ 0.25 = R2

R2 = 23 ohm

A surface at 27 °C emits radiation at a rate of 100 W. At what rate does an identical surface at 54 °C emit radiation

Answers

The rate of radiation emitted by an identical surface at 54°C is 2,170,812.96 W. This is significantly higher than the rate of radiation emitted by the surface at 27°C, which was 100 W.

What is Stefan-Boltzmann Law?

The Stefan-Boltzmann Law states that the rate of radiation emitted by a blackbody is proportional to the fourth power of its absolute temperature.

The rate of radiation emitted by an identical surface at 54°C can be found using the Stefan-Boltzmann Law.

Therefore, we can calculate the rate of radiation emitted by the surface at 54°C using the following equation:

Power emitted = σ x (Temperature)⁴

Where σ is the Stefan-Boltzmann constant, which is equal to 5.67 x 10⁻⁸ Wm⁻²K⁻⁴.

Plugging in the given values, we have:

Power emitted = 5.67 x 10⁻⁸ Wm⁻²K⁻⁴ x (54 + 273)⁴

Power emitted = 2,170,812.96 W

Therefore, the rate of radiation emitted by an identical surface at 54°C is 2,170,812.96 W. This is significantly higher than the rate of radiation emitted by the surface at 27°C, which was 100 W. This is due to the fact that the fourth power of the absolute temperature of the surface is much higher at 54°C than at 27°C.

For more questions related to radiation

https://brainly.com/question/893656

#SPJ1

The rate of radiation emitted by an identical surface at 54°C is 2,170,812.96 W. This is significantly higher than the rate of radiation emitted by the surface at 27°C, which was 100 W.

What is Stefan-Boltzmann Law?

The Stefan-Boltzmann Law states that the rate of radiation emitted by a blackbody is proportional to the fourth power of its absolute temperature.

The rate of radiation emitted by an identical surface at 54°C can be found using the Stefan-Boltzmann Law.

Therefore, we can calculate the rate of radiation emitted by the surface at 54°C using the following equation:

Power emitted = σ x (Temperature)⁴

Where σ is the Stefan-Boltzmann constant, which is equal to 5.67 x 10⁻⁸ Wm⁻²K⁻⁴.

Plugging in the given values, we have:

Power emitted = 5.67 x 10⁻⁸ Wm⁻²K⁻⁴ x (54 + 273)⁴

Power emitted = 2,170,812.96 W

Therefore, the rate of radiation emitted by an identical surface at 54°C is 2,170,812.96 W. This is significantly higher than the rate of radiation emitted by the surface at 27°C, which was 100 W. This is due to the fact that the fourth power of the absolute temperature of the surface is much higher at 54°C than at 27°C.

For more questions related to radiation

https://brainly.com/question/893656

#SPJ1

Say an impulse is applied opposite the go-kart's direction of travel. What happens to
the go-kart if its momentum + impulse = 0?
The go kart stops comes to a stop.
The go kart slows down but keeps moving.
The go kart speeds up.
There is no change in the speed of the go kart.

Answers

If the impulse is strong enough and lasts for a sufficient amount of time, the go-kart will eventually come to a stop.

Option A is correct.

What is meant by impulse?

impulse is described as the integral of a force, F, over the time interval, t, for which it acts. Since force is a vector quantity, impulse is also a vector quantity.

If the force is insufficient to stop the go-kart entirely, it will slow down but continue to move. The force and duration of the impulse, along with the mass and speed of the go-kart, will all affect how much deceleration occurs.

Given that momentum plus impulse equals zero, the go-kart's change in momentum as a result of the impulse will be equal in amount but will move in the opposite direction of its original momentum.

As a result, the go-kart's final momentum will be zero, suggesting that it has either stopped or is travelling very slowly.

Learn more about impulse at: https://brainly.com/question/229647

#SPJ1

What is torque? In general terms

Answers

Torque is a measure of the force that can cause an object to rotate about an axis. (answer taken from Khan Academy).

A loop of area 0.100 m² is oriented at
a 15.5 degree angle to a 0.500 T
magnetic field. It rotates until it is at a
45.0 degree angle with the field. What
is the resulting CHANGE in the
magnetic flux?
[?] Wb

Answers

Answer:

-0.0122 Wb

Explanation:

The magnetic flux through a loop of area A and with an angle θ between the magnetic field and the loop's normal is given by:

Φ = BAcos(θ)

The initial magnetic flux is:

Φ1 = BAcos(θ1) = 0.500 T * 0.100 m² * cos(15.5°) = 0.0476 Wb

The final magnetic flux is:

Φ2 = BAcos(θ2) = 0.500 T * 0.100 m² * cos(45.0°) = 0.0354 Wb

The change in magnetic flux is:

ΔΦ = Φ2 - Φ1 = 0.0354 Wb - 0.0476 Wb = -0.0122 Wb

Therefore, the resulting change in magnetic flux is -0.0122 Wb.

Urgent:
Let's say you wanted to make a flute from one-inch PVC pipe. If the lowest desired note is C5 on the Equal Temperament Scale (523.25 Hz), what length should it be cut?

Answers

In order to produce the C5 note, the length of the one-inch PVC pipe should be cut to approximately 12.91 inches.

Length and frequency of wave production

The formula to calculate the length of a pipe to produce a desired frequency is:

L = (v/2f) * n

Where:

L is the length of the pipev is the speed of sound in air (approximately 343 m/s at room temperature)f is the desired frequencyn is the harmonic number

To find the length of the pipe needed to produce the C5 note with a frequency of 523.25 Hz, we can use the formula above and assume the fundamental frequency (n = 1):

L = (v/2f) * n = (343 m/s / 2 * 523.25 Hz) * 1

L = 0.3279 meters or 12.91 inches

Therefore, the length of the one-inch PVC pipe should be cut to approximately 12.91 inches to produce the C5 note.

More on length and frequency can be found here: https://brainly.com/question/17193369

#SPJ1

Other Questions
A group of 10 Science Club students is on a field trip. That number of students represents 20% of the total number of students in the Science Club. What is the total number of students in the Science Club?Choices:A 20B 30C 50D 80 Problem 8. Show that if the linear system Ax = b has more than one solution, then it must have infinitely many solutions. F If x1 and x2 are two distinct solutions, consider x3 := ux1+7x2, where , 7 E IR with the property that u+n = 1. what precautions can be implemented/or have been implemented to reduce the impact of the tropical cyclone the local government of the country Miles Delano is a 75-year-old patient who has been diagnosed with a cardiac dysrhythmia. His healthcare provider has prescribed digoxin (Lanoxin) 0.1 mg to take by mouth once daily. The home health nurse caring for Mr. Delano has completed the patients health and physical assessment.1. Before administering the medication, what action should the nurse take next?2. What will the nurse and/or healthcare team keep in mind when developing a written plan of care for Mr. Delano?3. When planning to educate Mr. Delano about the prescribed medication regimen, how should the nurse approach the teaching session? MPC +MPS = A) 0. B) 0.5. C) 1. D) 100. PLEASE HELP WITH THIS!Write a descriptive report on a Cold War topic of your choice.Choose one of the following topics for an extended report.A. Fall of Communism in Eastern EuropeB. Korean WarUsing at least 4 sources (an encyclopedia, the Internet, or other resources), discuss your chosen topic in a detailed report of at least 800 words. Make sure you use proper grammar, punctuation, and spelling. At the end of the report, include a bibliography listing all your sources.Be sure to include at least the following points in your report.Fall of Communism in Eastern Europe:Gorbachev's reforms and decision not to use force to support Communism in the satellitesUnrest in the satellites nationsSpecific examples of what happened in at least three of the countriesKorean War:Division after World War IIInvasion and Pusan PerimeterLanding at InchonStalemate on the battlefield and negotiating tableTruce, no treaty, remained divided describe how to use the zero product property when solving a quadractic equation by factoring find the area under the standard normal curve to the right of z=1.5z=1.5. round your answer to four decimal places, if necessary what mechanisms must be involved in the decay of 232/90 Th to 208/82 Pb Question Number 1) How does Alex Homer determine prospects needs?(A) By asking whether price or quality is their most important criteria(B) By matching their psychographic profiles with existing customers(C) By asking what the most important thing is when they go shopping: price, quality, fit, or trendiness(D)By matching their demographic profiles with existing customers The mistaken notion that the archaeological record is some perfect is:_________ Eulerize this graph in the most efficient way possible, considering the weights of the edges. Two moles of helium gas initially at 181 Kand 0.27 atm are compressed isothermally to1.39 atm.Find the final volume of the gas. Assumethat helium behaves as an ideal gas. Theuniversal gas constant is 8.31451 J/K mol.Answer in units of m3Find the work done by the gas.Answer in units of kJ.Find the thermal energy transferred.Answer in units of kJ. Rutherford found the diameter of a gold nucleus to be about 1015m.Since gold is fairly massive, this implies a very high nuclear density. Find the density of a gold nucleus, in kilograms per cubic meter Which one of the following does NOT belong on an income statement? A) depreciation and amortization B) goodwill C) extraordinary items D) nonrecurring expense The economic incentive for price discrimination is based upon differences among buyers' elasticities of demand. O True O False Sanjay and Ting, each with a mass of 25 kg, are riding opposite each other on the edge of a 150 kg, 3.0-m-diameter playground merry-go-round that's rotating at 15 rpm. Each walks straight inward and stops 35 cm from the center.What is the new angular velocity, in rpm?Express your answer in revolutions per minute. questions 8. to ensure the lane next to you is clear when you want to change lanes: a. turn your head and look over the right shoulder b. look into the rearview mirror only c. turn your head and look in the lane you are going to enter The walls, ceiling and floor of a cubic room need to be painted. The edge length for the cube is 3 meters.What is the total surface area that will be painted in the room?Responses27 m30 m36 m54 m Lactase persistence is an example of human evolution; it is a human evolutionary adaptation to drinking milk from domesticated animals. TRUE OR FALSEInhibiting RNA processing is a common way to regulate gene expression. TRUE OR FALSE