Answer:
A. 28.42 m/s
B. 41.21 m.
Explanation:
A. Determination of the initial velocity of the ball:
Time (t) to reach the maximum height = 2.9 s
Final velocity (v) = 0 (at maximum height)
Acceleration due to gravity (g) = –9.8 m/s² (since the ball is going against gravity)
Initial velocity (u) =?
Thus, we can obtain the initial velocity of the ball as follow:
v = u + gt
0 = u + (–9.8 × 2.9)
0 = u – 28.42
Collect like terms
u = 0 + 28.42
u = 28.42 m/s
Therefore, the initial velocity of the ball is 28.42 m/s.
B. Determination of the maximum height reached.
Final velocity (v) = 0 (at maximum height)
Acceleration due to gravity (g) = –9.8 m/s² (since the ball is going against gravity)
Initial velocity (u) = 28.42 m/s.
Maximum height (h) =?
Thus, we can obtain the maximum height reached by the ball as follow:
v² = u² + 2gh
0² = 28.42² + (2 × –9.8 × h)
0 = 807.6964 + (–19.6h)
0 = 807.6964 – 19.6h
Collect like terms
0 – 807.6964 = – 19.6h
– 807.6964 = – 19.6h
Divide both side by – 19.6
h = –807.6964 / –19.6
h = 41.21 m
Therefore, the maximum height reached by the ball is 41.21 m
The wavelengths corresponding to the harmonics of an organ pipe that is open at one end and closed at the other can be found by saying that the length of the pipe must be equal to:___________.
A. an integer number of wavelengths.
B. an odd number of half-wavelengths.
C. an integer number of half-wavelengths.
D. an odd number of quarter-wavelengths.
Answer:
The answer is "Option D"
Explanation:
Its ranges referring to the harmonic currents of its organ pipe which are open at one end and shut at another side could be noticed saying whether a strange amount of quarter-wavelengths should equal the length of its pipe. It's also the fourth wavelengths principle to have enough space and consume a minimum of 25% of our design frequency, as we're going to be taking 40 Hz.
Find the binding energy per nucleon for the plutonium isotope 239Pu. The mass of the neutral atom is 239.05216 u.
Answer:
The answer is "[tex]\bold{7.56 \ Me\ V}[/tex]".
Explanation:
calculating the binding energy on per nucleon:
calculating number of proton and neutrons:
proton [tex]P_u=94[/tex]
neutron[tex]= 239-94=145[/tex]
calculating mass:
proton mass [tex]\ m_P=1.007825 \ amu\\\\[/tex]
neutron mass [tex]\ m_n=1.008665 \ amu\\\\[/tex]
neutral atom mass [tex]m = 239.05216 \ amu\\\\[/tex]
mass of prtons[tex]= 94 \times 1.007825 = 94.73555 \ amu\\\\[/tex]
mass of neutrons[tex]= 145 \times 1.008665= 146.256425 \ amu\\\\[/tex]
Total nucleons mass formula:
[tex]\to m_n = (P+n)[/tex]
[tex]= 94.73555+ 146.256425\\\\= 240.991975 \ amu[/tex]
calculating the mass of defect:
[tex]\to \Delta m= m_n-m\\\\[/tex]
[tex]= 240.991975 - 239.05216\\\\= 1.939815 \ amu\\\\[/tex]
calculating the total of the binding energy:
[tex]\to BE=\Delta m\times 931.5 \ mev[/tex]
[tex]= 1.939815 \times 931.5\\\\=1806.938 \ Me \ V\\\\[/tex]
BE in per nucleon [tex]=\frac{BE}{239}= 7.56 \ Me\ V[/tex]
A solid CUBE has a side of 4cm and is 192 grams in mass. What is the density?
Answer:
3g/cm³
Explanation:
Given parameters:
Length of the side = 4cm;
Volume of the cube = L³ = 4³ = 64cm³
Mass of the cube = 192g
Unknown:
Density = ?
Solution:
The density of a body is its mass per unit volume;
Density = [tex]\frac{mass}{volume}[/tex]
Insert parameters and solve;
Density = [tex]\frac{192}{64}[/tex] = 3g/cm³
Pretty simple physics :) will give brainliest
pls dont just use me for points
Answer:
meter per second(m/s)
Explanation:
Two cylinders each with a 60 cm diameter, thatare closed at one end, open at the other, are joined to form asingle cylinder, then the air inside is removed.
How much force does the atmosphere exert onthe flat end of each cylinder?
Suppose one cylinder is bolted to a sturdy ceiling. How many 90 kg football players would need to hang from the lower cylinder to pull the two cylinders apart
Answer:
a
The force is [tex]F = 2864561.4 \ N[/tex]
b
The number is [tex]N = 3248 \ players[/tex]
Explanation:
From the question we are told that
The of each cylinder is [tex]d = 60 \ cm = 6 \ m[/tex]
The mass of the players is [tex]m = 90 \ kg[/tex]
Generally the cross-sectional area of the cylinder is mathematically represented as
[tex]A = \pi * \frac{d^2}{4}[/tex]
=> [tex]A = 28.3 \ m^2[/tex]
Generally force exerted on the flat end of each cylinder is mathematically represented as
[tex]F = A * P[/tex]
Here P is the atmospheric pressure with value [tex]P = 101300 \ Pa[/tex]
So
[tex]F = 28.3 * 101300[/tex]
=> [tex]F = 2864561.4 \ N[/tex]
Generally the weight of a single football player is
[tex]W = m * g[/tex]
=> [tex]W = 90 * 9.8[/tex]
=> [tex]W = 882\ N[/tex]
Generally the number of player required to pull the two cylinders apart is mathematically represented as
[tex]N = \frac{ F }{W}[/tex]
=> [tex]N = \frac{ 2864561.4 }{882}[/tex]
=> [tex]N = 3248 \ players[/tex]
Which objects cannot be observed in detail without a microscope?
Answer:
partecls
Explanation:
because they are to small to see with plain eyes
Changing which factor would NOT have an influence on the kinetic energy of a moving van loaded with 100 kg bags mulch of with a total mass of 1,500 kg. The vehicle is traveling across an open parking lot at a speed of 5 m/s.
Question 8 options:
A: direction the moving van is going across the parking lot.
B: increasing the rate of speed without altering the mass of the vehicle or its contents.
C: emptying the moving van one bag at a time at a constant rate.
D: adding more contents (increasing the overall mass) to the van while the van is in motion traveling 5 m
Answer:
A. The direction
Explanation:
I did the test lol
Answer:
A
Explanation:
i took the test
A 100 kg man stands still. Gravity pushes on him with an acceleration of 9.8 m/s^2. What it the force the man feels from gravity? *
0 N
98 N
90 N
980 N
Answer:
980 NExplanation:
The force acting on an object given it's mass and acceleration can be found by using the formula
force = mass × acceleration
From the question we have
force = 100 × 9.8
We have the final answer as
980 NHope this helps you
The voltage provided by the battery of a circuit was 12 V, if the total
resistance in the circuit was 6 ohms, calculate the total current present.
options:
72 A
2A
0.5 A
7.2 A
Answer:
2 Amps
which agrees with the second option in the list of answers
Explanation:
Use Ohm's law:
V = R * I
which with the information given to us becomes:
12 = 6 * I
then solving for I we get:
I = 12 V / 6 Ω = 2 Amps
You throw a baseball (mass 0.145 kg) vertically upward. It leaves your hand moving at 12.0 m/s. Air resistance can be neglected.
A. At what height above your hand does the ball have half as much upward velocity?
B. At what height above your hand does the ball have half as much kinetic energy as when it left your hand?
Answer:
Explanation:
A ) initial velocity u = 12 m /s
final velocity v = 6 m /s
height = h
acceleration = - g = - 9.8 m /s²
v² = u² - 2gh
6² = 12² - 2 x 9.8 x h
h = 5.51 m
B )
Let the final velocity when energy becomes half be V at height H
kinetic energy at height h = 1/2 m V²
Given ,
.5 x 1 / 2 m x 12² = 1/2 m x V²
V² = 12² / 2
V = 8.486 m /s
V² = u² - 2 gH
8.486² = 12² - 2 x 9.8 x H
H = 3.67 m .
which of the following is true of phototsythesis but not of cellular respiration.
A- Photosynthesis releases oxygen gas as a product
B- Photosynthesis occurs in all organisms
C- Photo synthesis is a process in which glucose i broken down
D- Photosynthesis requires glucose as a reactant
Answer:
B. Photosynthesis occurs in all organisms
Hope this helps!! :)
What is the initial vertical velocity of the ball?
A.
0 m/s
B.
9.81 m/s
C.
20.0 m/s
D.
60.0 m/s
Students had two batteries and two different resistors. During four trials, they build four different circuits and measure the circuit’s current in Amps according to the following table.
Trial Number
Voltage (V)
Resistance (Ω)
Current (A)
1
1.5
200
2
1.5
100
3
3.0
200
4
3.0
100
For which trial would the students measure the smallest current in the circuit? (AKS 10a)
A.
Trial 1
B.
Trial 2
C.
Trial 3
D.
Trial 4
Answer:
bhi jo bhi of gp oh oh gi IG 7u to uff do if goo td to yd do FP ae rt 7g hi pic vo icon
Explanation:
bh hi h bhi vc di oh x At jb jo iv hp of di of dr hi o hc x gh ki vc hi jo
Sb +
Cl2 →
SbCl3
Balance chemical equation
Answer:
Cl2 + Sb → SbCl3
Cl2 + Sb → SbCl5
Cl2 + Sb → SbCl
Cl2 + Sb → SbCl2
Cl2 + Sb → SbCl3 + SbCl5
Explanation: Hope it will help
To balance the chemical equation Sb + Cl₂ → SbCl₃ on further simplification The final balanced chemical equation is Sb + 3Cl₂ → SbCl₃.
Let's start by balancing the antimony (Sb) atoms:
On the left side, we have 1 Sb atom, and on the right side, we also have 1 Sb atom. The antimony is already balanced.
Next, let's balance the chlorine (Cl) atoms:
On the left side, we have 2 Cl atoms, and on the right side, we have 3 Cl atoms. To balance the chlorine, we need to multiply the Cl₂ on the left side by 3:
Sb + 3Cl₂ → SbCl₃
Now, the chlorine atoms are balanced.
The final balanced chemical equation is:
Sb + 3Cl₂ → SbCl₃
To know more about balanced chemicals equation:
https://brainly.com/question/34199830
#SPJ6
A string with mass per unit length of 0.003 kg/m is plucked with an amplitude of 2 cm. The string is 30 cm long, and under a tension of 30 newtons. What are the frequencies of the first 5 harmonics?
Answer:
First harmonics = 333.33N
Second harmonics = 500.01N
Third harmonics = 666.68N
Fourth harmonics = 833.35N
Fifth harmonics = 1000.02N
Explanation:
The formula for calculating the fundamental frequency in string is expressed as;
[tex]F_0 = \frac{1}{2L}\sqrt{\frac{T}{m} }[/tex] where;
L is the length of the string = 30cm = 0.3m
T is the tension in the string = 30N
m is the mass per unit length of the string = 0.003kg/m
Get the fundamental frequency first by substituting the given values into the formula;
[tex]F_0 = \frac{1}{2(0.3)}\sqrt{\frac{30}{0.003} }\\F_0 = \frac{1}{0.6}\sqrt{10,000}}\\F_0 = \frac{1}{0.6} * 100\\[/tex]
F0 = 166.67N
Harmonics are the integral multiples of the fundamental frequency.
First harmonics F1 = 2F0 = 2(166.67) = 333.33N
Second harmonics F2 = 3F0 = 3(166.67) = 500.01N
Third harmonics F3 = 4F0 = 4(166.67) = 666.68N
Fourth harmonics F4 = 5f0 = 5(166.67) = 833.35N
Fifth harmonics F5 = 6f0 = 6(166.67) = 1000.02N
find the vector parallel to the resultant of the vector A=i +4j-2k and B=3i-5j+k
Answer:
2008
Explanation:
2000+3+5======2008
Answer:
[tex]8\hat i-2\hat j-2\hat k[/tex]
Explanation:
Vectors in 3D
Given a vector
[tex]\vec P = P_x\hat i+P_y\hat j+P_z\hat k[/tex]
A vector [tex]\vec Q[/tex] parallel to [tex]\vec P[/tex] is:
[tex]\vec Q = k.\vec P[/tex]
Where k is any constant different from zero.
We are given the vectors:
[tex]\vec A = \hat i+4\hat j-2\hat k[/tex]
[tex]\vec B = 3\hat i-5\hat j+\hat k[/tex]
It's not specified what the 'resultant' is about, we'll assume it's the result of the sum of both vectors, thus:
[tex]\vec A +\vec B = \hat i+4\hat j-2\hat k + 3\hat i-5\hat j+\hat k[/tex]
Adding each component separately:
[tex]\vec A +\vec B = 4\hat i-\hat j-\hat k[/tex]
To find a vector parallel to the sum, we select k=2:
[tex]2(\vec A +\vec B )= 8\hat i-2\hat j-2\hat k[/tex]
Thus one vector parallel to the resultant of both vectors is:
[tex]\mathbf{8\hat i-2\hat j-2\hat k}[/tex]
_____ are group of tissue working together to perform a certain job.
Answer:
organ
Explanation:
Answer:
an organ
Explanation:
cell -> tissue -> organ -> organ system -> organism
A cannonball is fired at a 45.0° angle and an initial velocity of 670 m/s. Assume no air resistance. How high did the cannonball travel?
9935 m
11454 m
754 m
13200 m
If a body having mass 40kg started moving initially with rest and it takes a velocity of 20m/sec in time 4 seconds. Find the value of force
[tex]{\mathfrak{\underline{\purple{\:\:\: Given:-\:\:\:}}}} \\ \\[/tex]
[tex]\:\:\:\:\bullet\:\:\:\sf{Mass \ of \ the \ body \ (m) = 40 \ kg}[/tex]
[tex]\:\:\:\:\bullet\:\:\:\sf{Final \ velocity \ of \ the \ body \ (v) = 20 \ m/s}[/tex]
[tex]\:\:\:\:\bullet\:\:\:\sf{Initial \ velocity \ of \ the \ body \ (u) = 0}[/tex]
[tex]\\[/tex]
[tex]{\mathfrak{\underline{\purple{\:\:\:To \:Find:-\:\:\:}}}} \\ \\[/tex]
[tex]\:\:\:\:\bullet\:\:\:\sf{Force \ exerted \ by \ the \ body \ ( F)}[/tex]
[tex]\\[/tex]
[tex]{\mathfrak{\underline{\purple{\:\:\: Solution:-\:\:\:}}}} \\ \\[/tex]
☯ Using 1st equation of motion
[tex]\\[/tex]
[tex]\dashrightarrow\:\: \sf{v = u + at}[/tex]
[tex]\\[/tex]
[tex]\dashrightarrow\:\: \sf{20 = 0 + a(4)}[/tex]
[tex]\\[/tex]
[tex]\dashrightarrow\:\: \sf{20 = 4a}[/tex]
[tex]\\[/tex]
[tex]\dashrightarrow\:\: \sf{\dfrac{\cancel{20}}{\cancel{4}} = a}[/tex]
[tex]\\[/tex]
[tex]\dashrightarrow\:\: \sf{a = 5}[/tex]
[tex]\\[/tex]
☯ Now, Finding the force exerted
[tex]\\[/tex]
[tex]\dashrightarrow\:\: \sf{F = ma}[/tex]
[tex]\\[/tex]
[tex]\dashrightarrow\:\: \sf{F = 40 \times 5}[/tex]
[tex]\\[/tex]
[tex]\dashrightarrow\:\: \sf{F = 200 \ N}[/tex]
[tex]\\[/tex]
☯ Hence, [tex]\\[/tex]
[tex]\:\:\:\:\star\:\:\:\sf{The \ force \ exerted \ by \ the \ body \ is \ 200N}[/tex]
What is the minimum work done by the heart to pump 130 g of blood from a person's foot to his heart 1.5 m away?
A. 0J.B. 4.7J.C. .47J.D. 4700J.
Answer:
The minimum work done by the heart is 1.911 J
Explanation:
Given;
mass of the blood, m = 130 g = 0.13 kg
height the blood is pumped, h = 1.5 m
Apply work energy theorem, the gravitational potential energy of the height in which the blood is pumped to, is equal to the work done in pumping the blood form the foot to the heart.
E = mgh = W
where;
g is acceleration due to gravity = 9.8 m/s²
W = (0.13)(9.8)(1.5)
W = 1.911 J
Thus, the minimum work done by the heart is 1.911 J
Which of the following statements are true of cancer types? Check all that apply. --
- Cancer is named according to the color the cells turn.
- Skin cancer is considered a very common type of cancer.
- Cancer is often named according to what body type it affects.
- Skin cancer is the least common type of cancer.
the answer is cancer is often named according to what body type it affects
Answer:
B,C
Explanation:
skin cancer is considered a very common type of cancer. Cancer is often named accordingly to a body type it affects.
Is a seashores diverse or uniform?
Answer:
uniformes
Explanation:
Why are u asking this
what is the need of force in our life
Answer:
A force is a push or a pull and it affects our daily lives because without force,people would not be able to open and close stuff or lift up our arms or legs .....or anything, for that matter.
Explanation:
brainly
What is the approximate distance from the sun to the astroid belt?
Answer:
The asteroid belt lies between 2.2 and 3.2 astronomical units (AU) from our sun. ( i looked this up because nobody of the top of their head knows this)
Explanation:
A fluid of density rho = 900 kg/m3 flows along a pipe of constant diameter from point A to point B. Gauge pressure at point A is equal to zero, and absolute pressure at point B is 30% lower than pressure at point A. What is the height difference, Δh, between points A and B?
a. Δh = 8.09 m with point A above point B.
b. Δh = 344 m with point B above point A.
c. Δh = 303 m with point B above point A.
d. Δh = 3.44 m with point A above point B.
The height difference between points A and B is : ( B ) Δh = 3.44 m with point B above point A.
Given data :
fluid density = 900 kg/m³
Diameter of pipe = constant
Gauge pressure at Point A = 0
Gauge pressure at point B = 30% lower
Determine the height difference between points A and Bfirst step : determine absolute pressure
Pa (absolute pressure )= gauge pressure + atmospheric pressure
= 0 + patm
Therefore : Pa = Patm
Also;
Pressure at point B ( Pb ) = Pa - 30%Pa
= 0.7 Patm
Hence ; Pa - Pb = 0.3 Patm ----- ( 1 )
Final step : Determine the height difference
we will apply the formula below from equation ( 1 )
p *g * Δh = 0.3 * 1.013 * 10⁵ ( note : Patm = 1.013 * 10⁵ )
900 * 9.81 * Δh = 0.3 * 1.013 * 10⁵
therefore :
Δh = ( 0.3 * 1.013 * 10⁵ ) / ( 900 * 9.81 )
= 3.44 m
Hence we can conclude that The height difference between points A and B is Δh = 3.44 m with point B above point A.
Learn more about height difference in fluids : https://brainly.com/question/17200230
When weather predictions are incorrect what is the most likely cause
A: measurements of the initial conditions may have been very in accurate
B: small differences in models can lead to large differences in complex systems
C: The person predicting the weather may have had a bias
D: The elevation of different landforms I have been significantly in accurate
Answer:small differences in models can lead to large differences in complex systems
Explanation: this is the most accurate phrase
The glowing dot represents the transmission of a nerve impulse along the nerves that make up the neural pathway. A nerve impulse is an electrical signal that travels from one nerve cell to another.
Which part of the brain processes this signal?
Answer:
The answer is "Cerebral Cortex"
Explanation:
The neurotransmitter diffuses across the short distance of the synapse and ties to a receptor protein of the objective neuron. At the point when the sub-atomic sign ties to the receptor, the cell film of the objective neuron changes its electrical state and another evaluated expected starts. On the off chance that that evaluated potential is sufficiently able to arrive at limit, the subsequent neuron produces an activity potential at its axon hillock. The objective of this neuron is another neuron in the thalamus of the mind, the piece of the CNS that goes about as a transfer for tactile data.
At another neurotransmitter, synapse is delivered and ties to its receptor. The thalamus at that point sends the sensory information to the cerebral cortex, the furthest layer of dark issue in the brain, where cognizant view of that water temperature starts.
A region of the cortex is particular for imparting signs down to the spinal cord for development. The upper engine neuron is in this area, called the precentral gyrus of the frontal cortex, which has an axon that broadens right down the spinal cord. At the degree of the spinal cord at which this axon makes a neurotransmitter, a reviewed potential happens in the cell membrane of a lower engine neuron.
____________ is an individual sport that helps develop your hand-eye coordination.
Table Tennis
Ice Skating
Swimming
Answer:
Answer option A) Table Tennis helps develop your hand-eye coordination.
Answer:
table tennis
Explanation:
Introduction to Simple Machines
This activity will help you meet this educational goal:
You will compare and contrast information from a video with information from a text.
Directions
Read the instructions for this self-checked activity. Type in your response to each question, and check your answers. At the end of the activity, write a brief evaluation of your work.
Activity
Watch this video and then answer the following questions based on what you learned.
Part A
How does a bicycle make work easier?
Part B
Which two examples of levers are mentioned in the video?
The picture shows a bicycle’s pedals. Look at the shaft that the pedals are attached to. Do you think the shaft is a lever? Why or why not?
Answer:
word for word answers!
Explanation:
1) Part A: By pedaling a bicycle lightly, the rider can go a long way
2) Part B: The two examples mentioned in the video are the handlebars and the brakes
3) Yes, it’s a type of lever because the two pedals rotate around a fixed point
Describe how radiant energy, light energy, and solar energy are related. ( Please ❤️ )
Answer:
L’énergie solaire récolte l’énergie radiante portée par la lumière de notre soleil en la convertissant en électricité.Biomasse des plantes. Les plantes sont capables d’exploiter et d’utiliser l’énergie lumineuse dans un processus appelé photosynthèse.
Answer:
Radiant energy, light energy, and solar energy are related because The Sun produces a lot of radiant energy that is transmitted to Earth as light. Plants convert the electromagnetic energy in sunlight into chemical energy for their food, through a process called photosynthesis. Waves of radiant electromagnetic energy can be visible or invisible.
Explanation: