1 point) find the general solution to y′′′ 8y′′ 20y′=0. in your answer, use c1,c2 and c3 to denote arbitrary constants and x the independent variable.

Answers

Answer 1

The general solution to y′′′ + 8y′′ + 20y′ = 0 is: y(x) = e^(-4x)(c1 cos(2x) + c2 sin(2x)) + c3

How to find the general solution?

The characteristic equation of the given third-order linear homogeneous differential equation is:

r^3 + 8r^2 + 20r = 0

Dividing both sides by r gives:

r^2 + 8r + 20 = 0

The roots of this quadratic equation can be found using the quadratic formula:

r = (-b ± sqrt(b^2 - 4ac)) / 2a

where a = 1, b = 8, and c = 20. Plugging in these values, we get:

r = (-8 ± sqrt(8^2 - 4(1)(20))) / 2(1)

= -4 ± 2i

Since the roots are complex and come in a conjugate pair, the general solution to the differential equation is:

y(x) = e^(-4x)(c1 cos(2x) + c2 sin(2x)) + c3

where c1, c2, and c3 are arbitrary constants.

Therefore, the general solution to y′′′ + 8y′′ + 20y′ = 0 is:

y(x) = e^(-4x)(c1 cos(2x) + c2 sin(2x)) + c3

where c1, c2, and c3 are arbitrary constants.

Learn more about differential equations

brainly.com/question/14620493

#SPJ11


Related Questions

If fy (a,b) = f, (a,b) = 0, does it follow that f has a local maximum or local minimum at (a,b)? Explain. Choose the correct answer below. A. No. It follows that (a,b) is a critical point of f, and (a,b) is a candidate for a local maximum or local minimum. B. Yes. The point (a,b) is a critical point and must be a local maximum or local minimum. C. Yes. The tangent plane to f at (a,b) is horizontal. This indicates the presence of a local maximum or a local minimum at (a,b). D. No. One (or both) of fy and f, must also not exist at (a,b) to be sure that f has a local maximum or local minimum at (a,b).

Answers

If fy (a,b) = f, (a,b) = 0, does it follow that f has a local maximum or local minimum at (a,b) then it does not follows that (a,b) is a critical point of f, and (a,b) is a candidate for a local maximum or local minimum. Therefore, the correct option is option A. No. It follows that (a,b) is a critical point of f, and (a,b) is a candidate for a local maximum or local minimum.

If fy (a,b) = f, (a,b) = 0, does it follow that f has a local maximum or local minimum at (a,b) then it does not follows that (a,b) is a critical point of f, and (a,b) is a candidate for a local maximum or local minimum.

This is because fy (a,b) = f, (a,b) = 0 indicates that the partial derivatives of f with respect to both a and b are zero at (a,b), which makes (a,b) a critical point of f. However, this does not guarantee that f has a local maximum or local minimum at (a,b), as further analysis is required to determine the nature of the critical point.

Just because both partial derivatives are zero does not guarantee that (a,b) is a local maximum or minimum. It could also be a saddle point or an inflection point. To determine whether it is a local maximum, local minimum, or neither, you would need to use the second partial derivative test or examine the nature of the function around the point (a,b).

Know more about critical point here:

https://brainly.com/question/29144288

#SPJ11

Find the area of this sector.
Give your answer in terms of
π
.

Answers

Answer:245/36 π

Step-by-step explanation: you do 50/360 times π(7)^2

Question 4 Graph and label each figure and its image under a reflection in the given line. Give the coordinates of the image. Rhombus WXYZ with verlices 1.5), X[6,3). 1. 1), and Z 4,3): x-axis WC X' YT Z'

Answers

First, let's identify the coordinates of the vertices of rhombus WXYZ:
W(1,5), X(6,3), Y(1,1), and Z(4,3)

Now, we will perform a reflection over the x-axis. To do this, we simply need to negate the y-coordinate of each vertex while keeping the x-coordinate the same.

Step-by-step:

1. Reflect point W(1,5):
  The x-coordinate stays the same: 1
  Negate the y-coordinate: -5
  New coordinates for W': W'(1,-5)

2. Reflect point X(6,3):
  The x-coordinate stays the same: 6
  Negate the y-coordinate: -3
  New coordinates for X': X'(6,-3)

3. Reflect point Y(1,1):
  The x-coordinate stays the same: 1
  Negate the y-coordinate: -1
  New coordinates for Y': Y'(1,-1)

4. Reflect point Z(4,3):
  The x-coordinate stays the same: 4
  Negate the y-coordinate: -3
  New coordinates for Z': Z'(4,-3)

The coordinates of the image of rhombus WXYZ under the reflection in the x-axis are W'(1,-5), X'(6,-3), Y'(1,-1), and Z'(4,-3).

To learn more about “rhombus” refer to the https://brainly.com/question/20627264

#SPJ11

Average starting salary. The University of Texas at Austin McCombs School of Business performs and reports an annual survey of starting salaries for recent bachelor's in business administration graduates. For 2017, there were a total of 598 respondents. a. Respondents who were finance majors were 41.42% of the total responses. Rounding to the nearest integer, what is n for the finance major sample? (3p) b. For the sample of finance majors, the average salary is $68,145 with a standard deviation of $13,489. What is the 90% confidence interval for average starting salaries for finance majors? (3p)

Answers

a. The sample size for finance majors is 247

b. we can be 90% confident that the true average starting salary for finance majors is between $66,733 and $69,557

Define standard deviation?

Standard deviation is a statistical measure that indicates how much the data in a set varies from the average (mean) of the set.

a. The number of respondents in the finance major sample is:

n = 0.4142 x 598 ≈ 247

Rounding the nearest integer, sample size for finance majors is 247

b. We know the formula for confidence interval,

CI = X ± Z × (σ/√n)

Where:

X = sample mean = $ 68,145

Z = z-score for 90% confidence level = 1.645 (from a standard normal distribution table)

σ = population standard deviation = $ 13,489

n = sample size = 247

Putting the values, we get:

CI = 68,145 ± 1.645 × (13,489 / √247)

CI = 68,145 ± 1,411.899

CI = [66,733.10, 69,556.89]

Therefore, we can be 90% confident that the true average starting salary for finance majors is between $66,733 and $69,557

To know more about sample size, visit:

https://brainly.com/question/30224379

#SPJ1

In Exercises 5 and 6, compute the product AB in two ways, (a) by the definition, where Ab_1 and Ab_2 are computed separately, and by the row-column rule for computing AB. A = [-1 5 2 2 4 -3], B = [3 -2 -2 1]

Answers

Product AB using the definition;

AB = [-17 -1]
    [-10 20]

Product AB using row-column rule;

AB = [-17 -1]
    [-10 20]



How to compute the product AB using the definition and row-column rule?

We first need to find the dimensions of each matrix. Matrix A has dimensions 2x3 (2 rows, 3 columns) and matrix B has dimensions 3x1 (3 rows, 1 column). Since the number of columns in matrix A is equal to the number of rows in matrix B, we can multiply them together.

Using the definition, we compute AB as follows:

AB = [(-1)(3) + (5)(-2) + (2)(-2)] [(-1)(1) + (5)(3) + (2)(-2)]
    [(2)(3) + (4)(-2) + (-3)(-2)] [(2)(1) + (4)(3) + (-3)(-2)]

AB = [-17 -1]
    [-10 20]

Now let's use the row-column rule to compute AB. To do this, we need to multiply each row of matrix A by each column of matrix B, and add up the products.

First, let's write out the product of the first row of A with B:

A[1,1]B[1,1] + A[1,2]B[2,1] + A[1,3]B[3,1]
= (-1)(3) + (5)(-2) + (2)(-2)
= -3 -10 -4
= -17

Next, let's write out the product of the second row of A with B:

A[2,1]B[1,1] + A[2,2]B[2,1] + A[2,3]B[3,1]
= (2)(3) + (4)(-2) + (-3)(-2)
= 6 -8 6
= -10

Finally, we can combine these products to get the matrix AB:

AB = [-17 -1]
    [-10 20]

Learn more about row-column rule.

brainly.com/question/9264846

#SPJ11

how many different ways can be people be chosen as president, vice president, and secretary from a class of 40 students?

Answers

By using the Concept of Permutations,There are 59,280 different ways to choose the president, vice president, and secretary from a class of 40 students.

To determine the number of different ways people can be chosen as president, vice president, and secretary from a class of 40 students:

You can use the concept of permutations.

Step 1: Choose the president. There are 40 students in the class, so there are 40 choices for the president position.

Step 2: Choose the vice president. Since the president has been chosen, there are now 39 remaining students to choose from for the vice president position.

Step 3: Choose the secretary. After selecting the president and vice president, there are 38 remaining students to choose from for the secretary position.

Now, multiply the number of choices for each position:

40 (president) x 39 (vice president) x 38 (secretary) = 59,280 different ways to choose the president, vice president, and secretary from a class of 40 students.

To know more about Concept of Permutations:

https://brainly.com/question/30649574

#SPJ11

determine whether the geometric series is convergent or divergent. [infinity] 9(0.2)n − 1 n = 1

Answers

Given ;

9(0.2)n − 1 n = 1

The given geometric series is convergent.

convergent series:


Σ [from n=1 to infinity] 9(0.2)^(n-1)

To determine if a geometric series is convergent or divergent,

we need to look at the common ratio (r). In this case, r = 0.2.

A geometric series is convergent if the absolute value of the common ratio is less than 1 (|r| < 1) and divergent if the absolute value of the common ratio is greater than or equal to 1 (|r| >= 1).

Since |0.2| < 1, the given geometric series is convergent.

To know more about Convergent series:

https://brainly.com/question/15415793

#SPJ11

Find the slope of the tangent line to the curve at the point (1, 2). Give an exact value.
x3 + 5x2y + 2y2 = 4y + 9

Answers

The slope of the tangent line to the curve at the point (1, 2) is -3/5.

What is slope of line?

A line's slope is a number that describes its steepness and direction. It is calculated by dividing the vertical change by the horizontal change between any two points on a straight line.

To find the slope of the tangent line to the curve at the point (1, 2), we need to first find the derivative of the curve with respect to x and evaluate it at x = 1 and y = 2.

Taking the partial derivative of both sides of the equation with respect to x, we get:

3x² + 10xy + 5x² dy/dx + 4y - 4dy/dx = 0

Simplifying this expression and solving for dy/dx, we get:

dy/dx = (4 - 13x² - 10xy) / (10x + 5x²)

To find the slope of the tangent line at the point (1, 2), we substitute x = 1 and y = 2 into this expression:

dy/dx = (4 - 13(1)² - 10(1)(2)) / (10(1) + 5(1)²) = -3/5

Therefore, the slope of the tangent line to the curve at the point (1, 2) is -3/5.

Learn more about slope of line on:

https://brainly.com/question/16949303

#SPJ1

What kind of geometric transformation is shown in the line of music ?

Answers

The kind of geometric transformation shown by the line of music is: Reflection

How to find the geometric transformation?

A transformation is a mathematical manipulation that moves a geometric shape or function from one space to another.

Now, a set of image transformations where the geometry of image is changed without altering its actual pixel values are commonly referred to as “Geometric transformations"

Looking at the music note, we can see that the note didn't change in size but looks to be a mirror image of its' previous notes.

Since it is a mirror image, the obvious transformation will be a reflection

Read more about Geometric Transformation at: https://brainly.com/question/4289712

#SPJ1

The graph shows the height y in feet of a gymnast jumping off of a vault after x seconds.




a) How long does the gymnast stay in the air?
b) What is the maximum height that the gymnast reaches?
c) In how many seconds does it take for the gymnast to start descending?
d) What is the quadratic function that models this situation?

Answers

Using the graph, we can find the following:

a) The gymnast stays 4 seconds in the air.

b) The maximum height that the gymnast reaches is 10 ft.

c) After 2 seconds the gymnast starts to descend.

d) The quadratic function that models this situation is:

y = mx + c

Define graphs?

Quantitative data can be represented and analysed graphically. In a graph, variables representing data are drawn over a coordinate plane. Analysing the magnitude of one variable's change in light of other variables' changes became simple.

Here in the question,

a. We can see from the graph that the curve above x-axis starts from the origin (0,0) and ends at (4,0) on the x-axis.

So, the gymnast stays 4 seconds in the air.

b. As we can see from the graph that it rises and then at point (2,10) it starts to descend.

So, the maximum height that the gymnast reaches is 10 ft.

c. As we can see from the graph that it rises and then at point (2,10) it starts to descend.

So, after 2 seconds the gymnast starts to descend.

d. The quadratic function that models this situation is:

y = mx + c

To know more about graphs, visit:

https://brainly.com/question/17267403

#SPJ1

Please Help!!!!! Find the Value of X!!!

Answers

The value of x from the Intersecting chords that extend outside circle is 13


Calculating the value of x

From the question, we have the following parameters that can be used in our computation:

Intersecting chords that extend outside circle

Using the theorem of intersecting chords, we have

8 * (3x - 2 + 8) = 12 * (x + 5 + 12)

This gives

8 * (3x + 6) = 12 * (x + 17)

Using a graphing tool, we have

x = 13

Hence, the value of x is 13

Read more about intersecting chords at

https://brainly.com/question/13950364

#SPJ1

exercise 1.1.10. solve ,dxdt=sin(t2) t, .x(0)=20. it is ok to leave your answer as a definite integral.

Answers

The solution of the differential equation dx/dt = sin(t²)×t with the initial condition x(0) = 20 is [tex]x(t) = 20 + \int_{0}^{t}tsin(t^2) dt[/tex].

In mathematics, a differential equation is an equation that relates one or more unknown functions and their derivatives. In applications, the functions generally represent physical quantities, the derivatives represent their rates of change, and the differential equation defines a relationship between the two.

To solve the given differential equation dx/dt = sin(t²)×t with the initial condition x(0) = 20 and leaving the answer as a definite integral, follow these steps:

1. Identify the given differential equation:

dx/dt = sin(t²)×t.


2. Recognize the initial condition:

x(0) = 20.


3. Integrate both sides of the equation with respect to t:

∫dx = ∫sin(t²)×t dt.


4. Apply the initial condition to determine the constant of integration:

x(0) = 20.


5. Write the final solution:

[tex]x(t) = 20 + \int_{0}^{t}tsin(t^2) dt[/tex].

So, the solution is [tex]x(t) = 20 + \int_{0}^{t}tsin(t^2) dt[/tex].

Learn more about a differential equation:

https://brainly.com/question/1164377

#SPJ11

Help ASAP! I need this badly, my last question!

Answers

Answer:

Step-by-step explanation:

...... The problem is glitched re send the image/

Find the Taylor series centered at
c=−1.f(x)=3x−27
Identify the correct expansion.
∑n=0[infinity]5n+13n−7(x+1)n−7
∑n=0[infinity]5n+13n(x+1)n7
∑n=0[infinity]5n−13n(x+1)n
∑n=0[infinity]7n+13n(x−2)n
Find the interval on which the expansion is valid. (Give your answer as an interval in the form(∗,∗). Use the symbol[infinity]for infinity,Ufor combining intervals, and an appropria type of parenthesis "(",")", "[","]" depending on whether the interval is open or closed. Enter∅if the interval is empty. Expre numbers in exact form. Use symbolic notation and fractions where needed.) interval

Answers

Taylor series for f(x) centered at c = -1 is: f(x) = -30 + 3(x+1). The correct expansion is: ∑n=0[infinity]5n+13n−7(x+1)n−7. The remainder term is zero for all n >= 1, and the Taylor series converges to f(x) for all x. Thus, the interval of validity is (-∞,∞).

What is reminder?

A remainder is what is left over after dividing one number by another. It is the amount by which a quantity is not divisible by another given quantity.

To find the Taylor series of f(x) centered at c = -1, we need to compute its derivatives:

f(x) = 3x - 27

f'(x) = 3

f''(x) = 0

f'''(x) = 0

f''''(x) = 0

...

Using the formula for the Taylor series, we get:

[tex]f(x) = f(-1) + f'(-1)(x+1) + (1/2!)f''(-1)(x+1)^2 + (1/3!)f'''(-1)(x+1)^3 + ...[/tex]

f(-1) = 3(-1) - 27 = -30

f'(-1) = 3

f''(-1) = 0

f'''(-1) = 0

...

Thus, the Taylor series for f(x) centered at c = -1 is:

f(x) = -30 + 3(x+1)

Simplifying, we get:

f(x) = 3x - 27

Therefore, the correct expansion is: ∑n=0[infinity]5n+13n−7(x+1)n−7

To find the interval on which this expansion is valid, we can use the formula for the remainder term in the Taylor series:

[tex]Rn(x) = f(n+1)(c)(x-c)^{(n+1)}/(n+1)![/tex]

Since f''(x) = 0 for all x, the remainder term simplifies to:

[tex]Rn(x) = f(n+1)(c)(x-c)^{(n+1)}/(n+1)![/tex]

Using c = -1, we have:

f(n+1)(c) = 0 for all n >= 1

Therefore, the remainder term is zero for all n >= 1, and the Taylor series converges to f(x) for all x. Thus, the interval of validity is (-∞,∞).

To learn more about reminder visit:

https://brainly.com/question/29347810

#SPJ1

given that income is 500 and px=20 and py=5 what is the market rate of subsitutino between good x and y? a. 100
b. -4
c. -20
d. 25

Answers

The market rate of substitution between good x and y is represented by the ratio of their prices, which is px/py. Therefore, in this case, the market rate of substitution is 20/5 = 4. However, this answer choice is not listed. The closest answer choice is b. -4, which is the negative inverse of the market rate of substitution (-1/4).
The market rate of substitution between good X and Y is represented by the marginal rate of substitution (MRS), which is the ratio of the marginal utilities of both goods. In this case, we are given income (I) = 500, the price of good X (Px) = 20, and the price of good Y (Py) = 5.

To find the MRS, we can use the formula:

MRS = - (Px / Py)

Plugging in the values, we get:

MRS = - (20 / 5)

MRS = -4

So, the market rate of substitution between good X and Y is -4 (option b).

Visit here to learn more about income brainly.com/question/17961582

#SPJ11

Ashlee purchased a house for $875 000. She made a down payment of 15% of the purchase price and took out a mortgage for the rest. The mortgage has an interest rate of 6.95% compounded monthly, and amortization period of 20 years, and a 5 year term. Calculate Ashley’s monthly payment.

Answers

$5744 is Ashley’s monthly payment.

The amount of the down payment made by Ashlee is 15% of $875,000, which is:

Down payment = 0.15 x $875,000 = $131,250

The amount that Ashlee took out on a mortgage is:

Mortgage amount = Purchase price - Down payment

= $875,000 - $131,250

= $743,750

The monthly payment on a mortgage:

[tex]M = P [ i(1 + i)^n ] / [ (1 + i)^n - 1 ][/tex]

where:

M = monthly payment

P = principal amount (mortgage amount)

i = monthly interest rate (annual interest rate / 12)

n = total number of monthly payments (amortization period x 12)

In this case, the annual interest rate is 6.95% and the term is for 5 years, so we need to first calculate the monthly interest rate and the total number of monthly payments.

Monthly interest rate = 6.95% / 12 = 0.57917%

Total number of monthly payments = 20 years x 12 = 240

Substituting these values into the formula, we get:

M = $743,750 [ 0.0057917 (1 + 0.0057917)^240 ] / [ (1 + 0.0057917)^240 - 1 ]

= $5744.002

Therefore, Ashley's monthly payment on the mortgage is $5744.

Learn more about compound interest here:

https://brainly.com/question/29335425

#SPJ1

construct a nonzero 4 × 4 matrix a and a 4-dimensional vector ¯ b such that ¯ b is not in col(a).

Answers

If we cannot find any scalar coefficients (c1, c2, c3, c4) that satisfy the equation: b = c1*col1(A) + c2*col2(A) + c3*col3(A) + c4*col4(A), then b is not in the column space of A.

To construct a nonzero 4x4 matrix A and a 4-dimensional vector b such that b is not in the column space of A, follow these steps:

Step 1: Create a 4x4 matrix A with nonzero elements.
For example,
A = | 1  2  3  4 |
     | 5  6  7  8 |
     | 9 10 11 12 |
     |13 14 15 16 |

Step 2: Create a 4-dimensional vector b that is not a linear combination of the columns of matrix A.
For example,
b = | -1 |
      | -1 |
      | -1 |
      | -1 |

Step 3: Verify that vector b is not in the column space of A.
To be in the column space of A, b must be a linear combination of the columns of A. If we cannot find any scalar coefficients (c1, c2, c3, c4) that satisfy the equation:

b = c1*col1(A) + c2*col2(A) + c3*col3(A) + c4*col4(A),

then b is not in the column space of A.

In this example, there are no scalar coefficients (c1, c2, c3, c4) that satisfy the equation, so b is not in the column space of A.

to learn more about dimensional vector click here:

https://brainly.com/question/28931875

#SPJ11

Evaluate the iterated integral by changing to cylindrical coordinates.∫ ^2_0 ∫ ^√(4 − y^2)_0 ∫ ^(16 − x^2 − y^2)_0 1 dz dx dy

Answers

To convert the integral to cylindrical coordinates, we use the following conversions:

x = r cos(theta)

y = r sin(theta)

z = z

And we also replace dV with r dz dr d(theta).

The limits of integration are:

0 ≤ r ≤ 2 (since the bounds on x and y are from 0 to 2)

0 ≤ theta ≤ 2pi (since we integrate over the entire circle)

0 ≤ z ≤ 16 - r^2 (since the bounds on z are from 0 to 16 - x^2 - y^2, which in cylindrical coordinates is 16 - r^2)

Thus, the integral becomes:

∫^(2pi)_0 ∫^2_0 ∫^(16-r^2)_0 r dz dr d(theta)

Integrating with respect to z, we get:

∫^(2pi)_0 ∫^2_0 (16 - r^2)r dr d(theta)

Integrating with respect to r, we get:

∫^(2pi)_0 [8r^2 - (1/3)r^4]∣_0^2 d(theta)

= ∫^(2pi)_0 (32/3) d(theta)

= (32/3) ∫^(2pi)_0 d(theta)

= (32/3)(2pi)

= (64/3)pi

Therefore, the value of the iterated integral in cylindrical coordinates is (64/3)pi.

Decide whether the argument is valid or a fallacy, and give the form that applies. If he rides bikes, he will be in the race. He rides bikes. He will be in the race. Let p be the statement "he rides bikes," and q be the statement "he will be in the race." The argument is by V or

Answers

The argument is valid. It follows the form of modus ponens where the first premise establishes a conditional statement "if p, then q", and the second premise affirms the antecedent "p". Therefore, the conclusion "q" logically follows. There is no fallacy present in this argument.

The given argument is as follows:
1. If he rides bikes (p), he will be in the race (q).
2. He rides bikes (p).
3. He will be in the race (q).

Let's determine if the argument is valid or a fallacy, and identify the form that applies.

In this case, the argument is valid and follows the form of Modus Ponens. Modus Ponens is a valid argument form that has the structure:

1. If p, then q.
2. p.
3. Therefore, q.

Here, since the argument follows this structure (If he rides bikes, he will be in the race; he rides bikes; therefore, he will be in the race), it is a valid argument and not a fallacy.

learn more on arguments at: https://brainly.com/question/25465770

#SPJ11

A psychologist predicts that entering students with high SAT or ACT scores will have high Grade Point Averages (GPAs) all through college. This testable prediction is an example of a:
a. theory.
b. hypothesis.
c. confirmation.
d. principle.

Answers

Answer:

b. hypothesis.

Step-by-step explanation:

Kathy can run 4 mi to the beach in the same amount of time Dennis can ride his bike 14 mi to work. Kathy runs 5 mph slower than Dennis rides his bike. Find
their speeds.

Answers

Kathy runs at a speed of 2 mph, and Dennis rides his bike at a speed of 7 mph.

How to find the speeds ?

To find the speed that Kathy is running and that Dennis is riding, the first relationship is:

K = D - 5

Then use the formula for time:

Time for Kathy = Time for Dennis

4 mi / K = 14 mi / D

4 mi / (D - 5) = 14 mi / D

4D = 14(D - 5)

4D = 14D - 70

-10D = -70

D = 7 mph

Then we can find Kathy's speed :

K = 7 - 5

K = 2 mph

Find out more on speed at https://brainly.com/question/4931057

#SPJ1

Consider the following regression results: UN, = 2,7491 +1,1507D. - 1,5294V. - 0,8511(D.V.) t = (26,896) (3,6288) (-12,5552) (-1,9819) R2=0.9128 Where. UN = unemployment rate% V = job vacancies,% D = 1 for the period beginning in 1966-IV 0 for the period before 1966-IV t= time, measured in quarterly (per quarter) Note: in the fourth quarter of 1966, the government released national insurance rules by replacing the flate-rate system for short-term unemployment benefits with a mixed system of flate rates and income-related systems, which raised the rate of return for unemployment. a. Interpret the results! b. Assuming that the level of vacancies is constant, what is the average unemployment rate in the early fourth quarter period of 1966?

Answers

a). The R² of 0.9128 indicates that the model explains 91.28% of the variation in unemployment rates.

b) To find the average unemployment rate in the early fourth quarter period of 1966 with constant vacancy levels, set D = 0 in the regression equation: UN = 2.7491 - 1.5294V.

a. The regression results show that the unemployment rate (UN) is influenced by job vacancies (V), the time period (D), and their interaction (D.V.). T

he positive coefficient for D (1.1507) indicates a higher unemployment rate after 1966-IV due to policy changes, while the negative coefficients for V (-1.5294) and the interaction term (-0.8511) imply that a higher job vacancy rate reduces unemployment, with this effect being less pronounced after 1966-IV.

b. Then, plug in the vacancy rate (V) to calculate the average unemployment rate.

To know more about unemployment rates click on below link:

https://brainly.com/question/30115084#

#SPJ11

Test the series for convergence or divergence. [infinity]
Σ (-1)^n+1/3n^4 . n=1 - converges
- diverges

Answers

The answer is: Test the series for convergence or divergence. [infinity] Σ (-1)n+1/3n² - converges.

To test the series Σ (-1)n+1/3n² for convergence or divergence, we can use the alternating series test. This test states that if a series alternates in sign and the absolute value of its terms decreases monotonically to zero, then the series converges.

In this case, the series Σ (-1)n+1/3n² alternates in sign and the absolute value of its terms is given by 1/3n², which decreases monotonically to zero as n increases. Therefore, we can apply the alternating series test and conclude that the series converges.

Know more about convergence here;

https://brainly.com/question/15415793

#SPJ11

if x(t) = 2·tri(t/4)*δ(t – 2), find the values of a. x(1) b. x(–1)

Answers

The values for x(1) and x(-1) are both 0.

To find the values of x(1) and x(-1) given that x(t) = 2·tri(t/4)*δ(t – 2), we will evaluate the function at these points.

a. x(1):
To find the value of x(1), we need to substitute t = 1 into the function:
x(1) = 2·tri(1/4)*δ(1 - 2)

Since δ(1 - 2) is the Dirac delta function at a point different from zero (specifically, -1), its value is 0.

Therefore,
x(1) = 2·tri(1/4) * 0 = 0

b. x(-1):
To find the value of x(-1), we need to substitute t = -1 into the function:
x(-1) = 2·tri(-1/4)*δ(-1 - 2)

Again, since δ(-1 - 2) is the Dirac delta function at a point different from zero (specifically, -3), its value is 0.

Therefore,
x(-1) = 2·tri(-1/4) * 0 = 0

Learn more about Dirac delta function:

https://brainly.com/question/30917153

#SPJ11

Suppose you have a regression model with an interaction term and a dummy variable. In this case, we can have a only one slope and only one intercept b.only one slope, but more than one intercept. c. more than one slope, but only one intercept d. more than one slope and more than one intercept.

Answers

When a regression model has an interaction term and a dummy variable in statistics and probability, there will be more than one slope and more than one intercept (D)

When there is an interaction term and a dummy variable in a regression model, we can have more than one slope and more than one intercept. The interaction term allows for different slopes for different levels of the dummy variable, while the intercepts represent the expected value of the dependent variable when the dummy variable is equal to zero for each level of the interaction term.

When a regression model has an interaction term and a dummy variable, it means that the effect of one independent variable on the dependent variable varies depending on the value of the other independent variable. In other words, the slope and intercept of the regression line will change depending on the value of the dummy variable.

More specifically, the model will have one intercept and two slopes: one for the dummy variable and one for the interaction term. As a result, the relationship between the dependent variable and the independent variables will vary depending on the value of the dummy variable, which will result in different slopes and intercepts.

Therefore, the correct answer is (d): more than one slope and more than one intercept.

Learn more about statistics and probability here:

https://brainly.com/question/30448884

#SPJ11

Special right triangle

Answers

Answer:

s = 5[tex]\sqrt{6}[/tex]

Step-by-step explanation:

using the cosine ratio in the right triangle and the exact value

cos30° = [tex]\frac{\sqrt{3} }{2}[/tex] , then

cos30° = [tex]\frac{adjacent}{hypotenuse}[/tex] = [tex]\frac{s}{10\sqrt{2} }[/tex] = [tex]\frac{\sqrt{3} }{2}[/tex] ( cross- multiply )

2s = 10[tex]\sqrt{2}[/tex] × [tex]\sqrt{3}[/tex] = 10[tex]\sqrt{6}[/tex] ( divide both sides by 2 )

s = 5[tex]\sqrt{6}[/tex]

Divide £200 in the ratio 3:5

Answers

Answer:

£75 and £125

Step-by-step explanation:

To divide £200 in the ratio 3:5, you need to first find the total parts of the ratio, which is 3+5=8.

Then you can divide £200by 8 to find the value of each part of the ratio:

£200/8 =£25

So, each part of the ratio 3:5 is worth £25.

To find the share of each part of the ratio, you can multiply the value of each part by the corresponding ratio number:

The share of the first part (3) is £25*3=£75

The share pf the second part (5) is £25*5=£125

Therefore, the £200 is divided into the ratio of 3:5 as £75 for the first part and £125 for the second part.

find the x-coordinates of the inflection points for the polynomial p(x)= x^5/20

Answers

The inflection point of the polynomial p(x) = [tex]x^5/20[/tex] is at x = 0. This is the only one inflection point.


To find the x-coordinates of the inflection points for the polynomial p(x) = [tex]x^5/20[/tex], we'll need to follow these steps:

1. Find the first derivative, p'(x), to determine the slope of the function.
2. Find the second derivative, p''(x), to determine the concavity of the function.
3. Set p''(x) equal to zero and solve for x to find the inflection points.

Step 1: Find the first derivative, p'(x):
p'(x) = [tex]d(x^5/20)/dx = (5x^4)/20 = x^4/4[/tex]

Step 2: Find the second derivative, p''(x):
p''(x) = [tex]d(x^4/4)/dx = (4x^3)/4 = x^3[/tex]


Step 3: Set p''(x) equal to zero and solve for x:
[tex]x^3[/tex] = 0
x = 0

There is only one inflection point, and its x-coordinate is 0.

For more such questions on Inflection points.

https://brainly.com/question/31484498#

#SPJ11

21.5 ÷ 5 + (80.6 - 12.5 ÷ 2) 

PEMDAS

Answers

Answer:

78.65

Step-by-step explanation:

78.65. (Remember parenthes, exponents, mult., division, addison, subtraction)

Solids A​ and cap B​ are similar.

Answers

The volume of the cone B using scale factor k = 3/2 is equal to 54π cubic centimeters.

Volume of cone A = 16π cubic centimeters

Scale factor 'k' = 3/2

Two solids A and B are similar.

This implies ,all corresponding lengths in solid B are 3/2 times the lengths in solid A.

The volume of a cone is given by the formula

V = (1/3)πr²h,

where r is the radius and h is the height.

Volume of cone A is 16π cubic centimeters.

Let r₁ and h₁ be the radius and height of cone A and r₂ and h₂ of cone B.

⇒16π = (1/3)π(r₁²)(h₁)

Multiplying both sides by 3 and dividing by π, we get,

⇒48 =(r₁²)(h₁)

Since solid A and B are similar with a scale factor of 3/2, we have,

h₂ = (3/2)h₁ and r₂= (3/2)r₁

Using these relationships, the volume of cone B is,

Volume of cone B = (1/3)π(r₂²)(h₂)

Volume of cone B = (1/3)π[(3/2)r₁]²[(3/2)h₁]

Volume of cone B = (1/3)π(9/4)(r₁²)(3/2)(h₁)

Volume of cone B = (27/8)(1/3)π(r₁²)(h₁)

Substituting Volume of cone A = 16π, we get,

Volume of cone B = (27/8)(16π)

Volume of cone B = 54π

Therefore, the volume of cone B is 54π cubic centimeters.

learn more about volume here

brainly.com/question/13543318

#SPJ1

Other Questions
A rectangle has a length of 10 inches and a width of 3 inches whose sides are changing. The length is increasing by 6 in/sec and the width is shrinking at 3 in/sec. What is the rate of change of the area? Write a quadratic function for the area of the figure. Then, find the area for the given value of x. he narrator of the story excerpt from 100 days and 99 nights and the speaker in the poem rain check have different points of view about their family situations. what is the narrators point of view about her family situation and excerpt from 100 days and 99 nights what is the speaker point of view about her family situation and rain check how are these points of view different? Para Una empresa produce dos tipos de chocolates de taza, A y B para los cuales los costos de produccin son, respectivamente de 2 soles y de 3 soles por cada tableta, Se sabe que la cantidad que pueden venderse cada semana de chocolates del tipo A est dada por la funcin: q=200(-2pA+2pB), Donde pA y pB es el precio de venta del producto (en soles por cada tableta)Y para el chocolate tipo B est dada por la funcin: q=100(36+4pA-8pB), Donde pA y pB es el precio de venta del producto (en soles por cada tableta) (2 puntos) Hallar la funcin utilidad de la empresa. (3,5 puntos) Determinar los precios de venta que maximizan la utilidad de la empresa y la utilidad mxima. (Interpretar la respuesta) The Venn diagram shows how many of the employees at a bookstore speakSpanish, Chinese, and Russian. How many of the employees do not speakRussian?Spanish8434275U6Chinese The simple interest charged on a 2-month loan of $22,000 is $521. Find the simple interest rate. (Round your answer to one decimal place.) State if the triangle is acute obtuse or right Write the simplified expression for the rectangle's perimeter.10x is the width 8x + 5 is the length suppose a and b are n n, b is invertible, and ab is invertible. show that a is invertible. [hint: let c = ab, and solve the equation for a.] How much will $14,000 grow to in two years, assuming an interest rate of 16% compounded quarterly? (FV of $1, PV of $1, FVA of $1, and PVA of $1). $15,120. what is the concentration of protons [h ] for a solution with ph = 2.42? If the built up beam is subjected to an internal moment of M=75KN.m. Determine the maximum tensile and compressive stress acting in the beam. Determine the amount of this internal moment resisted by plate A. What is the acceleration on a 2kg object that had 400J of work done on it over 50m? determine the sum of the following series. n=1[infinity](3n 6n10n) n=1[infinity](3n 6n10n) the time dependent current i(t) is given by i(t)= (2.45)2 a (4.8 a/s)t, where t is in seconds. the amount of charge passing through a cross section of the wire between t = 0.00 s and 8 s is A 0.179 g sample of an unknown halogen occupies 109 mL at 398 K and 1.41 atm. What is the identity of the halogen? (Hint: use the ideal gas law to find n (moles). Then divide mass by moles to find molar mass. Then match this molar mass to the molar mass of the halogens: F2, Cl2, Br2 and I2)1. Bromine2. Fluorine3. Chlorine4. Iodine5. Germanium at what energy do approaching protons interact with the individual nucleons instead of the mean field of the nucleus Refer to Abbey, Brady, and Cali Companies. Based on sales of 7,000 units, which company will report the greater income before income taxes if absorption costing is used? Select one: a. Abbey Company b. Brady Company c. Cali Company d. All of the companies will report the same income. This article is a good resource to use for a presentation on environmental solutions.A.TrueB.False Given a starting guess of xo = 0.4, what is the next step in approximating a minimum of f(1) = cos(z) using Newton's method for optimization?